Impact of Partitioning, Transmutation and Waste Reduction ...€¦ · Impact of Partitioning,...

Preview:

Citation preview

Impact of Partitioning, Transmutation and Waste Reduction

Technologies on the Final Nuclear Waste Disposal

Werner von Lensa, Forschungszentrum Jülich

Co-authors:

L. Boucher (CEA-France), E. Gonzales (CIEMAT, Spain), D. Greneche (AREVA-NC, France), D. Westlen, J. Wallenius (KTH, Sweden),

J. Marivoet (SCK•CEN, Belgium), R. Nabbi, M. Rossbach & R. Odoj (FZJ-Germany), C.H. Zimmerman (Nexiasolutions, United Kingdom)

IGD-TP / SNETP Exchange Forum, Prague, 29-30 October 2013

RED-IMPACT

2

Partners of RED-IMPACT

Research50%

Waste Agencies

18%

Nuclear Industry &

Utilities32%

23 partners + 2 subcontractors KTH-Sweden: Coordinator FZJ-Germany: Co-Coordinator Belgium: BN; SCK-CEN Czech Republic: NRI; RAWRA EC: ITU-Karlsruhe France: Areva ANP, CEA; COGEMA Germany:FANP; GRS; IER; KKP Netherlands: NRG Romania: CITON Slovakia: DECOM, VUJE Spain: CIEMAT; EA; ENRESA UK: NexiaSolutions; NIREX; UC

EC CONTRACT NO. FI6W-CT-2004-002408

Duration: March 2004 – September 2007

3

Working procedure

1. Definition of fuel cycle 2. Heavy Metal mass flow 3. Neutronic calculations 4. Mass flow in reprocessing units Actinide losses: 0.1% in HLW, 0.02% in ILW Volatile Activation + Fission Products

• I: 1% in HLW, 1% in ILW • 14C: 10% in HLW • Cl: 1% in HLW, 0.2% in ILW

5. Waste inventories 6. Waste disposal analyses 7. Estimation of environmental, economic and

social indicators

4

Investigated Fuel Cycles

• Industrial scenarios – Scenario A1: (reference) : once through open cycle with Gen-II / III reactors

– Scenario A2 : mono-recycling of plutonium in Gen-III reactors (+ variants e.g. Th-MOX, IMF, PWR vs. BWR etc.)

– Scenario A3 : Multirecycling of Pu (only) in Sodium Fast Reactors (EFR)

• Innovative scenarios – Scenario B1 : Multi-recycling of Pu & MA in Sodium Fast Reactors (EFR)

plus advanced PUREX

– Scenario B2 : multi-recycling of plutonium in Gen-III reactors and burning of Minor Actinides in ADS plus advanced PUREX & PYRO

– Scenario B3 : mono-recycling of plutonium in Gen-III reactors + burning of plutonium in Gen-IV fast reactors + burning of Minor Actinides in ADS including advanced PUREX and PYRO (reduced efforts)

Cradle-to-Grave

5 A1: 5.354 spent fuel assemblies / TWhel B1: 1.644 canisters / TWhel (HLWvitr.)

6

Performance indicators

The indicators have been divided into two major groups:

• “Technical” indicators related to waste management issues: – composition of the waste; number of SF-assemblies, number of canisters, – size of the repository; gallery length (influenced by heat load) – long-term performance of the repository system:

• individual annual dose; • radiotoxicity flux released into the biosphere; • integrated radiotoxicity flux released into the biosphere.

– Inclusion of ILW

• Economic, Environmental and Societal sustainability (EES) indicators – Production cost & external cost – Fuel import dependencies, resource consumptions – Proliferation and terrorist attack resistance – Health impacts on workers & public in normal operation & accidents – etc.

7

Priorities

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

1 10 100 1000 10000 100000 1000000time (years)

Sv p

er to

n H

M

Grand totalPlutoniumAmericiumCuriumUraniumNeptuniumFission Products

Plutonium Management has strongest Impact ! Focus on most important MA !!!

U-Equilibrium

8

Thermal output and length of disposal galleries (Clay)

Scenario Clay: allowable

thermal output at disposal time

Total needed gallery length

Relative needed gallery length

(W/m) (m/TWhe) (-) A1 354 5.922 1 A2 332 / 376 5.743 0.970 A3 365 3.479 0.587 B2 379 2.895 0.489 B1 379 1.882 0.318 B1-separation of Sr 1.273 0.215 B1- separation of Cs and Sr (Cs-waste disposed after 100 a)

0.439 0.0741

Reduction by a Factor of 3 (A1 vs. B1)

Removal of Cs & Sr would allow further reduction

A1: LWR-open A2: LWR-Mono A3: SFR-Multi-Pu B1: SFR-Multi-Pu&MA B2: SFR+ADS B3: LWR, SFR+ADS

