Fc measurements at HERA 2€¦ · 2 @ HERA II on the way to precision measurement 0.4 0.2 10-5 10-3...

Preview:

Citation preview

New trends in HERA Physics, Ringberg 2008

Katerina Lipka

Fc2 measurements at HERA

Charm production at HERA: why now?

HERA I : PDF – central measurement of HERA

• PDF obtained from the fits to inclusive F2

• Inclusive F2 experimentally very precise

• Contribution of events with charm to F2 high

• Measurement of Fc2 has large uncertainties

now: precise PDF – crucial importance for the LHC

• Combined HERA PDF are of unprecedented precision

• BUT dependent on parameterization of the QCD fit

• Need a cross check / direct access to the gluon

• Final state measurements (jets, heavy quarks) extremely important

• Fc2 @ HERA II on the way to precision measurement

0.4

0.2

10-5 10-3 x

HERA I Fc / F22

Q2 = 11 GeV2

K. Lipka Charm production and Fc2 at HERA 2

Dominated by Boson – Gluon Fusion (BGF)

• gluon directly involved:

include in a global PDF fit

important cross-check of the g(xg)

• charm mass – additional hard scale:

pQCD calculations possible;

multiple scales: calculations complicated

Charm production at HERA

Factorization:

σ(ep→D*X)=Proton Structure ⊗ Photon Structure ⊗ Matrix Element ⊗ Fragmentation

c

c

frag

men

tatio

n

hadr

ons

D*

to learn something about PDFs:

calculate hard ME, measure cross section, understand fragmentation

K. Lipka Charm production and Fc2 at HERA 3

Presented in this talk

Hard ME:

• NLO calculations and Monte-Carlo simulations

Charm tag methods and extraction of Fc2 :

• Charm tag via reconstruction of charmed mesons

• Extrapolation to the full phase space

• Fragmentation measurement

• Charm tag via track displacement measurement

Results and discussion

K. Lipka Charm production and Fc2 at HERA 4

Models of charm productionMassive calculation, fixed order QCD calculation, FFNS

• correct threshold suppression, no collinear divergences, terms ~log(μ/m)

• no factorization, no conceptual necessity fo FFs, no resummation

• valid for 0 ≤ pt2≤ mc

2, fixed order logarithms ln(pt2/mc

2) large for pt2>>mc

2

Models for charm at HERA: FMNR (Photoproduction), HVQDIS (DIS),

Massless calculation (ZM-VFNS)• large collinear ln (μ2/m2

c)-terms resummed in evolved PDFs and FFs (LL, NLL), good for large μ2~pt

2>>mc2

• universality of PDFs and FFs via factorization theorem, global analysis

• terms (mc/pt)n neglected in the hard part – breaks down @ threshold

Not appropriate for charm production at HERA (close to threshold)

Generalized mass calculation (GM-VFNS) → Hubert’s talkAvailable for charm production in γp at HERA, DIS is on the way

K. Lipka Charm production and Fc2 at HERA 5

RAPGAP• matrix element calculated in LO QCD

• higher order contributions via parton showers

• parton evolution in collinear approximation (DGLAP equations)

• charm is massive in BGF

CASCADE• gluon density unintegrated in gluon transverse momentum kT

• only gluons in proton

• higher order contributions via initial state parton showers

• based on CCFM equations

• charm is massive in BGF

Hadronization via Lund String model (Jetset)

Monte-Carlo models for data corrections

K. Lipka Charm production and Fc2 at HERA 6

π

πsK

e

Liquid ArCalorimeter

“Spaghetti” Calorimeter

central tracking detector

D*+→D0 πs+ → K-π+ πs

+ (+ c.c.)

Kinematics regimes:

DIS: 5 <Q2< 1000 GeV2

Photoproduction Q2< 2 GeV2

Charm tag via D*± production

) [GeV]π) - M(KππM(K0.14 0.15 0.16 0.17

Ent

ries

/ 0.5

MeV

2000

4000

6000

282±N(D*) = 20803

) [GeV]π) - M(KππM(K0.14 0.15 0.16 0.17

Ent

ries

/ 0.5

MeV

2000

4000

6000 slow±π ±π +Κ

fit

H1 Preliminary

HERA II

2 < 100 GeV25 < Q0.02 < y < 0.7

(D*)| < 1.5η| (D*) > 1.5 GeV

Tp

Electron reconstructed in

SpaCal: Q2<100 GeV2

LAr: Q2>100 GeV2

K. Lipka Charm production and Fc2 at HERA 7

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

(D*)

