Hadron physics Hadron physics Challenges and Achievements Mikhail Bashkanov University of Edinburgh...

Preview:

Citation preview

Hadron physicsChallenges and Achievements

Mikhail Bashkanov

University of Edinburgh

UK Nuclear Physics Summer School

I

OUTLINE OF THE COURSE• Lecture 1: Hadron Physics. Experiments: new toys –

new knowledge (progress in particle detector systems). Research areas: Hadron spectroscopy, meson rare decays (physics beyond SM), structure of hadrons.

• Lecture 2: Baryon spectroscopy, naïve quark model and beyond, molecular states, new horizons with precise measurements.

• Lecture 3: Using EM probes to learn about the nucleon. Nucleon form factors. Radius of the proton.

3

HADRON PHYSICS

4

ELECTROMAGNETIC INTERACTIONS

Ze

Ze

5

ELECTROMAGNETIC INTERACTIONS

Ze

Ze

2

6

EM -> STRONG INTERACTIONS

2qq

q q

g

7

QUARKS• Fermions (spin )• 3 colors (red, green, blue)• Parity +1

8

ENERGY DEPENDENCE OF THE COUPLING CONSTANT

q

Bare quark

9

ENERGY DEPENDENCE OF THE COUPLING CONSTANT

q

Dressed quark

10

ENERGY DEPENDENCE OF THE COUPLING CONSTANT

q

Dressed quarkΔ𝑝 ∙ Δ𝑥 ≥h

Low energy probe

11

ENERGY DEPENDENCE OF THE COUPLING CONSTANT

q

Dressed quarkΔ𝑝 ∙ Δ𝑥 ≥h

High energy probe

12

ELECTRON MICROSCOPYde Broglie wavelength of probe particle must be ~size of the object you wish to study

13

STRONG COUPLING CONSTANT

14

STRONG COUPLING CONSTANT

Perturbative QCDParticle Physics

Nonperturbative QCDNuclear Physics

15

NUCLEAR VS PARTICLE PHYSICS

Nuclear Physics Particle PhysicsBelow charm threshold Above charm threshold

Nucleon structure Mesons with mass > 1.2 GeV

Light quark baryons (without c/b quarks)

anticolor

Meson Baryon

color

16

MAJOR DIRECTIONS• Hadron spectroscopy:

• Hadron properties (mass, with, decay branching…)• Hadron structure (, , , meson-baryon molecule…)

• Precision tests of SM:

• Neutron magnetic moment• Neutron electric dipole moment• Muon/electron magnetic moment (g-2)• Rare decays of mesons• …

• Size and structure of nucleon

• Nucleon form factor• Nucleon radius

17

RECENT PROGRESS IN NUCLEAR PHYSICS

18

BUBBLE CHAMBERS

Gargamelle Bubble Chamber

19

MAGNETIC SPECTROMETERS

𝐸2=𝑝2+𝑚2

Time Of Flight->velocity

𝑝=𝑚𝑣

√1−𝑣2

20

MODERN DETECTORS• Large acceptance (close to 4 coverage)

• Charge and neutral particles

• Magnetic field, drift chambers• Calorimeters

• High luminosity

• High rate, fast triggering• Polarized beams/targets

• Polarimeters

High precision

21

MODERN DETECTORS

KLOE

WASA

22

PHOTONSBasics

23

WHY DO WE USE E/M PROBES?

Pros:• Interaction is understood

(QCD)• Beams are clean• Beams can be polarized• Targets can be polarized

and dense

Cons:• Cross-sections are small• Photon beams were(!)

challenging• Polarized targets are

challenging• Nucleon polarimetry is

complicated

24

TYPES OF PHOTON POLARIZATION

Linear polarization:

(Electric field vector oscillates in plane)

Circular polarization:

(Electric field rotates Clockwise or anticlockwise)

• Both real and virtual photons can have polarization• Determining azimuthal distribution of reaction products

around these polarization directions gives powerful information.

