F.- 842 - DTICOffice of Naval Research (ONR 332) Dept. of Naval Arch. and Marine Engr. 800 North...

Preview:

Citation preview

F.- 8 842

THE UNIVERSITY OF MICHIGANI COLLEGE OF ENGINEERING

DEPARTMENT OF NAVAL ARCHITECTUREAND MARINE ENGINEERING

M26X) DRAPER RD., NORTH CAMPUSANN ARBOR, MICHIGAN 48109-214531,17644470 FAX: 313 943-8820

Report on ONR Workshop on Nonlinear Sea Loads and Ship Response: A Basis for ShipStructural Design

Location: Department of Naval Architecture and Marine Engineering University ofMichigan Ann Arbor, Michigan 48109-2145

Date: July 7 - 8, 1994

The ONR Sea Loads-Ship Response (SLSR) program includes research areas related to nonlinearhydrodynamics, nonlinear dynamics, structural fatigue, elastic and plastic structural deformation,and a probabilistic or reliability-based analysis of ship structural design. Due to the diverse andmulti-disciplinary nature of the project, program researchers were brought together at theUniversity of Michigan to discuss the direction of their current and future research; the goalbeing to achieve a high level of coordination between the various efforts. This report containscopies of the presentations made at the workshop.

Thirty-one participants from various academic institutions, government laboratories and offices,and commercial companies attended. Presentations representing the state-of-the-art were madein the areas of hydrodynamic loading, structural analysis, design reliability, and simulation-baseddesign.

Experts in hydrodynamics (SAIC, MIT, AMI, and UofM) explained that by using variousnonlinear or partially nonlinear models, computer codes are capable of determininghydrodynamic loads, excluding bottom impact or flare slamming, in random seas. However,given the success of recent planing hull studies, the extension of planing hull hydrodynamics tothe impact problem should be straightforward thus allowing for the complete hydrodynamicloads time history in extreme seas to be made. From these time histories, the designhydrodynamic and inertial loading events can be determined.

Structural experts (CDNSWC, NAVESEA, Ross and McNatt, and ABS) explained how thehydrodynamic and inertial loads are currently estimated and used in the structural design ofships, both naval and commercial. Due to the complexity of a ship's structure and the need fortimely engineering answers, hydrodynamic load modeling is generally simpler than that availableas described by the previous hydrodynamic experts. It was agreed that hydrodynamic andstructural analysis code integration is a high priority of the SLSR project and means forachieving this integration were identified.

Finally, experts in reliability, virtual reality, and simulation (UofC, NRC, and UofM) gaveexamples of how the product of the SLSR program could fit into a larger computer environmentwhere simulation-based designs incorporating probabilistic methods would be possible.

In summary, the workshop was one of the few times where researchers of the disparatedisciplines were brought together to develop a coordinated program for ship structural design.Through the spirited discussions, a new awareness of the problems facing the different fields wasformed and in this respect, the workshop must be considered a success.

Prof. Armin W. Troesch, Project Director DIuC QUAUY Lý2 -,&UD 3July 14, 1994

I

I ONR WORKSHOP ON NONLINEAR SEA LOADS AND SHIP RESPONSE:A BASIS FOR SHIP STRUCTURAL DESIGN

College of Engineering Accesion ForUniversity of Michigan, Ann Arbor NTIS CRA&I

July 7 & 8, 1994 DTIC TABUnannounced

Boulevard Room, North Campus Commons Justification .........................

AGENDA By.....Disti ibution I

Thursday, July 7~ Availability CodesAvail arý,dlIor8:00 - 8:30 Coffee and doughnuts, registration Dist Special

Workshop Introduction

8:30 - 8:45 WelcomeProf. Michael G. Parsons, Naval Architecture and Marine Engineering,Associate Dean, College of Engineering, University of Michigan

8:45 - 9:00 Workshop FocusDr. Peter Majumdar, Office of Naval Research

9:00 - 9:15 NAVSEA Initiative in Wave Loads PredictionsMr. Allen H. Engle, Naval Sea Systems Command

Hydrodynamics

I 9:15 - 9:50 Large-Amplitude Motion and Wave-Load Predictions for Ship DesignAssessmentDr. Nils Salvesen, SAIC

9:50 - 10:25 Nonlinear Ship MotionsProf. Paul D. Sclavounos, Ocean Engineering, Massachusetts Institute ofTechnology

10:25 - 10:40 Break

I 10:40 - 11:15 Prediction of Nonlinear Loading of Flared Bodies Using a NumericalTowing Tank3 Dr. Brian Maskew, Analytical Methods, Inc.