(n

b)

η/dσd

0

0.5

1

1.5

2

2.5

3

3.5

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

(D*)

(n

b)

η/dσd

0

0.5

1

1.5

2

2.5

3

3.5

e+D*+X→ep

-1ZEUS (prel.) 162 pb

HVQDIS

ZEUS

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[n

b/G

eV]

T d

/ d

σ2d

0

0.5

1

1.5

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[n

b/G

eV]

T d

/ d

σ2d

0

0.5

1

1.5

(D*) < 2.5 GeVT

1.5 < p

H1 PreliminaryHERA II

2 < 100 GeV25 < Q0.02 < y < 0.7

D* in DIS

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[n

b/G

eV]

T d

/ d

σ2d

0

0.5

1

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[n

b/G

eV]

T d

/ d

σ2d

0

0.5

1

(D*) < 3.5 GeVT

2.5 < p

H1 data (prel.)

HVQDIS (MRST2004FF3nlo)

HVQDIS (CTEQ5f3)

D* in DIS

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[n

b/G

eV]

T d

/ d

σ2d

0

0.1

0.2

0.3

0.4

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[n

b/G

eV]

T d

/ d

σ2d

0

0.1

0.2

0.3

0.4

(D*) < 5.5 GeVT

3.5 < p

< 1.6 GeVc1.3 < m2c + 4m2 = Q2

< 40

μ/f,r

μ1 <

0.4±(Kartvelishvili) = 3.3 α

D* in DIS

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[n

b/G

eV]

T d

/ d

σ2d

0

0.01

0.02

0.03

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[n

b/G

eV]

T d

/ d

σ2d

0

0.01

0.02

0.03

(D*) < 14.0 GeVT

5.5 < p

D* in DIS

D* production in DIS (5<Q2<100 GeV2)

H1: FFNs NLO does good job describing the D* kinematics,

but underestimates forward region ay low pT(D*)

ZEUS: no forward access in the data seen. Data precision will improve

K. Lipka Charm production and Fc2 at HERA 8

D* production in DIS (Q2>100 GeV2)

(D*)η-1 0 1

[p

b]

η/dσd

0

50

100

1502D* production at high Q

(D*)η-1 0 1

[p

b]

η/dσd

0

50

100

150

H1 data (prel.)

RAPGAP (CTEQ65m)

CASCADE (A0)

HVQDIS (MRST2004FF3nlo)

H1 Preliminary HERA II

2 < 1000 GeV2100 < Q0.02 < y < 0.7

(D*) > 1.5 GeVT

p

(D*) [GeV/c]T

p5 10 15 20

[p

b]

T/d

pσd

10

210

2D* production at high Q

(D*) [GeV/c]T

p5 10 15 20

[p

b]

T/d

pσd

10

210H1 data (prel.)

RAPGAP (CTEQ65m)

CASCADE (A0)

HVQDIS (MRST2004FF3nlo)

H1 Preliminary HERA II

2 < 1000 GeV2100 < Q0.02 < y < 0.7

(D*) | < 1.5η|

• D* production at high Q2: description by the LO Monte-Carlo gets worse

• NLO FFNs describes data very well

K. Lipka Charm production and Fc2 at HERA 9

D* production in DIS: Q2 slope

]2 [GeV2Q10 210 310

]2 [

pb

/GeV

2 /d

Qσd

-210

-110

1

10

210

310

D* production in DIS

H1 data (prel.)

RAPGAP (CTEQ65m)

RAPGAP (CTEQ6l)

CASCADE (A0)

H1 Preliminary HERA II

0.02 < y < 0.7 (D*) | < 1.5η| (D*) > 1.5 GeV

Tp

]2 [GeV2Q10 210 310

]2 [

pb

/GeV

2 /d

Qσd

-210

-110

1

10

210

310

Monte-Carlo models don’t describe the Q2 slope of the D* cross section

K. Lipka Charm production and Fc2 at HERA 10

D* production in DIS

]2 [GeV2Q10 210 310

]2 [

pb

/GeV

2 /d

Qσd

-210

-110

1

10

210

310

D* production in DIS

H1 data (prel.)

