Field and Wave Electromagnetic

Preview:

Citation preview

Field and Wave Electromagnetic

Chapter11

Antennas and Radiating Systems

Radio Technology Laboratory 2

Introduction (1)- Potential functions and

1-

for time harmonic cases

- The potential functions and are solutions of

non-homogeneous wave equations.

- For harmonic time dependence, the ph

A V

H A

E V j A

A V

μ

ω

= ∇×

= −∇ −

'

'

asor retarded potentials.

'4

1 2'

4

jkR

v

jkR

v

JA dv

R

V dv kR

e

e

μπ

ρ πω μεπε λ

=

= = =

Radio Technology Laboratory 3

Introduction (2)

0 Lorentz Gauge cf)

. 0

continuity equation

.

No need to evaluate the both integrals

VA

t

i e A j V

Jt

i e J j

με

ωμε

ρ

ωρ

∂⎛ ∇• + = →⎜ ∂⎜⎜ ∇• + =⎝

∂⎛ ∇• = − →⎜ ∂⎜⎜ ∇• = −⎝

Radio Technology Laboratory 4

Introduction (3)-

1

- Three steps to determine electromagnetic fields from

a current distribution.

1. Determine from

2. Find from

3. Find from

E and H

E Hj

A J

H A

E H

ωε= ∇×

Radio Technology Laboratory 5

Radiation Fields of Elemental Dipoles* Elemental electric dipoles

Elemental oscillating electric dipole.

Short conducting wire of length terminated in two small conductive

spheres disks (capacitive loading)assume the

dl

Q

⇒current in the wire to be

uniform and to vary sinusoidally with time ( ) cos [ ]j ti t t e Ie ωω= = ℜ

Radio Technology Laboratory 6

- The current vanishes at the ends of the wire,

charge must be deposited there.

( )( ) ( ) Re[ ]

+ sign : for the charge on the upper end

j tdq ti t q t Qe

dtI j Q

Ior Q

j

ω

ω

ω

= ± =

= ±

= ± ⇒

sign : for the charge on the lower end

The pair of equal and opposite charges separated by

a short distance effectively form an electric dipole.

( )

This kind of oscillating di

p zQdl C m

−⇒

= ⋅⇒ pole is called a Hertzian dipole

The Elemental Electric Dipole (1)

Radio Technology Laboratory 7

0

0

- Electromagnetic fields of a Hertzian dipole

( )4

2 where = k =

c

cos - sin

j RIdl eA z

R

z R

βμπ

ω πβλ

θ θ θ

=

=

=

The Elemental Electric Dipole (2)

Radio Technology Laboratory 8

The Elemental Electric Dipole (3)

0

0

0 0

22

cos ( ) cos4

- sin ( )sin4

0

1 1[ ( ) ]

1 1 - sin [ ]

4 ( )

R

j R

R z

j R

z

R

j R

A RA A A

Idl eA A

R

Idl eA A

RA

AH A RA

R R

Idle

j R j R

θ φ

β

β

θ

φ

θ

β

θ φ

μθ θπμθ θπ

φμ μ θ

φ β θπ β β

= + +

⎡= =⎢

⎢⎢

= = −⎢⎢

=⎢⎢⎣

∂∂= ∇× = −

∂ ∂

= +

Radio Technology Laboratory 9

The Elemental Electric Dipole (4)

0

0

20 2 3

20 2 3

00

0

1

1 1 1 [ ( sin ) ( )]

sin

1 1 2cos [ ]

4 ( ) ( )

1 1 1 sin [ ]

4 ( ) ( )

0

where 120

j RR

j R

E Hj

R H RHj R R R

IdlE e

j R j R

IdlE e

j R j R j R

E

φ φ

β

βθ

φ

ωε

θ θωε θ θ

η β θπ β β

η β θπ β β β

μη πε

= ∇×

∂ ∂= −

∂ ∂

= − +

= − + +

=

= =

Radio Technology Laboratory 10

The Elemental Electric Dipole - Near Field (1)

2

2

- Near field

2 In the near zone, 1,

Consider only leading term.

