Field Survey Procedures

Preview:

DESCRIPTION

Document of procedure

Citation preview

89

12.FIELDSURVEYPROCEDURES

12.1.General

Effectivesamplingofanysurficialmediarequireswell-trainedpersonnelcapableofrecognizinganddescribingthecorrectsamplematerialandthesamplesitecharacteristics.Samplersshouldbeabletorecognizeand,ifpossible,avoidsituationswherecontaminationfromhumanactivityorchangesinthenaturalphysicochemicalconditionscanproducespuriousorunusualresults,inmostsituations,thesesamplingdutiescanbeundertakenbytrainedtechnicalpersonnelunderthesupervisionofageochemistorgeologistwithadequategeochemicalexplorationexperience.Insomesurveys(e.g.whereidentificationofthecorrectsamplematerialIscritical,asinbiogeochemicalorglacialtillsamplingprograms),itisprudenttoemployqualifiedspecialists(e.g.botanistsandQuaternarygeologists)tobothconductorientationsurveysandinstructandsupervisethesamplingteams.

Samplingtoolsvaryaccordingtothemediumandthefieldsituation.Non-contaminatingequipmentisessentialandcareshouldbeexercisedinnotonlychoosingnon-contaminatingsteelsforshovels,trowels,augersetc.butalsoinensuringthatanyassociatedlubricants,adhesives,welds,andsolderswillnotcauseproblems.Leadedgascansometimesconstituteapotentialprobleminfieldvehicleswhensamplesaretransportedinproximitytoleakingcontainers.Thisawarenessofgeochemicalcleanlinessextendstothedressofthesamplerwhoshouldavoidwearingmetalbuckles,rings,etc.andhandlingcoinswhichmightleadtocontaminationbychippingortransferofmetalonfingers.

Thesamecautionisnecessaryinthechoiceofsamplecontainers.Kraftpaper(withnon-contaminatingwater-proofglueandclosures),olefin,andplasticbagcontainersofappropriatesizearefrequentlyused.Kraftandolefinallowsamplestobedriedwithouttransfer.Plasticbagsarecommonlyusedforlargersamples.Morerigidpolypropyleneandspecialglassbottlescanbeutilizedinwatersamplingandavarietyofsamplingdevices,manyofthempatented,areavailableforthesamplingofgasesandparticulates.

Itisstronglyadvisedthatallsamplesbeallocatedsimpleuniquesequentialnumberswhichatleastincludeaproject(orregionaloffice)designatorprefixandasampletypedesignatorsuffix.Thesearebestprovidedbypre-numberedAssay/GeochemicalSampleTagBooks.Thepotentialforerrorandmisunderstandingistherebyminimizedandproblemsinsubsequentdatamanagementandinterpretationareavoided.Someformofcoordinatesshouldalsobeassignedtoeverysampleinordertoassistsamplelocationandcomputerplottingofsamplelocationsandanalyticaldata.Inthecaseofwidelyspacedregionalreconnaissancesamples(e.g.streamsediment)theUniversalTransverseMercator(U.T.M.)gridlocationofeachsitecanbedeterminedusingtopographicbasemapsofsuitablescaleorpossibly,alocatorinstrument(e.g.Magellan).

90

InmoredetailedstudiestineU.T.M.gridcanbeusedtodefinetheareaboundaries,whilstindividualsamplesarelocatedbyreferencetoalocalgrid.

12.2.SampleMedia

Somediscussionofthepotentialroleofavailablegeochemicalsamplemediaintheexplorationsequencehasbeenprovidedinpreviouschapters.Mediaselectionwillofcoursebedecidedonthebasisoforientationstudieswhichwillinturnbeinfluencedbythelocalenvironmentaswellthenatureoftheexplorationproblem.Reiteratingearlierstatementsconcerningtheapplicabilityofthemorewidelyusedsamplemediainreconnaissancestudies,themethodsusedmightinclude:

(i)drainagesurveys:samplingstreamorlakesediment,streamorlakewater,groundwater,etc.;(ii)glacialdepositsurveys:samplingoftill,etc.;(iii)rocksurveys;(iv)soilsurveys:thisapproachisbecomingincreasinglypopularatsamplingdensitiesaslowas1sampleper25km.