11:15 - 11:50 Fully Nonlinear Hydrodynamic Loads Using De-Singularized MethodsProf. Robert F. Beck, Naval Architecture and Marine Engineering,University of Michigan

11:50 - 12:25 Loads Associated With the Hydrodynamic Impact of Flat WedgesProf. William S. Vorus, Naval Architecture and Marine Engineering,University of Michigan

12:25- 1:25 Lunch

I - • • .

I

I 1:25 - 2:00 Nor Hydrodynamic Forces on High Speed VesselsPro. ., rmin W. Troesch, Naval Architecture and Marine Engineering,

i University of MichiganStructures and Design

2:00 - 2:35 Ship Structures and NA VSEAMr. Jerome P. Sikora, CDNSWC

2:35 - 3:10 Integrated Ship Structural Design MethodologyMr. Tobin R. McNatt, Ross and McNatt and Prof. Owen Hughes,Aerospace and Ocean Engineering, Virginia Polytechnic Institute & StateUniversity

3:10- 3:25 Break

3:25 - 4:00 Probabilistic Loading of Ship St•r'. ures by SlammingProf. William Webster, Naval Architecture and Offshore Engineering,University of California, Berkeley (for Prof. Alaa Mansour)

4:00 - 4:35 Dynamic Loading Approach for Analyzing the Ship StractureDr. Yung-Sup Shin, American Bureau of Shipping

Friday, July 8

8:00 - 8:30 Coffee and doughnuts

Simulation-Based Design Environment

8:30 - 8:50 Use of Reliability in Structural DesignMr. Robert A. Sielski, Marine Board, National Research Council

8:50 - 9:25 Virtual Reality in Design and ManufacturingProf. K.-Peter Beier, Naval Architecture and Marine Engineering,University of Michigan

9:25 - 10:00 The Role of Simulation in Ship Design: Some Cautionary ExamplesProf. Armin W. Troesch, Naval Architecture and Marine Engineering,University of Michigan

10:00- 10:15 Break

10:15 - 10:50 Continued discussion:Dynamic Loading Approach for Analyzing the Ship StructureDr. Yung-Sup Shin, American Bureau of Shipping

Workshop Wrap-up

11:25 - 12:00 Dr. Peter Majumdar, Office of Naval Research

II

ONR WORKSHOP ON NONLINEAR SEA LOADS AND SHIP RESPONSE:A BASIS FOR SHIP STRUCTURAL DESIGN

JULY 7-8, 1994

LIST OF ATTENDEES

Prof. Robert F. Beck Prof. K.-Peter BeierDept. of Naval Arch. and Marine Engr. Dept. of Naval Arch. and Marine Engr.University of Michigan University of Michigan2600 Draper Road 2600 Draper RoadAnn Arbor, MI 48109-2145 Ann Arbor, MI 48109-2145t 313 764-0282 t 313 764-4296f 313 936-8820 f 313 936-8820

Prof. Michael M. Bernitsas Dr. Subrata ChakrabardDept. of Naval Arch. and Marine Engr. Chicago Bridge and Iron Research CenterUniversity of Michigan 1501 N. Division St.2600 Draper Road Plainfield, IL 60544Ann Arbor, MI 48109-2145 t 815 439-6000t 313 764-9317 f 815 436-8345f 313 936-8820

Mr. John Conlon Mr. John F. DalzellAmerican Bureau of Shipping CDNSWC 1561Two World Trade Center, 106th Floor Carderock Division, NSWCNew York, NY 10048 Bethesda, MD 20084-5000t 212 839-5052 t 301 227-1210f 212 839-5130 f 301 227-5442

Dr. Frank Dvorak Mr. Allen H. EngleAnalytical Methods, Inc. NAVSEA 03H32 (Room 3W68, NC-3)2133 152nd Ave., NE Naval Sea Systems CommandRedmond, WA 98052 2531 South Jefferson Davis Highwayt 206 643-9090 Arlington, VA 22202f 206 746-1299 t 703 602-9297