( )sin , where 1- - 1

4 2j R

RR

Idl RH e j R

φ

πβλ

βθ βπ

=

= +

Magnetic field intensity due to a current elementIdl is obtained using the Biot-Savart law in magnetostatics

'

' '0 0

2) ( ) ,

4 4 C

I Idl R dlcf dB A

R R

μ μπ π

×= = ∫

Radio Technology Laboratory 11

The Elemental Electric Dipole - Near Field (2)

30

30

30

2cos4

sin4

) , , ( 2cos sin )4

Note : the near field of an oscillating time-varying dipole

are the

R

R

E RE E

pE

R

pE

R

I pcf p zQdl Q E R

j R

θ

θ

θ

θπε

θπε

θ θ θω πε

= +

=

=

= = ± = +

quasi-static field

Electric field due to an elemental electric dipole of a moment in the e-direction

ρ

Radio Technology Laboratory 12

The Elemental Electric Dipole - Far Field (1)

0

- Far field

2 RIn the far zone, = 1,

Far zone leading terms of E and H fields are

( ) sin4

( ) sin , ( 0)4

j R

j R

R

R

Idl eH j

R

Idl eE j E

R

β

φ

β

θ

πβλ

β θπ

η β θπ

=

= =

Radio Technology Laboratory 13

The Elemental Electric Dipole - Far Field (2)

0

1. and are in space quardrature and in time phase.

2. : constant equal to the intrinsic impedance of

the medium.

3. The same propert

note E H

E

θ φ

θ

φ

η=Η

ies as those of a plane wave

(at very large distances from the dipole a spherical

wavefront closely resembles a plane wavefront)

4. The magnitude of the far-zone fields varies inversely

with the distance from the source.

5. The phase is a periodic function of R.

2 ( )

2

cR

f

π λλβ π

= =

Radio Technology Laboratory 14

The Elemental Magnetic Dipole (1)

* Elemental magnetic dipole

- Small filamentary loop of

radius b.

2

- Uniform time harmonic current

( ) cos

:

vector phasor magnetic moment

i t I t

m zI b zm

ω

π

=

= =

Radio Technology Laboratory 15

The Elemental Magnetic Dipole (2)

1

1 1

'0

1

( )

1

''0

1

' '

( )4

[1 ( )]

[(1 ) - ]4

) (- sin

j R

j R j R Rj R

j R

j R

I dlA e

R

e e e

e j R R

I dlA e j R j dl

R

cf dl x

β

β ββ

β

β

μπ

β

μ β βπ

φ

− − −−

=

=

− −

∴ = +

= +

∫ ∫

' 'cos )y bdφ φ

0

Radio Technology Laboratory 16

The Elemental Magnetic Dipole (3)

'For every , there is another symmetrically

located differential current element on the

other side of the y-axis an equal amount

ˆof contribution to in the - .

But an equal amount of con

Idl

A x

tribution to

ˆin the opposite direction of

A

y

Radio Technology Laboratory 17

The Elemental Magnetic Dipole (4)

''0 2

12

2 2 21

'

12' 2 22

21

1' 2

sin (1 )

2

2 cos

cos sin sin

1 1 2 (1 sin sin ) (R )

1 2 (1 sin sin )

j RIbA j R e d

R

where R R b bR

R R

b bb

R R R R

b

R R

πβ

πμ φφ β φπ

ψ

ψ θ φ

θ φ

θ φ

= +

= + −

=

∴ = + −

'1 (1 sin sin )

b

R Rθ φ+

Radio Technology Laboratory 18

The Elemental Magnetic Dipole (5)

20

2

02

202

202 3

0

202 3

0

(1 ) sin4

(1 ) sin4

1 1 sin [ ]

4 ( )

1 1 2cos [ ]

4 ( ) ( )

1 1 1 sin [ ]

4 ( ) ( )

j R

j R

j R

j RR

IbA j R e

Rm

j R eRj m

E ej R j R

j mH e

j R j R

j mH e

j R j R j R

β

β

βφ

β

θ

μφ β θ

μφ β θπωμ β θπ β βωμ β θπη β βωμ β θπη β β β

= +

= +

∴ = +

= − +

= − + + j Rβ

Radio Technology Laboratory 19

The Elemental Magnetic Dipole (6)

0

0

0

- Far field

( ) sin4

( ) sin4

j R

j R

m eE

R

m eH

R

β

φ

β

θ

ωμ β θπωμ β θπη

=

= −

Radio Technology Laboratory 20

The Elemental Magnetic Dipole (7)

0

H.W 11-1, 11-2, 11-3, 11-4, 11-5

) let ( , ) : Electric and magnetic field of the electric dipole.

( , ) : Electric and magnetic field of the magnetic dipole.

e e

m m

e

cf E H

E H

E Hη= 00

00 0

0

, ( )

i.e Hertzian electric dipole and elemental

magnetic dipole are dual devices.

mm e

EEH

H

if Idl j m where

φ

θ

ηη

ωμβ β ω μ εη

= − =

= = =

Radio Technology Laboratory 21

Antenna Patterns and Antenna Parameters (1)

* Antenna patterns and antenna parameters

- Antenna pattern (radiation pattern) : the relative far-zone field

strength versus direction at a fixed distance from an antenna.