Follow-upstudiesofpromisingleadsdetectedinthereconnaissancephasemightinvolve:

(i)closerspacedsamplingofoneormoreoftheabovementionedmediaand/or;(ii)streambank(residualsoilorcolluvium)surveys;(iii)biogeochemicalsurveys;Ov)soilgassurveys,ormorerarely;(v)geobotanicalsurveys;(vi)particulatesurveys,and(vii)microorganismsurveys.

Exotictechniquessuchassurveysbasedonanimaltissuesampling,arecurrentlyprimarilyofacademicinterest,andunlikelytoprovidesolutionstoactualpracticalexplorationproblems.

12.2.1,Rocks

Geochemicalexplorationsurveysbasedonsystematicbedrocksamplingareinessenceanextensionofroutineprospectingbasedonthecollectionandanalysisofrelativelysmallnumbersof"specimens"orrockchip"samples"frompotentiallyinterestingbedrockexposures.However,theformeraimtoachieveconsistentlyrepresentativematerial,andaregenerallycapableofdetectingandinterpretingfarmoresubtleexpressionsofthepossiblepresenceofmineralizationthanthe"character"samplingnormallycarriedoutinprospecting.Unlessexposureisexceptionallygood,sample91

spacingingeochemicalrocksurveystendstobelessconsistentthanthatachievedin,say,soilsurveys.

Aswithothertypesofgeochemicalsurveys,thesamplingproceduresandthesamplematerialcollectedingeochemicalrocksurveysshouldbestandardizedasmuchaspossible.However,consideringthelargenumberofvariablesthatcanbeintroducedbytheprocessesofweatheringandoxidation,theidealofcollectingsimilarlyweatheredmaterialissometimesimpractical.Nevertheless,thegeologistorthegeochemistconductingthesurveyshouldensurethatindividualsamplesatailsamplesitesareessentiallycomparableandthatobservedvariationsinweatheringintensityareproperly-ecordedforinterpretationpurposes.

Geochemicalrocksamplinonecessarilymusttakeintoaccountthegeologicalenvironmentandthetypeofmineraldepositofinteresttotheexplorer.Theprecisescaleofsamplingnecessaryfordetectionofsvnaeneticandepiaeneticpatternswillbedeterminedbyorientationsurveys(seeChapter8).Detectionofsyngeneticpatternsmaynecessitatetheregionalsamplingofindividualplutonsormoredetailedsamplingofspecificpartsofanexposedstratigraphicsection.Thelatterpatternswillrequireadifferentapproach.Surveysdesignedtodetectleakageanomalieswillfocusonsystematicsamplingoffaultorfracturezonesand,possibly,beddingstructures.Incontrast,thepreferredgeochemicalrocksamplematerialforthedetectionofdiffusionnaloesislikelytobeunfracturedandthescaleofsamplingmuchmoredetailed.Inallinstances,analysisofgeochemicalrocksurveymaterialhasthepotentialofdelimitingdispersionpatternsbeyondvisiblealterationassociatedwithmineralization.Table12.1summarizestheelementsdeterminedandthesamplingdensitiesusedinpastexplorationprogramsforavarietyofmineralizationtypes.

AgoodexampleofaregionalapproachcapableofdiscriminatingbetweenproductiveandbarrenintrusionsisprovidedbytheworkofGarrett(1973),whichwasbasedonwholerockanalysisofsamplesfromfelsicintrusionsintheYukonTerritory,Canada(Fig.12.1).Usingavarietyoftechniques,includingresidualscoresfromamultivariatestatisticalanalyticalprocedure(principalcomponentanalysis),comparisonsofmetalconcentrations(Fig.12.2)anddegreeofskewnessoffrequencydistributions,hewasabletodemonstratethatmostplutonsassociatedwithmineralizationcouldberecognized,andcertainadditionalplutonswithnoknownmineralizationmeritedfurthernvestigation.InstrongcontrasttheworkofChurchetal(1976)demonstratesthepotentialvalueofdistrictscalegeochemicalrocksamplingprogramsinthedetectionofveinandreplacementdeposits.TheircasehistorystudywascarriedoutinanareaofBritishColumbia,CanadawhichincludestheMesozoicvolcanicsequencehostedSamGooslyreplacement(?)massivesulfidedeposit,andtheUpperCretaceousandesiticvolcanicsequencehostedBrandinaveintypeoccurrences(Fig.12.3).BothtypesofmineralizationarereflectedbylargeAsandsomewhatmorelimitedCuanomalies(Fig.12.4).