25

HOW DO WE GENERATE INTENSE ELECTRON BEAMSMicrotron: (MAMI, JLab)• Electron beam accelerated by RF cavities.• Tune magnetic field to ensure path through

magnets multiple of Wavelength of accelerating field - electrons arrive back in phase with the accelerating field.

• Gives “continuous” beam(high duty factor)

Stretcher ring: (ELSA, Spring8)• Electron beams fed in from linac.

Then accelerated and stored in ring.Useable beam bled off slowly

• Many stretcher rings built for synchrotron radiation – can exploit infrastructure for multiuse (e.g. Spring8)

• Tend to have poorer duty factors, less stable operation and poorer beam properties than microtrons.

26

REAL PHOTON BEAMS FROM ELECTRON BEAMS

Wide range of photon energies

Good time/position resolution for the tagger

Small radiator-target distance

Bremsstrahlung spectra

Θ𝑐=𝑚𝑒[𝑀𝑒𝑉 ]𝐸𝑒[𝑀𝑒𝑉 ]

[𝑟𝑎𝑑]

E e=855MeV→Θ𝑐=0.6𝑚𝑟𝑎𝑑

27

POLARIZATION IN REAL PHOTON BEAM

Linear polarization:• crystalline radiator,

e.g. thin diamond.

• orient diamond to give polarised photons in certain photon energy ranges.

𝐸𝑒=1600𝑀𝑒𝑉

Circular polarization:• helicity polarised

electrons.

• bremsstrahlung in amorphous radiator, e.g. copper.

28

COHERENT BREMSSTRAHLUNG

29

LINEAR POLARIZATION

30

COHERENT BREMSSTRAHLUNG

31

FROZEN SPIN TARGET• available (Mainz) since

05.2010

• Butanol() or D-Butanol

• 3He/4He dilution refrigerator (50mK)

• Superconducting holding magnet

• Longitudinal or transverse polarizations are possible

• Maximal polarization for protons ~90%, for deuterons ~75%

• Relaxation time ~2000 hours

32

THE POLARIZED TARGET

33

NUCLEON POLARIMETER𝑛 (Θ ,𝜙 )=𝑛0(Θ)(1+𝐴(Θ) [𝑃 𝑦 cos (𝜙 )−𝑃𝑥sin (𝜙)])

𝐀𝐲

𝚯�⃗�

𝝓

Number of nucleons scattered in the direction

Polar angle distribution for unpolarized nucleons

Analysing powerPolarization

34

HADRON SPECTROSCOPY

35

REAL EXPERIMENT

𝑒−

�⃗�

Diamond

𝜸

Target

𝝅+¿ ¿𝝅−𝒑

Θ ,𝜙 ,𝐸

𝚯′ ,𝝓 ′

�⃗� �⃗�→ �⃗� 𝜋+¿𝜋 −¿ Polarimeter

36

INTERFERENCE

37

DECAY WIDTH

Mean life time

Decay width

Typical “strong” decay width

38

NUCLEON EXCITED STATES

39

DOUBLE POLARIZATION EXPERIMENTS

40

POLARIZATION OBSERVABLES

41

RESONANCE HUNTING

42

MESON PHOTOPRODUCTION CROSS SECTIONS

43

RARE EVENTSThe Standard Model and beyond

44

PRECISION IS POWER

• Neutron electric dipole moment

• Muon magnetic moment (g-2)

• rare decays

• ….

Testing Standard Model with precise measurements

45

ELECTRIC DIPOLE MOMENT

46

NEUTRON EDM

47

NEUTRON EDM

SM

SUSY

48

RARE DECAYS

49

: CP VIOLATION

𝐵𝑟 ¿

50

UNIVERSE CONTENT

51

SEARCH FOR DARK PHOTONDark force:

Dark photon

𝜼 /𝝅𝟎

52

CONCLUSION

• Enormous progress in nuclear physics

• Precision is a new motto

• Acceptance• Luminosity• Polarization

• Photons are the best

• Experimentally clean• Well understood theoretically