HVQDIS (MRST2004FF3nlo)

H1 Preliminary HERA II

0.02 < y < 0.7 (D*) | < 1.5η| (D*) > 1.5 GeV

Tp

]2 [GeV2Q10 210 310

]2 [

pb

/GeV

2 /d

Qσd

-210

-110

1

10

210

310

NLO FFNs calculation does good job (surprising, should break down for high Q2)

K. Lipka Charm production and Fc2 at HERA 11

ZEUS

10-5

10-4

10-3

10-2

10-1

1

10

10 2

10-1

1 10 102

103

Q2 (GeV2)

dσ/d

Q2

(nb/

GeV

2 )

ZEUS (prel.) 162 pb-1

ZEUS BPC (prel.) 98-00

ZEUS 98-00

HVQDIS

) 2 (GeV2Q10 210 310

)2 (

nb

/ G

eV2

/dQ

σd

-410

-310

-210

-110

1

10ZEUS

+ X0 e + D→ep

HERA I-1ZEUS 65 pb

HERA II-1ZEUS (prel.) 135 pbNLO + Fragmentation

) 2 (GeV2Q10 210 310

)2 (

nb

/ G

eV2

/dQ

σd

-410

-310

-210

-110

1

10

More to charmed meson production

K. Lipka Charm production and Fc2 at HERA 12

0Dη

-1.5 -1 -0.5 0 0.5 1 1.5

(n

b)

0D η

/dσd

0

0.5

1

1.5

2

2.5

3 + X0 e + D→ep

HERA II-1ZEUS (prel.) 135 pbNLO + Fragmentationbeauty contribution (RAPGAP)

0Dη

-1.5 -1 -0.5 0 0.5 1 1.5

(n

b)

0D η

/dσd

0

0.5

1

1.5

2

2.5

3ZEUS

±Dη-1.5 -1 -0.5 0 0.5 1 1.5

(n

b)

±D η

/dσd

0

0.2

0.4

0.6

0.8

1

1.2

1.4 + X± e + D→ep

HERA II-1ZEUS (prel.) 135 pbNLO + Fragmentationbeauty contribution (RAPGAP)

±Dη-1.5 -1 -0.5 0 0.5 1 1.5

(n

b)

±D η

/dσd

0

0.2

0.4

0.6

0.8

1

1.2

1.4ZEUS

D0

D+D0

• HERA-II, L=135pb-1

5<Q2<1000 GeV2 ,

pT(D)>3 GeV, Iη(D)I<1.6

• Lifetime information from the ZEUS Micro Vertex Detector used

• NLO FFNS describes data well

Visible cross section: pT(D*)>1.5 GeV, |η(D*)|<1.5

0.02<y<0.7, 5<Q2<1000 GeV2

Problem: detector sees only 30% of the phase space for c→D*

→ strong model dependence due to large extrapolation factors

Extrapolation problems:

1) Different extrapolation models

2) Unknown parameters within a single model:

mass of charm quark, scales,

fragmentation model → experimentally measurable: see next slides

)()(

(exp)(exp) 22 theoryFtheory

F cc

vis

viscc

σσ

=

Extraction of Fc2 from meson cross section

K. Lipka Charm production and Fc2 at HERA 13

Measurement of charm fragmentation in epMethods to reconstruct the energy of the parent quark:

Jet containing D*; problem: only small region of phase space accessible

• DIS: inclusive k⊥ algorithm applied in the γp frame, ET(D*-jet)>3 GeV

• significant contribution only from ŝ > 100 GeV² (much above threshold)

Hemisphere containing D*:

• experimental setup similar to e+e- , works at threshold, ŝ ≈ 4m²c

γp-system

cut:η>0

- take all particles towards γ

- project onto the plane ⊥ to the γ

- get Thrust axis

- Σ momenta of all particles in the D* hemisphere

⊥ γ direction

K. Lipka Charm production and Fc2 at HERA 14

Charm fragmentation in photoproduction

Parent quark approximated by a jet containing D*

• data: HERAI, L =120 pb-1, Q2<1GeV2;

• pT ( D*) >2 GeV, Iη(D∗)I<1.5

• inclusive k⊥ algorithm, ET(D*-jet)>9 GeV

K. Lipka Charm production and Fc2 at HERA 15

jet

DII

EPEz

2)( *+

=

• compared to the NLO FFNS (FMNR)

fragmentation model: Kartvelishvili

best fit α=2.67

)1()(* zzzDDc −∝ α

z

ZEUS

0

1

2

0.2 0.4 0.6 0.8 1z

1/σd

σ/dz ZEUS (120 pb-1)