ScaleTargetElements___Samplingdensity

Regional

identificationofproductiveplutonsmassive

K,Rb.Sr,Ba,U,Na",Ca*Fe.Na,Mg,Mn,

e.g.Cu,Pb,Zn,Sn.W.Mo,U.NiCu.Zn.(Pb)

min.30/intrusionbutseeAppendix3,0.2-5/krT?

sulphides

Na,

LocalandMine

veinandreplacementporphyry

(K),(Ca),(Ba)As.Sb,Ta.Bi*

K.Ca,Rb,Sr.

e.g.Cu,Pb,ZnAu,Ag

Cu.Zn.Mo.S

l-10/kn

2-30/krT

Mn,(MG)

massivesulphides

Fe,Mn.Na,K.

Cu,Pb.Zn.(S)

150-200rnInterval

Ca,Mg,

veinandreplacetnent

(hO).(Rb).(Sr)

e.g.Cu,Pb,2n.Aii,Ag

5-10minterval

TABLE12.1Summaryofelementstobedsterminedandsurfacesamplingdensityfordifferenttargetsinregional.andlocalandminescaleexploration.Elementsinparentheseshavebeenshowntobeusefulinsomecasesbuthaveuncertainstatus;elementswithasteriskareexpectedtobeusefulbuttherearelittledata.Sishouldbedeterminedinallcaseswherepetrologicalvariationisexpectedtocausevariationtothecontentofotherelements.(Govett,1983)

93

Io

2

138'

I34

0)Q.

C

HiSUV)re0)reoic3otare

COo(0>

noOJv-oc0rei_c0)ucouCO3_oreEo

(0Eo

LLUJ(B(U

2I>wE

oo~oa>O)

=""=9cre

LOCNOiL:.

Wr"a

EmmW"

CO3c.s'V

U0)+JoUH-tn

"C~aTOOUO0)ntnevj

01o

(OOiL

(301

Taitingispond

oMinedumpatCariinmine

QafAlluvium

-QUATERNARY

LandslidedepositsQfFanglomerateTsSiltsoneTcCariinFormationofRcgnier(1960)Trt

Plioceneand(or)MIoccnc

RhyolUicweidedCuffTibIntrusivebreccia

TERTIARY

QuartslatlteTgdGranodlorite

-Oligocene

TKrdRhyodaciteKqmQuartzmonzonite

TERTIARYORCRETACEOUS

CRETACEOUS

IKgdGranodlorlte

SIUCEOUS(WESTERN)ASSEMBLAGETRANSITIONALASSEMBLAGECARBONATE(EASTERN)ASSEMBLAGE

i-UpperDevonianUnnamedlimestoneJ

DpPopovichFormation

}

DEVONIAN

IS2LURKANSOcANDChertandshleJORDOVCIAN

DObBrecciatedandaltttredcarbonaterocks

DSIUndifferentiatedlimestoneDSI,limestoneDSa,hydrothermallyaltered-limestoneDSrmRobertsMountainsFormationSOhHansonCreekFormation

DEVONIANANDSILURIAN

SILURIANANDORDOVICIAN

OeEurekaQuartziteOpPogonipGroupChHamburgDolomiteCONTACTFAULTDottedwhereconcealedTHRUSTFAULTDottedwhereconcealedTeethonupperplateLOCATIONOFMINEAND(OR)DEPOSIT

-ORDOVICIAN

CAMBRIAN

FIG12.5c

CariinDistrict.GeologicalLegen(j

98

12.2.2.Soils

Soilsvaryconsiderablyincompositionandappearanceaccordingtotheirgenetic,climatic,andgeograpiiicenvironment.Classifiedintoresidualandtransportedtypesaccordingtotheirrelationshiptotheirsubstrate,soilsaremixturesofmineralandbiologicmatterandmaybedistinctivelydifferentiatedintoaseriesofsoilhorizons.

