Graph kernels for chemoinformatics. A critical discussion · Graph kernels for chemoinformatics. A...

Preview:

Citation preview

Graph kernels for chemoinformatics.A critical discussion

Matthias Rupp

Berlin Institute of Technology, Germany

6th German Conference on Chemoinformatics,Goslar, Germany, November 7–9, 2010

Outline

Introduction Kernel-based learning

Graph kernels Idea, taxonomy

Applications Virtual screening, pKa estimation

Discussion Assessment

Matthias Rupp: Graph kernels in chemoinformatics 2

Machine learning: introduction

I Algorithmic search for patterns in data

I Inference from known samples to new ones

Application examples:

I Ligand-based virtual screening

I Quantitative structure-property relationships

I Toxicity mode of action

Method examples:

I Linear regression

I Principle component analysis

I Artificial neural networks

-10 -5 5 10x

-4

-2

2

4

6

8

fHxL

Matthias Rupp: Graph kernels in chemoinformatics 3

Machine learning: kernel-based learning

Idea:

I Transform samples into higher-dimensional space

I Implicitly do inference there

-2 Π -Π 0 Π 2 Π

x 7→-2Π -Π Π 2Π

x

-1

1sin x

Input space Feature space

<x, x′> =d∑

i=1

xix′i inner product

k(x, x′) = <φ(x), φ(x′)> kernel function

Example: φ(x) = (x , sin x)

Matthias Rupp: Graph kernels in chemoinformatics 4

Graph kernels: idea

Define kernels directly on graphs!

k(G ,G ′) = <φ(G ), φ(G ′)> kernel function

I Combine graph theory and machine learning

I Complete graph kernels are computationally hard

small moleculemolecular graph

668 HUAN ET AL.

FIG. 9. Large subgraph motif found in more than 90% of the Protein Kinase family members that includes a catalyticresidue. Left: graph representations. All edges are proximity edges. Right: mapping of this motif onto the backboneof Cell Division Kinase 5 (1h4l). The motif includes the invariant catalytic residue Lys128, darkened in the graphrepresentation and in the protein structure, and neighboring hydrophobic residues that contact the ligand.

FIG. 10. Least-squares superposition of the largest fingerprint that contains the whole active site in 30 proteins fromour dataset of 35 eukaryotic and 8 prokaryotic serine proteases. Maximum RMSD is 0.5 Å RMSD in the first fourresidues (Asp-His-Ala-Ser). Only 7 serine proteases (ESP: 1lo6A,1eq4A,1fiwA,1eaxA; PSP: 1qq4A, 1sgpE, 1hpgA)are shown superposed, for clarity. The surrounding conserved C! trace is also shown.

protein kinase motifreduced graph

protein-proteininteraction network

Gartner et al., COLT 2003, 129.

Matthias Rupp: Graph kernels in chemoinformatics 5

Graph kernels: taxonomy

random walksCCCOCCCOCCCCCCCOCOCCCCCCCCSOSCSOCCCCCCCCCCC

CCCOCCOCCCCOCOCNCCCCCCCCCCCCCCCCNCCOCNCCCOC

CCCOCCCOCCCCCCCOCOCCCCCCCCSOSCSOCCCCCCCCCCC

CCCOCCOCCCCOCOCNCCCCCCCCCCCCCCCCNCCOCNCCCOC

time O(n3)

patterns

sampling

assignments

Gartner et al., COLT/Kernel 2003, 129; Kashima et al., 155, in Scholkopf et al. (eds.),Kernel methods in computational biology, MIT Press, 2004.

Matthias Rupp: Graph kernels in chemoinformatics 6

Graph kernels: taxonomy

random walks

CCCOCCCOCCCCCCCOCOCCCCCCCCSOSCSOCCCCCCCCCCC

CCCOCCOCCCCOCOCNCCCCCCCCCCCCCCCCNCCOCNCCCOC

time O(n2c2c) for trees, O(n3) for cyclic patterns

patterns

sampling

assignments

Mahe & Vert, Mach. Learn. 75(1): 3, 2009; Horvath et al., KDD 2004, 158.