9

Repository in granite Concept: Enresa, Spain

• Bentonite saturated after 20 a, corrosion starts

• Sequential failure of canisters from 1300 to 10000 a

• Average time for H2O to reach biosphere 8400 a

• Diffusion and sorbtion retards the transport of many nuclides

• Release to river (106 m3/a), exposed group use river water

10

Long-Lived Fission Products dominate Doses (A1 granite)

1,E-14

1,E-13

1,E-12

1,E-11

1,E-10

1,E-09

1,E-08

1,E+03 1,E+04 1,E+05 1,E+06 1,E+07

Time (years)

Dos

e (S

v/yr

-TW

h(e)

)

I129

Se79Sn126

C14

Cl36

Cs135

Ra226-Th230

TOTAL

Pa231Th229

135Cs

11

Granite: calculated doses (all scenarios, Enresa)

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Time (years)

Dos

e (S

v/yr

-TW

h(e)

)

Scenario A1

Scenario B2Scenario A3

Scenarios A3 & B1

Scenario A2

Scenario B2

Scenarios A3 & B1

Differences mainly due to Iodine removal during reprocessing !!!

A1: LWR-open A2: LWR-Mono A3: SFR-Multi-Pu B1: SFR-Multi-Pu&MA B2: SFR+ADS B3: LWR, SFR+ADS

12

Calculated doses in Clay (all scenarios, SCK•CEN)

1.0E-17

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

Dos

e (r

iver

pat

hway

) (Sv

/a/T

Whe

)

A1A2 hlwA2 spf-moxtotal A2A3B1B2 hlw-uoxB2 hlw-moxB2 hlw-adstotal B2

A1: LWR-direct A2: LWR-Mono A3: LWR-Multi B1: SFR-Multi B2: SFR+ADS

13

Variant scenarios of B1 (calculated e.g. for Granite)

Impact of waste matrix lifetime

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Time (years)

Dos

e (S

v/yr

-TW

h(e)

)

Se79

Sn126

C14

Cs135

I129

Ca41Cl36

Se79

I129

C14

Cs135

Ca41

Sn126

72.000yr glass

720.000yr glass

7.2 million yr glass

RN

RN

C14

I129

Cs135

Se79

RN

Actinides& daughters (overlapped)

Sn126

14

Thorium: Reduction of MA

Uranium

0,7 %

Actinides: Long-term Radiotoxicity !!!

Secondary Fuels

Thorium (3 x more)

Th/Pu MOX: 2x better Pu/MA consumption !!!

15

Human intrusion doses (all scenarios, Nirex)

1E-061E-051E-041E-031E-021E-011E+001E+011E+021E+031E+04

1E+02 1E+03 1E+04 1E+05 1E+06

Time (yr)

Dos

e (S

v)

Scenario A1Scenario A2 VHLWScenario A2 MOXScenario A3Scenario B1Scenario B2 ADSScenario B2 MOXScenario B2 UOXCigar Lake Natural AnalogueLower ICRP Intervention LevelUpper ICRP Intervention Level

16

ILW-Packages

Source: • Structural Parts of Fuel Assemblies

– End-fittings, chopped claddings, grids etc. – Core & Blanket

• Reprocessing of ADS-Fuel (Zr-Nitride) – C-14, Cl-36, Nb-94 contents – Noble metals from Pyro-processing

• ADS core components – Pb-Bi, core support, window, accelerator

tube

A1 0 m3/TWeh A2 2,5 m3/TWeh A3 5,3 m3/TWeh B1 5,3 m3/TWeh B2 3,3 m3/TWeh

For granite repository:

• Waste matrix less retention

• Direct access of ground water

• doses start earlier

• ILW dominates till 20.000 y

17

Calculated doses for ILW in Granite (scenario A2, Enresa)

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Time (years)

Dos

e (S

v/yr

-TW

h(e)

)

Se79

C14

Cl36

TOTALI129

Mo93

Ra226Th230

Cs135

18

Doses for HLW + ILW in Granite

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Time (years)

Dos

e (S

v/yr

-TW

h(e)

)

Scenario A1

Scenario A2

Scenarios A3 & B1

Scenario B2

Scenarios A3 & B1

Enresa calculation

19

Conclusions (1)

• P&T Impact on repository dimensions (heat load) – reduction of gallery length with a factor 3 – a factor 5 in case of Sr separation – a factor 10 (or more) in case of Cs and Sr separation

• P&T Impact on dose: HLW disposal – limited: due to mobile fission and activation products

(14C, 36Cl, 79Se, 99Tc, 129I, 135Cs, 126Sn) – depends on amount of disposed 129I, 14C, 36Cl vs.

discharged volatile isotopes during reprocessing – ADS-specific waste to be considered in more detail

• P&T Impact on Human Intrusion dose: significant • Impact of more stable matrix on dose: significant

20

Conclusions (2)

• ILW Impact on dose: – Granite: ILW doses > HLW doses consider use of low activation materials, add barriers (C-14)

– Clay: ILW doses < HLW doses • Reduced generation of MA: Th-MOX, IMF vs. Pu-MOX

• Hetereogeneous recycling & other reactors (BWR, HWR, HTR etc.)