Soilsaremostoftensampledalonatraversesorgridsinthefollow-upordetailedprospectingstagesofgeochemicalprograms.Inruggedterraininitialfollow-upsurveysofreconnaissancestreamsedimentanomaliesissometimesmostreadilyachievedbysamplingsoilsalongridgeandspur(Fig.12.6),and/orbaseofslope(Fig.12.7)traverses,inrecentyearsincreasingattentionhasbeengiventolowdensitvsoilsampling(i.e.1sampleperkm)ingeochemicalreconnaissancesurvevsandaeochem-icalmapping.Ashasbeenpreviouslystressed,orientationprogramsdefinecriteriasuchassampledepthorsoilhorizontobesampled,sampleinterval,andthesize-fractionforanalysis.Itisessentialthatthesecriteriabeobservedresolutelythroughthesurvey.

Residualsoilscharacteristicallycontaindetectabledispersionpatternsdevelopedduringtheweatheringofmineralizationintheunderlyingbedrock,andthesepatternsarerevealedbycarefulsamplingofappropriatesoilhorizons.Asmightbeexpected,inviewofthesizeofthedepositsandassociatedprimarygeochemicalhaloes,nearsurfacesedimenthostedfinedisseminatedgolddepositsinsemi-aridareas,suchasNevada,arecommonlyreflectedbyextensivegeochemicalanomaliesintheimmatureresidualsoils.Itisthereforenotsurprisingthatgeochemicalsoil(generallyC-horizon)samplinghasassistedinthediscoveryofanumberofthesedeposits(e.g.AlligatorRidge,JerrittCanyon,etc.).SomeindicationofthesizeandnatureofsoilanomalieswhichmightbeexpectedinthevicinityofsuchmineralizationisprovidedbyBagby,etal.,(1984)inastudyofsoilsovertheDeeDeposit,Nevada.Theminus80meshsievedfractionof159ChorizonsoilsampleswereanalyzedforanumberofelementsincludingAu,As,Sb,Ag,andHg.Theresultantgeochemicaldatadisplayanomalouspatternsoverandintheimmediatevicinityoftheknown"shallow"(>100feet-40m)and"deep"(>300feet-120m)orezones(Figs.12.8and12.9).Thesecouldbereadilydetectedinroutinegeochemicalsoilsurveysbasedon,say,a30mgrid.

Deeplyweatheredresidualsoilscanalsoprovideusefulgeochemicalsamplingmedia.AnexampleofuseoflateriticsoilsasaregionalgeochemicalreconnaissancesamplemediumisprovidedbyLewisetal(1989).Lateriticsoilsweresampledona400mgridinaUNexplorationreconnaissanceprogramforArcheanmetavolcanicshostedmassivesulfide(i.e.VMS)mineralizationintheWestAfricannationofBurkinaFaso.Follow-upsoilsamplingona25mgridspacingofsmallweakanomaliesdetectedinthereconnaissancephase(Fig.12.10)confirmedtheexistenceofadistinct550by250m2nanomaly(I.e.>200ppm)(Fig.12.11).SubsequentdrillingresultedinthedelineationofamajorVMSdeposit.)***'j*(*

*/***

**)*Heavy-metalcontentofcolluvium(ppm)>2000.500-2000J7-r:';?i6-o*'''V1*

p

Somptes//

VMagrudermmeMmeraliidzone

.r

FIG12.24aSamplelocationmapforMagruderMinearea,Georgia.(Meyereta!..1979)

FIG12.24bDownstreamdispersionfromzinc,copper,andleadinminus-80-meshstreamsedimentsandoxidecoatings.MagruderMinearea.(Meyeretal.,1979)

116

etal.(1985)recommendeduseofthe+250mesh(+62micron)fractionindesertareastoavoidproblemswithdilutionbyfineeoliansand.