FMNR×CPYThad(Kartvelishvili α=2.67

+0.25- 0.31)

FMNR×CPYThad(Kartvelishvili α=1.2)

FMNR×CPYThad(Kartvelishvili α=4.0)

Hemisphere method should include more final state gluon radiation than jet method

⇒ Measured distributions of the fragmentation variable should be different

⇒ Extracted parameters of the non-perturbativefragmentation function should agree

Data: H1 HERA I, L=75 pb-1 both methods used: ,

Differences between the methods:jet

DLjet pE

pEz)()( *

++

=hem

DLhem pE

pEz)()( *

++

=

• Measure in the common phase space: require presence of a D* jet

• Extract parameters for n.-p. FF using MC/ HVQDIS.

• Expect : parameters agree for different methods, different for MCs and HVQDIS

• Any differences at the threshold (absence of a D*-jet)?

Measurement of charm fragmentation in DIS

K. Lipka Charm production and Fc2 at HERA 16

Hemisphere method Jet methodRAPGAP MC: NLO (HVQDIS):

Fragmentation measurement: D*- Jet sample

• Distributions on hadron level look different (as expected)• MC (Rapgap) with standard n.p. FF yield reasonable description of data• Extracted n.p. FF parameters from zhem (α=4.5±0.6) and zjet (α=4.3±0.4) agree• HVQDIS ⊗ Kartvelishvili fragmentation: extracted parameters zhemi and zjet agree

Hemisphere method

K. Lipka Charm production and Fc2 at HERA 17

Fragmentation c → D*. No D*- jet sample

MC: Extracted parameters (α=10.3 ) inconsistent with jet-sample (α=4.5±0.6)HVQDIS: “no jet” (α=6.0 ) inconsistent with jet-sample (α=3.3±0.4)Fragmentation at threshold significantly harder than expected from the jet-sample

Treatment in extrapolation models: ŝ-dependent fragmentation

+ 1.7- 1.6

+ 1.0- 0.8

K. Lipka Charm production and Fc2 at HERA 18

Extrapolation Models in use:

• NLO: Riemersma et al: integrated form; HVQDIS: differential form,

fixed order massive calculation, Nf=3, FFNS, evolution: DGLAP

Parameters: PDFs: MRST04F3, mc = 1.43 GeV , μr=μf=μ=√ Q2+4mc2

Fragmentation: ŝ<70 GeV2: α =6.0, otherwise α=3.3

• CASCADE: massive LO ME + Parton showers,

proton structure: gluons only, evolution: CCFM

Parameters: PDFs: A0, mc = 1.43 GeV, μr=μf=μ=√ Q2+4mc2

Fragmentation: ŝ <70 GeV2; α = 8.2, otherwise α = 4.3

Back to extrapolation of σ(D*) to the Fc2

K. Lipka Charm production and Fc2 at HERA 19

ep → e D* X

0

100

200

Q4 d

2 σ/d

Q2 d

y [n

b G

eV2 ]

Q =2 7 GeV2 11GeV2 18GeV2

0

100

200 32GeV2 65GeV2 120GeV2

0

100

200 200GeV2

y10 -2 10 -1 10 -2 10 -1 1

440GeV2H1Preliminary

Data HERA-II

HVQDIS(MRST04FF3)total theoryuncertainty

fragmentationuncertainty

0

0

0 2 = 7 GeV2Q

0

0

0

0

0 211 GeV

0

0

0

0

0 218 GeV

0

0

0 232 GeV

0

0

0

0

0 265 GeV

0

0

0

0

0

0

0

0

0

02120 GeV

0

0

0

0

0

02200 GeV

0

0

0

0

0

0

0

0

0

02440 GeV

Data HERA II

CASCADE (A0)

H1 Preliminary

eD*X→ep

y

]2 [

nb

GeV

2/d

ydQ

σ 2 d4Q

1-1 10-2 10-1 10-210 0

100

200 0

100

200 0

100

200

Lowest y (highest x) overestimated by NLO, underestimated by CASCADE

D* cross sections vs NLO/CASCADE

K. Lipka Charm production and Fc2 at HERA 20

Extrapolation factors (σtot/σvis)

differ in NLO vs CASCADE:

3%-10% (low x) -100% (high x)

Differences in the models:

• LO+PS vs NLO

• Evolution

• Hadronization

Possible reason:

Hadronization

More studies have to be done

Ext

rap

ola

tio

n F

acto

r R

atio

CA

SC

AD

E/H

VQ

DIS

Q =2

0

1

2

3

7 GeV2 11 GeV2 18 GeV2

0

1

2

32 GeV2 65 GeV2 120 GeV2

0

1

2

200 GeV2 440 GeV2

x10 -5 10 -3 10 -5 10 -3 10 -1

Extrapolation factors NLO/CASCADE

K. Lipka Charm production and Fc2 at HERA 21

Results: Fc2 from D* measurement

2 = 7 GeV2Q

0

2

4

6

211 GeV

0

2

4

6

218 GeV

232 GeV

0

2

4

6

265 GeV

0

2

4

6

2120 GeV

2200 GeV

0

2

4

6

2440 GeV

GraphGraphGraph

< 1.6 GeVc1.3 < mμ < 2

rμ < μ0.5

D* HERA IICASCADE (A0)theoryuncertainty:

H1 Preliminary

in the CCFM scheme (CASCADE)cc2F

x

cc2F

-1 10-3 10-5 10-3 10-5 10 0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0.6Fcc

_

2 in the NLO DGLAP scheme (HVQDIS)

F2cc

Q =2

0

0.2

0.4

0.6

7 GeV2 11 GeV2 18 GeV2

0

0.2

0.4

32 GeV2 65 GeV2 120 GeV2

0

0.2

0.4

200 GeV2 440 GeV2

x10 -5 10 -3 10 -5 10 -3 10 -1

H1Preliminary

Data HERA-II

total theoryuncertainty

PDF variation

MRST04FF3CTEQ5F3

Experimental errors will further decrease – we are on the way to the final precision

K. Lipka Charm production and Fc2 at HERA 22

K. Lipka Charm production and Fc2 at HERA 23

Charm/beauty via other tag methods• Charm comes alone with beauty:

- More experimental details in Massimo’s talk

• Large mass : transverse momentum to Jet axis: muon ptrel

• Large lifetime: impact parameter δ, Significance S=δ/σ(δ)

• Semileptonic decays (e,μ)

• Different systematic uncertainties wrt. D-meson measurements

Jet

Jet

ptrel

μ

B+

B-

δ

/ cmδ-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Tra

cks

310

410

510

610

710

bb2 and Fcc

2Measurement of F

H1 PreliminaryH1 Data (Prel.)Total MCudscb

/ cmδ-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Tra

cks

310

410

510

610

710

0

10

10 2

10 3

0 1 2prel (GeV)

Mu

on

s

T (GeV)

ZEUS (prel.) HERA II 125 pb-1

MC sumcbuds

Charm in semileptonic events

K. Lipka Charm production and Fc2 at HERA 24

0

20

40

60

80

100

-1.5 -1 -0.5 0 0.5 1 1.5 2

ZEUS

ep→ eQQ–

X→ e μ X

ZEUS (prel.) HERA II 125 pb-1

Charm

Beauty

HVQDISHVQDIS

ημ

dσ/

dημ (

pb

)

Reasonable description

by the NLO FFNS

ZEUS

0

0.1

0.2

0.3

0.4

0.5

0.6

10-3

10-2

10-1

xF

2 cc_

Q2=30 GeV2

0

0.1

0.2

0.3

0.4

0.5

0.6

10-3

10-2

10-1

x

F2 cc_

Q2=130 GeV2

0

0.1

0.2

0.3

0.4

0.5

0.6

10-3

10-2

10-1

x

F2 cc_

Q2=1000 GeV2Charm

ZEUS (prel.) HERA II, 125 pb-1 (μ)ZEUS HERA I, 82 pb-1 (D*)H1 HERA I, 57 pb-1 (VTX)

ZEUS-S-FF mc=1.5, mb=4.75 GeVPDF uncertaintymc=1.3, mb=4.5 GeVmc=1.7, mb=5.0 GeV

Charm cross sections via lifetime tag vs D*H1 CHARM CROSS SECTION IN DIS

0

0.2

0.4

Q2= 6.5 GeV2σ∼cc_

Q2= 12 GeV2 Q2= 20 GeV2

0

0.2

0.4

Q2= 35 GeV2 Q2= 60 GeV2

10-4

10-3

10-2

Q2= 120 GeV2

x

0

0.2

0.4

10-4

10-3

10-2

Q2= 200 GeV2

H1 Preliminary

x10-4

10-3

10-2

Q2= 400 GeV2

x

H1 HERA IH1 HERA II (Prel.)H1 D✽ HERA II (Prel.)