- E-plane pattern = the magnitude of the normalized field strength

(with respect to the peak value) versus for a constant

- H-plane pattern = the magnitude of the normalized field strength

versus

θ φ

for πφ θ =2

Radio Technology Laboratory 22

Antenna Patterns and Antenna Parameters (2)

e.g. Hertzian dipole

θ φ

φ θ π= /2

Radio Technology Laboratory 23

Antenna Patterns and Antenna Parameters (3)

- Antenna parameters

(1) Width of main beam = beamwidth (3dB beamwidth)

(2) Sidelobe levels unwanted radiation (first sidelobe : -40dB)

(3) Directivity

- Directive gain in terms of radiation

2

intensity.

- Radiation intensity = the time-average power per unit solid angle

: (W/sr) cf) sr : steradian (solid angle)

Radiation intensity (W/sr)

- Total time-average pavU R∴ = P

ower radiated

(W)

differential solid angle sin

r avP ds Ud

d d dθ θ φ

= = Ω

Ω = =∫ ∫iP

Radio Technology Laboratory 24

Antenna Patterns and Antenna Parameters (4)

- Directive gain

( , ) = the ratio of the radiation intensity

in the direction ( , ) to the

average radiation intensity

( , ) 4 (

/ 4

D

r

G

U U

P

θ φθ φ

θ φ π θπ

= =

max max

2

max2 2

0 0

, )

- Directivity = the maximum directive gain of an antenna

4 (Dimensionless)

4

( , ) sin

av r

Ud

U UD

U P

E

E d dπ π

φ

π

π

θ φ θ θ φ

Ω

= =

=

∫ ∫

Radio Technology Laboratory 25

Antenna Patterns and Antenna Parameters (5)

22 2

02 2

22 2 2

02

22

2 2

0 0

. : Hertzian dipole

1 1 ( ) sin

2 2 32

( ) U sin

32

4 ( , ) 4 sin 3 ( , ) sin

2(sin )sin

av

av

D

Ex

Idle E H E H

R

IdlR

UG

Ud d d

D

θ φ

π π

η β θπ

η β θπ

π θ φ π θθ φ θθ θ θ φ

= ℜ × = =

= =

∴ = = =Ω

=

∫ ∫ ∫

P

P

( , ) 1.5 1.762DG dBπ φ = →

Radio Technology Laboratory 26

Antenna Patterns and Antenna Parameters (6)

p- Power gain G = the ratio of its maximum radiation intensity

to the radiation intensity of a

lossless isotropic source with

i

max

the same input power P

total input power ( : ohmic loss power)

4

- Radiation efficiency

- Radiation resistan

i r l l

pi

p rr

i

P P P P

UG

P

G P

D P

π

η

= +

=

= =

22

ce = the value of a hypothetical resistance

21

2

rr m r r

m

PP I R R

I= ∴ =

Radio Technology Laboratory 27

Thin Linear Antennas (1)* Thin linear antennas

( ) sin ( ),

sin ( ), 0

sin ( ), 0.

m

m

m

I z I h z

I h z z

I h z z

β

ββ

= −

− >⎧= ⎨ + <⎩

Radio Technology Laboratory 28

Thin Linear Antennas (2)

'

0 0'

1' 2 2 2

'

-00

- The far-field contribution from the differential current element is

( ) sin .4

( 2 cos ) cos

1 1

sin sin ( )

4

j R

j R j zm

Idz

Idz edE dH j

R

R R z Rz R z

R RI

E H j e h z eR

β

θ φ

β βθ φ

η η β θπ

θ θ

η β θη βπ

= =

= + − ≅ −

= = − cos

cos

sin ( ) : even function

cos( cos ) sin( cos )

h

h

j z

dz

h z

e z j z

θ

β θ

β

β θ β θ

= +

Odd functioneven function

Radio Technology Laboratory 29

Thin Linear Antennas (3)-0

0 0

-

' '

sin sin ( )cos( cos )

260

( ),

cos( cos ) cos where ( )

sin

) sin( ) ?

1, , sin( ),

hj Rm

j Rm

Ax

Ax Ax

IE H j e h z z dz

Rj I

e FR

h hF

cf e Bx C dx

u e u e v Bx C vA

βθ φ

β

η β θη β β θπ

θ

β θ βθθ

= = −

=

−=

+ =

= = = +

∫cos( )

sin( ) Ax

B Bx C

I e Bx C dx

= +

= +∫

H.W

Radio Technology Laboratory 30

Thin Linear Antennas (4)

2

2

2 2

2 2

1sin( ) cos( )

1sin( ) [ cos( ) sin( )

1sin( ) cos( )