QroanicdrainagesampleshavebeenusedinnorthernScandinavia(Fig.12.25)andelsewhereduetolackofnormalsedimentarymaterialforlongdistancesinstreamchannels(Larsson,1976).InScandinaviathesamplescompriseorganicdebrisinvariousstagesofhumificationandoftenpenetratedbythelivingrootsofvariousbogplantspecies.Elsewhereotherpotentialdrainagesamplemediahavealsobeenexamined.Forexample,aquaticmosseswerestudiedbyErdmanandModreski(1984)todeterminewhethertheymightprovideeffectivegeochemicalsamplemediain

mentsintheVehkavaaraarea,Pajaladistrict.(Larsson,1976)

areaswheresteepterrainpreventedaccumulationofstreamsedimentfinefractions.ThisclearlyconstitutesabiogeochemicalexplorationmethodandisthereforedescribedinmoredetailinSection12.2.6.However,aninterestingvariantoftheaquaticmossbiogeochemicaltechniquewasdescribedbySmith(1976)followingalimitedstudyofmineralizedareasinNorway.Moss-trappedstreamsedimentmaterialwasfoundtoprovidesimilarbuthighercontrastgeochemicalpatternstothoseproducedbynormalstreamsedimentsamples.

Intheregionalreconnaissanceprospectingmode,streamsedimentsurveyscanbedesignedtosystematicallycoverareasuptoseveralthousandsquaremiles.Averagesamplingdensitiestendtobesignificantlyhigherthanthoseemployedingeochemicalmappingprogramsastheemphasisisondetectionofdispersiontrainsrelatedtoindividualmineraldistrictsand/ordeposits,ratherthanbroadmineralprovinces.Densitiesarefrequentlyintherange1sampleper1-3km,whilst1sampleper20kmwouldbeconsideredunusuallylow.

Ashasbeendiscussedpreviously,inallsurveysinnewareas,thecriticalparametersofsampleinterval,sedimentsizefraction,appropriateanalyticalprocedures,significantanomalycontrasts,andbackgroundlevelsaredeterminedthroughorientationsurveys.Inareaswherenopreviousexperienceexists,ashortintervalof150ft.(50m)overaninitialdownstreamdistanceof1050ft.(350m)isrecommended.Thisintervalshouldthenbeprogressivelyexpandedwithdistancefromthemetalsourcetothelimitsoftheknownoranticipateddispersionpattern.Samplesmustalsobecollectedfromnon-

mineralizedareastoestablisiithebackgroundrangeandsufficientmaterialshouldbecollectedateachsitetoallowforthedeterminationofoptimumsizefractions,analyticaltechniques,andotherfactorslistedinTables11.1,and11.4).

12.2.4.LakeSediments

Lakesedimentsamplinghasbeendevelopedintoaneffectivegeochemicalreconnaissancetechnique,particularlywithintheCanadianPrecambrianShield,butalsowithintheFennoscandianShieldandtheCordilleranandAppalachianregionsofNorthAmerica.Theidealterrainforthistechniqueiswherelakesarecommon,conditionsareswampy,and/orwherestreamdrainagesareinaccessibleorpoorlydeveloped(Cokeretal.,1979).Inlowreliefregions,thelakesedimentmediumisdependentonthehydromorphicdispersionofmetalsintothelakeenvironmentthroughgroundwatersandtheadsorptionofthismetalontohydrousoxidesandtheorganicrichmuds

5m

FIG12.26

117

10-3cm

Eyeforattachingline

Threadsforattachingrigidrods

Outletventforwaterforcedthroughvalve

Ball-and-socketvalve

Sharpenedendoftubeforcuttingsample

Cut-awaysectionofsamplebailerforlake-sedimentsampling.(Roseetal,1979)

(i.e.gytia)beingdepositedonthelakebottoms.Thesamplinggenerallyfocusesonthecollectionoftheseorganicmudsusingspeciallydesignedsamplingdevices{Fig.12.26).Inmoremountainousareas,finegrainedclasticdispersionintothelakesedimentbecomesamoreimportantfactor.Inmostareassatisfactorysamplelocationsarefoundwellawayfromlakeshoresandarereachedusingboats,floatplanesorhelicopters.However,nearshorematerialshavebeensuccessfullyusedinsomeprogramsinthenorthernpartoftheCanadianShieldalthoughthesearegenerallysubaqueousequivalentsofglacialandpostglacialsedimentsonthemarginsoflakesandnottruelakesediments.Lakewatersamples{seeSection12.2.7.)arecommonlycollectedatthesamesitesasthelakesediments.