K. Lipka Charm production and Fc2 at HERA 25

Charm cross sections vs VFNS (TR)

K. Lipka Charm production and Fc2 at HERA 26

H1 CHARM CROSS SECTION IN DIS

0

0.2

0.4

Q2= 6.5 GeV2σ∼cc_

Q2= 12 GeV2 Q2= 20 GeV2

0

0.2

0.4

Q2= 35 GeV2 Q2= 60 GeV2

10-4

10-3

10-2

Q2= 120 GeV2

x

0

0.2

0.4

10-4

10-3

10-2

Q2= 200 GeV2

H1 Preliminary

x10-4

10-3

10-2

Q2= 400 GeV2

x

H1 HERA IH1 HERA II (Prel.)

CTEQ6.6MSTW08 (Prel.)CCFM

Fc2 from lifetime tag vs MSTW NNLO

K. Lipka Charm production and Fc2 at HERA 27

H1 F2cc_(x,Q2)

10-1

1

10

10 2

10 3

10 4

10 5

10 102

103

x=0.0002, i=10

x=0.00032, i=9

x=0.0005, i=8

x=0.0008, i=7

x=0.0013, i=6

x=0.002, i=5

x=0.0032, i=4

x=0.005i=3

x=0.008i=2

x=0.013i=1

x=0.02i=0

H1 Preliminary

MSTW08 (Prel.)MSTW08 NNLO (Prel.)

H1 HERA II (Prel.)

Q2 / GeV2

F 2cc_ × 4

i

Recall Robert’s talk on Monday:

NNLO better fits the measured Fc2

Only Lifetime data of H1 are shown

Data will get better !

HERA measurement of Fc2

• Plenty of measurements

• Nice agreement between methods

• Experimental precision of several measurements will further improve

• Different methods will be combined: orthogonal errors!

• H1 and ZEUS results will be combined

• Sensitivity to the models (PDFs)

• Need proper (precise) theory

K. Lipka Charm production and Fc2 at HERA 28

10-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

1 10 102

103

Q2 (GeV2)

F2 cc–

HERA F2 cc–

H1 HERA I (D*)H1 HERA I (VTX)ZEUS HERA I (D*)ZEUS HERA I (D+, D0, Ds

+)ZEUS (prel.) HERA II:

D* D+ μH1 (prel.) HERA II:

D* VTX

NLO QCD:CTEQ5F3MRST2004FF3

x = 0.00003 (× 420)

x = 0.00005 (× 419)x = 0.00007

(× 418)x = 0.00013

(× 417)x = 0.00018 (× 416)

x = 0.0003 (× 415)

x = 0.00035 (× 414)

x = 0.0005 (× 413)

x = 0.0006 (× 412)

x = 0.0008 (× 411)

x = 0.001 (× 410)

x = 0.0012 (× 49)

x = 0.0015 (× 48)

x = 0.002 (× 47)

x = 0.003 (× 46)

x = 0.004 (× 45)

x = 0.006 (× 44)

x = 0.008 (× 43)x = 0.012

(× 42)

x = 0.02 (× 41)

x = 0.03(× 40)

Conclusions

Experimentally charm measurements at HERA get very precise:

We will get soon

• D* measurement at H1 on the way to 5% precision measurement

• D* measurements at ZEUS full HERA-II on the way

• Combination of different measurement methods

• Combination of H1 and ZEUS: cross calibration

• Enlarge the visible phase space (H1)

Extrapolation to the full phase space model dependent

Theory: massive NLO pQCD describes the data quite well

Model uncertainties larger than experimental errors

We still need:

• GMVFNS for DIS : proper charm treatment in the global fit

• NNLO

K. Lipka Charm production and Fc2 at HERA 29

0

0.2

0.4

F2 cc–

HERA F2 cc–

Q2 = 2 GeV2

H1 HERA I:D* VTX

ZEUS HERA II:D* D+, D0, Ds

+

H1 (prel.) HERA II:D* VTX

ZEUS (prel.) HERA II:D* D+ μ

NLO QCD:CTEQ5F3MRST2004FF3

4 GeV2 7 GeV2

0

0.2

0.4

11 GeV2 18 GeV2 30 GeV2

0

0.2

0.4

10-5

10-3

60 GeV2

10-5

10-3

130 GeV2

10-5

10-3

10-1

500 GeV2

x

Outlook:

Precision will improve

Results will be combined

0.4

0.2

10-5 10-3 x

HERA I Fc / F22

Q2 = 11 GeV2

Backup

D* in photoproduction (Q2 < 2 GeV2)

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[nb

eD

*X)/

d→

(ep

σd

10

20

30

40

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[nb

eD

*X)/

d→

(ep

σd

10

20

30

40H1 data (prel.)

FFNS (CTEQ5F3) < 1.7 GeV c1.3 < m

< 22

t+p2

cm / r,f

μ0.5 <

GMVFNS (CTEQ6.5)

H1 PreliminaryHERA II

D* in Photoproduction

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

[nb

eD

*X)/

d→

(ep

σd

10

20

30

40

(D*)[GeV]t

p2 4 6 8 10 12

[nb

/GeV

]t

eD

*X)/

dp

→(e

p

σd

-210

-110

1

10

210H1 data (prel.)

FFNS (CTEQ5F3) < 1.7 GeV c1.3 < m

< 22

t+p2

cm / r,f

μ0.5 <

GMVFNS (CTEQ6.5)

H1 PreliminaryHERA II

D* in Photoproduction

2 < 2 GeV2Q < 285 GeV Pγ100 < W

(D*) > 1.8 GeVt

p

(D*)| < 1.5η|

(D*)[GeV]t

p2 4 6 8 10 12

[nb

/GeV

]t

eD

*X)/

dp

→(e

p

σd

-210

-110

1

10

210

[GeV] pγW100 150 200 250

[nb

/GeV

] pγ

eD

*X)/

dW

→(e

p

σd

0.2

0.4

0.6

0.8

[GeV] pγW100 150 200 250

[nb

/GeV

] pγ

eD

*X)/

dW

→(e

p

σd

0.2

0.4

0.6

0.8H1 data (prel.)

FFNS (CTEQ5F3) < 1.7 GeV c1.3 < m

< 22

t+p2

cm / r,f

μ0.5 <

GMVFNS (CTEQ6.5)

H1 PreliminaryHERA II

D* in Photoproduction

[GeV] pγW100 150 200 250

[nb

/GeV

] pγ

eD

*X)/

dW

→(e

p

σd

0.2

0.4

0.6

0.8• Measurement in the visible range:

PT(D*)>1.8 GeV, Iη(D*)I<1.5

Q2 < 2 GeV2, 0.1<y<0.8

• Good agreement with both NLO

• Large model uncertainties due to variation of the scales

K. Lipka Charm production and Fc2 at HERA 8

D* in photoproduction

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

(D

*)[n

b/G

eV]

ηd t

/dp

σ2

d

0

10

20

30

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

(D

*)[n

b/G

eV]

ηd t

/dp

σ2

d

0

10

20

30H1 PreliminaryHERA II (D*) < 2.5 GeV

t1.8 < p

D* in Photoproduction

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

(D

*)[n

b/G

eV]

ηd t

/dp

σ2

d

0

2

4

6

8

10

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

(D

*)[n

b/G

eV]

ηd t

/dp

σ2

d

0

2

4

6

8

10H1 PreliminaryHERA II (D*) < 4.5 GeV

t2.5 < p

D* in Photoproduction

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

(D

*)[n

b/G

eV]

ηd t

/dp

σ2

d

0

0.1

0.2

0.3

0.4

0.5

(D*)η-1.5 -1 -0.5 0 0.5 1 1.5

(D

*)[n

b/G

eV]

ηd t

/dp

σ2

d

0

0.1

0.2

0.3

0.4

0.5H1 PreliminaryHERA II (D*) < 12.5 GeV

t4.5 < p

D* in Photoproduction

H1 data (prel.)

FFNS (CTEQ5F3) < 1.7 GeV c1.3 < m

< 22t

+p2cm /

r,fμ0.5 <

GMVFNS (CTEQ6.5)

GM VFNS underestimates the forward region at high pT

K. Lipka Charm production and Fc2 at HERA 9

Recommended