• Improved Partitioning / Reprocessing: LLFP, volatile FP • Partitioning & Conditioning (P&C): viable option • Cost / Benefit Evaluations: science / industry dialog • Repository/waste package adaptation to P&T waste Transition to advanced reprocessing/conditioning: ASAP

21

Thanks for your attention

22

Assumptions

• A1: reference scenario: open cycle • Burn-up 50 GWd/tHM, UOX : 235U enrichment 4.2%

– HLW: 5.354 spent fuel assemblies / TWhel • B1: Fast neutron Gen IV & advanced PUREX

• Burn-up: core 136 GWd/tHM (axial 15, radial 24) • MOX: 23.2% Pu + 2.7% MA

– Vitrified HLW: 1.644 canisters / TWhel • HLW disposal in 3 host formations

– Granite: ENRESA (Spain), NRI (Czech Republic) – Clay: SCK•CEN (Belgium) – Salt: GRS (Germany)

23

Evolution of temperature

0

20

40

60

80

100

120

0.01 0.1 1 10 100 1000time (years)

T (°

C)

interface A1interface A2 HLWinterface A2 MOXinterface A3interface B1interface B2 UOXinterface B2 MOXinterface B2 ADS A1: LWR-open

A2: LWR-Mono A3: LWR-Multi B1: SFR-Multi B2: SFR+ADS

24

Radiological impact

• Safety functions of repository system – Engineered containment

• Container lifetime (2000 a)

– Slow release of RNs • Waste matrix degradation (100 000 a) • Solubility limitation (reducing conditions)

– Very slow transport • Diffusive transport through buffer (and clay formation) • Sorption on (clay) minerals

• Small releases of radionuclides into biosphere

25

Radiotoxicity Fluxes for Clay

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

RT

Flux

to N

eoge

ne (S

v/a/

TWhe

)

C14

Cl36

Ni59

Se79

Zr93

Nb94

Tc99

Pd107

Sn126

I129

Cs1351.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

RT

Flu

x to

Neo

gen

e (S

v/a/

TW

he)

Se79

Zr93

Tc99

Pd107

Sn126

I129

Cs135

A1 B1 Significant impact of long-lived fission products !

Minor Actinides strongly immobilised ! Strong dependence on solubility limits !

26

Human intrusion doses (scenario A1, Nirex)

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100 1000 10000 100000 1000000

Time (yr)

Dos

e

Cl_36

Sr_90

Tc_99

I_129

Cs_137

Po_210

Pb_210

Rn_222

Ra_226

Ac_227

Th_228

Th_229

Th_230

Th_232

Pa_231

U_234

U_235

U_238

Pu_238

Pu_239

Pu_240

Pu_241

Am_241

Am_242m

Am_243

Total

Pu-240

Am-241

Pu-238Cs-137

Total

Pu-239 Rn-222

Th-229

Ra-226

Th-230

, Sv

MA dominate Human Intrusion Scenarios

27

Human intrusion: required isolation times

Comparator

HLW/SF Types

Cigar Lake natural

analogue

ICRP 10 mSv intervention

level

ICRP 100 mSv intervention

level Radiotoxicity

Scenario B1: HLW ~200,000 a ~40,000 a ~1000 a ~300 a Scenario B2: HLW

from ADS fuel > 1 Ma ~70,000 a ~13,000 a ~300 a

Scenario A3: HLW > 1 Ma > 1 Ma ~70,000 a ~24,000 a Scenario A1: spent

UOX fuel > 1 Ma > 1 Ma ~100,000 a ~200,000 a

Scenario A2: spent MOX fuel > 1 Ma > 1 Ma ~200,000 a ~90,000 a

28

ILW: calculated doses in Clay (scenario A3, SCK•CEN)

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

Dos

e (r

iver

pat

hway

) (Sv

/a/T

Whe

)

C14

C14 (R=2)

Cl36

Se79

Tc99

Sn126

I129

TOTAL

29

Doses for HLW + ILW in Clay (all scenarios, SCK•CEN)

1.0E-17

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

Dos

e (r

iver

pat

hway

) (Sv

/a/T

Whe

)

A1 sfA2 hlw and sf-moxA2 ilwtotal A2A3 hlwA3 ilwtotal A3B1 hlwB1 ilwtotal B1B2 hlwB2 ilwtotal B2

SF, HLW and ILW

Recommended