Thelakesedimenttechniquehassuccessfullyindicatedthepresenceofseveralimportantformsofmineralizationasthefollowingexamplesclearlydemonstrate.InSaskatchewantheKeyLakeandRabbitLakeuraniummineralizationsandassociatedanomalousglacialdispersiontrainsarereflectedbyextensivelakesedimentanomalies(Figs.12.27and12.28).Equallyimpressiveanomaliesarefoundinthevicinityofthe

urjlfiiunigon

>1000

m501-1000

101-500

51-100

011SO

(0Stc

oVrj'-"-r,%

-b)--.r---'

(-!.'t.-f)I(\\{a'~.,

Vjp..;

>-/"~J

>-0

Qv

FIG12.27DistributionofUinlakesedimentsinthevicinityoftheKeyLakeU-Nideposit,Saskatchewan.(Cokereta!.,1979)

FIG12.28Uranium(ppm)inlakesedimentsneartheRabbitl_akeuraniumdeposit.Saskatchewan.Locationofdepositshownbysolidtriangle.(Cokeretal.,1979)

Agrcolamassivesulfidedeposit,NorthwestTerritories(Fig,12.29),andinfactassistedinitsoriginaldiscovery(Coker,1979).Morerecentlyanumberofauthorshavereportedontheapplicationoflakesedimentgeochemistrytogoldexploration.McConnellandDavenport(1989)carriedoutextensiveorientationstudiesinNewfoundlandbasedonthegeochemicalanalysisoforganicsedimentcollectedfromlakecenters.Itwasdeterminedthatmost,butnotallknownAuoccurrencesweredistinguished

METAVOLCANICS

GRANITES

119

108-"07nNesrshorel8i:esedimentsMETASEDIMENTS.\.90

byanomalousAuconcentrationsinnearbytakesediments(Figs.12.30and12.31).Pathfinderelements(Sb,As,Pb,

GeologicalboundaryMassivesulphicfebody

CuandZn)displayinconsistentrelationshipstogoldmineralizationanditwasconcludedthat

FIG12.29

DistributionofZn(ppm)innearshorelakebottommaterials.AgrcolaLakearea,N.WT.(Cokereta!,1979)

Auistheonlyuniversalindicator.Theysuggestthatfordetailedexplorationasamplingdensityofatleast1sampleper4-5kmisnecessary.

UsefulreviewsoftheapplicationoflakesedimentgeochemistryinmineralexplorationinCanadaareprovidedbyHornbrook(1989)andFriske(1991).

12.2.5.GlacialSediments

ExtensiveQuaternaryglacialdepositsoccurringovermostofCanadaandthenorthernUnitedStates,northernEurope,northernAsia,Geenland,andanumberofhighelevationareasinthesouthernhemispherehavepresentedmajorchallengestoexploration.Asabetterunderstandingoftheoriginandformationoftheseglacialsedimentshasgrown,theirblanketingpresencehasbecomeprogressivelylessformidableandeffectiveexplorationtechniqueshavebeendeveloped.

MineralizedbouldertracinginglaciatedregionsisanestablishedtechniqueofthetraditionalprospectorinScandinaviaandpartsofCanada.InScandinavia,dogshavebeentrainedtoassisttheprospectorbysensingSOgreleasedfromoxidizingsulfidebouldersatshallowdepthsbelowthesurface.InFinland,methodsweredevelopedfor

/>'-e

120

"J*miLiOfit1.flAM.Aq.Cu.Pttl659.0,/;C'1./'.