[ sin( ) cos( )]

cos , , -

Ax Ax

Ax Ax Ax

Ax Ax

Ax

Be Bx C e Bx C dx

A AB

e Bx C e Bx C B e Bx C dxA A

B Be Bx C e Bx C I

A A A

eI A Bx C B Bx C

A Blet A jk B k C khθ

= + − +

= + − + + +

= + − + −

∴ = + − ++= = =

Radio Technology Laboratory 31

Thin Linear Antennas (5)

- Half wave dipole

2cos( cos ) cos( ) cos( cos )

4 4 2 ( ) sin sin

cos( cos )60 2 sin

cos( cos )2

2 sin

j Rm

j Rm

F

j IE e

R

jIH e

R

βθ

βφ

λ π λ πβ θ θλθ

θ θπ θ

θ

π θ

π θ

−= =

⎧ ⎫⎪ ⎪

∴ = ⎨ ⎬⎪ ⎪⎩ ⎭⎧ ⎫⎪ ⎪

= ⎨ ⎬⎪ ⎪⎩ ⎭

Radio Technology Laboratory 32

Thin Linear Antennas (6)2

2

2

2

2 2 2

0 0 0

2

0

cos( cos )151 22 sin

cos ( cos )2sin 30

sin

cos ( cos )2 1.218 obtained by numerical solution

sin

mav

r av m

IE H

R

P R d d I d

d

θ φ

π π π

π

π θ

π θ

π θθ θ φ θ

θπ θ

θθ

⎧ ⎫⎪ ⎪

= = ⎨ ⎬⎪ ⎪⎩ ⎭

= =

= ⇒

∫ ∫ ∫

P

P

using Simpson's law

Radio Technology Laboratory 33

Thin Linear Antennas (7)

2

2 0 2max

max

2 73.1

15 (90 )

4 60 1.64

36.54

rr

m

av m

r

PR

I

U R I

UD

P

ππ

∴ = = Ω

= =

= = =

P

Radio Technology Laboratory 34

Thin Linear Antennas (8)

cos0

- Effective antenna length

Assume a center-feed linear dipole

and a general phasor current distribution ( )

30 {sin ( ) }

(0) : the input curr

hj R j z

h

I z

jE H e I z e dz

RI

β β θθ φη β θ−

−= = ∫

0

cos

ent at the feed point of the antenna

30 (0) ( )

sin where ( ) ( )

(0)

the effective length of the transmitting antenna

j Re

h j ze h

j IE H e l

R

l I z e dz

βθ φ

β θ

η β θ

θθ

⇒ = =

Radio Technology Laboratory 35

Thin Linear Antennas (9)

1 ( ) ( )

2 (0)

The length of an equivalent linear antenna with

a uniform current (0) such that it radiates the

same

h

e hl I z dz

I

I

πθ−

= =

far-zone field in the plane2

πθ =

Radio Technology Laboratory 36

Thin Linear Antennas (10)

Ex 11-6) Assume a sinusoidal current distribution on a center-fed, thin

straight half-wave dipole. Find its effective lenth.

What is its maximum value?

cos4

4

( ) sin sin ( )4

cos( cos )2 2 ( )sin

j ze

e

l z e dz

l

λβ θ

λλθ θ β

π θθ

β θ

−= −

⎡ ⎤⎢ ⎥

= ⎢ ⎥⎢ ⎥⎣ ⎦

Radio Technology Laboratory 37

Thin Linear Antennas (11)

2 maximum value of ( ) ( )

2 2

note

1 ( )

(0)

Valid only for relatively short antennas having

a current maximum at the fee

e e

h

e h

l l

l I z dzI

π λ λθβ π

= = = <

=

d point

Radio Technology Laboratory 38

Thin Linear Antennas (12)

( )

Negative sign is to conform with the convention that the

electric potential increases in a direction opposite to

that of the electric field

oce

i

Vl

Eθ = −

The effective length of an antenna

for receiving is the same as that

for transmitting.

Receiving Antennas and Reciprocity

39

Circuit relation for Radiation into Free Space

40

Effective Area of Receiving Antenna

41

Effective Area for Hertzian Dipole

42

z

Δ z

-h

h

0

r'

For matched termination:

⎟⎟⎠

⎞⎜⎜⎝

⎛=⋅= 2

2

1EAAaPP eerR η

)(θθ fr

eZIaE

jkr−

=

θθ sin23)( =f

322

ηλl

jZ =

θθ 2sin)23()( =g

2

6

4⎟⎠⎞

⎜⎝⎛=λ

πη lRr

)6/4()/(8

)sin(

8 2

22

πληθ

l

El

R

VP

r

OCR ==

πλθθλ

π 4)()sin(

8

3 22 gAe ==

cf) Normalization g( , )d =4θ φ πΩ∫

Recommended