Matthias Rupp: Graph kernels in chemoinformatics 7

Graph kernels: taxonomy

random walks

time O(nck−1), k ∈ {3, 4, 5}

patterns

sampling

assignments

Shervashidze et al., AISTATS 2009, 488; Kondor et al., ICML 2009, 529.

Matthias Rupp: Graph kernels in chemoinformatics 8

Graph kernels: taxonomy

random walks

time O(n3)

patterns

sampling

assignments

Frohlich et al, QSAR Comb. Sci 25(4): 317, 2006;Rupp et al, J. Chem. Inf. Model. 47(6): 2280, 2007

Matthias Rupp: Graph kernels in chemoinformatics 9

Applications: virtual screening

Target:

I Peroxisome proliferator-activated receptor γ (PPARγ)

I Related to type 2 diabetes and dyslipidemia

Methods:

I Gaussian process regression

I Graph kernel + descriptors

I Cellular reporter gene assay

Results:

I 8 out of 15 compounds active

I One selective PPARγ agonist with novel scaffold(derivative of natural product truxillic acid),EC50 = 10.03 ± 0.2µM

Rupp et al., ChemMedChem 5(2): 191, 2010.

Matthias Rupp: Graph kernels in chemoinformatics 10

Applications: quantitative structure-property relationships

Objective:

I Estimation of acid dissociation constants pKa in water

I HA A− + H+; pKa ≈ pH + log10c(HA)c(A−)

Methods:

I Published data (n = 698)

I Kernel ridge regression

I Only graph kernel

Results:

I Best RMSE = 0.23median RMSE = 0.85

I Same performance as semi-empirical reference modelbased on frontier electron theory

Tehan et al., Quant. Struct. Act. Rel. 21(5): 457, 473; Rupp et al, Mol. Inf., 2010 29: 731.

Matthias Rupp: Graph kernels in chemoinformatics 11

Discussion: choice of kernel

Problem:

I It’s not clear when to use which graph kernel

Questions to ask:

I Does it consider the position of patterns?

I Does it support domain knowledge, e.g., labels?

I Does it exploit molecular graph properties,e.g., bounded vertex degrees?

I Is it positive definite?

Matthias Rupp: Graph kernels in chemoinformatics 12

Discussion: assessmentKernel methods:

+ Principled way of non-linear pattern recognition

– Solution in terms of training samples instead of input dimensionsAffects computing time, solution size, interpretation

Graph kernels:

+ Principled use of graph theory in kernel learning

+ Defined directly on the graphs

+ Potential in chemoinformatics

– High computational requirements

I Some aid interpretability, some do not

I Recent development, active area of research

Outlook:

I Theoretical and comparative studies needed

I Graph kernels designed for chemoinformaticsMatthias Rupp: Graph kernels in chemoinformatics 13

Acknowledgments

Prof. Dr. Klaus-Robert MullerInstitute of Technology BerlinGermany

Prof. Dr. Gisbert SchneiderETH ZurichSwitzerland

Prof. Dr. Manfred Schubert-Zsilavecz, Dr. Heiko Zettl, Ramona SteriDr. Petra Schneider, Dr. Ewgenij Proschak, Markus HartenfellerDr. Timon Schroeter, Katja HansenDr. Igor Tetko, Robert Korner

Matthias Rupp: Graph kernels in chemoinformatics 14

Literature

I Mathematical review:

Vishwanathan et al., Graph kernels,J. Mach. Learn. Res. 11: 1201, 2010.

I Chemoinformatics review:

Rupp & Schneider, Graph kernels for molecular similarity,Mol. Inf. 29(4): 266, 2010.

I Slides:

http://www.mrupp.info

Matthias Rupp: Graph kernels in chemoinformatics 15

Recommended