-15--S.O-,-AS--2.4o

CAnoowFenousA154*duiMorlfiBrooka4nta7StrAMOcrfyMHHESISTIVITT-Z."100'S500PMJ[NLOHTILL'iig;CSeSKEH

QextentasshowninFigure12,38(i.e.extendingforhundredsratherthanthousandsoffeet

DIABASe[T]SEDIHEKTSMAfICIVOtCAHICS

I

downice).Theshortdispersiontrainisthoughttoberelatedtothepresenceofabedrockridgedownicefromtheauriferousveins.

MURPHY-HOYLEJ.V.LOWERTILLGOLDANOMALYaGEOPHYSICSTIMMtMSAREA,ONTARIO1320'!6

-..*|eas6D

a

.D:49*Q

V;>-.*ws:bO

0DqO

0'P01OA8.1aV

o."

OeO

."..v,V*s*'i%2,w"Is000

n.*.0.

*#&D

*D\OD

..o'O

0DO

*,%o

.,;oVoWWS

e>q

*oQD

DaU

""q*D,"*"**f

,eS->tie-1.w***4

,**4

4!r"fcV0*0

cT*4

O*

**"J"*.tfi

4

4D

.,4

#*

V..*;/.*

t*4

t

n5N>

OO(D

toCDO

toro

iijifnilfi,iJUIIdiWfrsHlifniimI'

E15a

to9

4o40asDI'Itil5'"Is'

o

5

v>

0)

u

c

o

u

w

3

u

0

a

.2

a

E

a

en

>

L.

X

X

0

tfl

s

c

o

N

15

b

d)

>

O)

oO(

oen

0)

ra

ca>

0o

'5o

3

"un

2

-'BE

en(0

oZ

"

IaCa>k.

V3re

COCO

iMi5?ilittl|33|tf11'l'iIIMin

UsiIISalliiIHIilllI

n

IhiiIIS3

1111i3

MlIIII

IMd

nT-CM2

134

FIG12.43CoppervaluesinsurfacesoilinareashowninFig.12.42.(Cole,1980)

Somespeciespreferentiallyconcentratemetalsinspecifictissuessuchasleaves,twigs,bark,orwood.Itisthereforeveryimportanttoestablishthemostfavorabletissuesforsamplingonceausefulspecieshasbeenidentified.Thiscomplexityisaccentuatedbythefactthatmetaluptakemayvarywithaspectandseason(Table12.3).Intemperateforestregions,accelerateduptakeandhigherconcentrationcommonlyoccursduringthespringgrowthfollowingadormantwinterseason.Inhotdesertregions,followingtheexhaustionofavailablenear-surfacewaterduringthedryseason,deeprootedplantswilltapthedeeperground-waters.Becauseoftheseseasonalvariations,biogeochemicalsurveysmustbecompletedquicklyintheoptimumperiod(s)definedbytheorientationstudies.

Thesevariablesmakebiogeochemicalsamplingaveryspecializedexercise.Someexpertiseinbotanyaswellasexplorationgeochemistryisessentialforboththeorientationstudiesandthesupervisionofvegetationsurveys.Ontheotherhandthebasicfieldequipmentrequiredforbiogeochemicalsamplingisverysimple(Dunn,1991):

AlderTwigsGold(ppb)inashAlderLeavesGold(ppb)inash

198419851984

SiteEarlyJuneEarlyAugustMidSeptemberMidAprilJuneAugustSeptember

132723250

25361747

35892013043619

43461516648715

52981037271811

6357n3421612

7236135725713

82581341211313

925112027211116

1082014206

i9a.MFGQSO4Ci-S

2r-to"flc="S-1.9-oS2ufs-?!25!*

,n

fl)*-oo(0V"O>CDO-Ct>CiS

I-s

i~

u4J""S:a?

S'tJ>uF

(03-2-1

o2(0cuE*9cci?*tj

-n

OoTJ>

CU

Sx;51B(0uyJi:i>-du'goE85!l&i>Ea22"?uu3.5""R-,a(TS=S324,T8=>-ft)B-f-tennty--c:UuI.UJ3o-Ho"5ojra.jjsjti3csfl)?oQ.M

uUiQ*3*-ow

ifSS.fl)C-CT-0Q.N>c

J.2.2.E:Hi

Recommended