Mr. James A. Fein Prof. Owen HughesOffice of Naval Research (ONR 333) Dept. of Aerospace and Ocean Engineering800 North Quincy Street Virginia Polytechnic Institute & StateArlington, VA 22217-5660 Universityt 703 696-4713 Blacksburg, VA 24061-0203f 703 696-4716 t 703 231-5747

III

Dr. S. Liapis Dr. Brian MaskewDept. of Aerospace and Ocean Engineering Analytical Methods, Inc.Virginia Polytechnic Institute & State 2133 152nd Ave., NEUniversity Redmond, WA 98052Blacksburg, VA 24061-0203 t 206 643-9090t 703 231-6912 f 206 746-1299f 703 231-9632

Dr. Peter Majumdar Ms. Kathryn K. McCreightOffice of Naval Research (ONR 333) Office of Naval Research (ONR 333)800 North Quincy Street 800 North Quincy StreetArlington, VA 22217-5660 Arlington, VA 22217-5660t 703 696-1474 t 301 277-1242f 703 696-0308 f 301 227-5442

Mr. Tobin R. McNatt Mr. Nat NappiRoss / McNatt Naval Architects NAVSEA301 Pier One Road, Suite 200 2531 S. Jefferson-Davis Hwy.Stevensville, MD 21666 Arlington, VA 22202t 410 643-7496f 410 643-7535

Dr. E. Nikolaidis Prof. T. F. OgilvieDept. of Aerospace and Ocean Engineering Department of Ocean EngineeringVirginia Polytechnic Institute & State Massachusetts Institute of TechnologyUniversity Cambridge, MA 02139Blacksburg, VA 24061-0203 t 617 253-4330

f 617 253-8125

Prof. Michael G. Parsons Dr. Edwin P. RoodDept. of Naval Architecture and Marine Engr. Office of Naval Research (ONR 333)University of Michigan 800 North Quincy Street2600 Draper Road Arlington, VA 22217-5660Ann Arbor, MI 48109-2145 t 703 696-4305t 313 763-3081f 313 936-8820

Dr. Nils Salvesen Prof. Paul D. SclavounosSAIC Department of Ocean Engineering134 Holiday Court, Suite 318 Massachusetts Institute of TechnologyAnnapolis, MD 21401 Cambridge, MA 02139t 410 266-0991 t 617 253-4364f 410 224-2631 f 617 253-8125

III

Dr. Yung-Sup Shin Mr. Robert A. SielskiAmerican Bureau of Shipping Marine Board, National Research CouncilResearch and Development National Academy of SciencesTwo World Trade Center, 106th Floor 2101 Constitution Avenue, NWNew York, NY 10048 Washington, DC 20418t 212 839-5245 t 202 334-3397f 212 839-5211 f 202 334-3789

Mr. Jerome P. Sikora Prof. Annin W. TroeschCDNSWC 60 Dept. of Naval Arch. and Marine Engr.Carderock Division, NSWC University of MichiganBethesda, MD 20084-5000 2600 Draper Roadt 301 227-1757 Ann Arbor, MI 48109-2145f 301 227-1230 t 313 763-6644

f 313 936-8820

Dr. A.K. Vasudevan Prof. William S. VorusOffice of Naval Research (ONR 332) Dept. of Naval Arch. and Marine Engr.800 North Quincy Street University of MichiganArlington, VA 22217-5660 2600 Draper Road

Ann Arbor, MI 48109-2145t 313 764-8341f 313 936-8820

Prof. William Webster Prof. Raymond A. YagleDept. of Naval Architecture and Offshore Dept. of Naval Arch. and Marine Engr.Engineering University of MichiganUniversity of California, Berkeley 2600 Draper RoadBerkeley, CA 94720 Ann Arbor, MI 48109-2145t 510 642-5464 t 313 764-9138f 510 643-8653 f 313 936-8820

Prof. R. K. P. YueDepartment of Ocean EngineeringMassachusetts Institute of TechnologyCambridge, MA 02139t 617 253-4330f 617 253-8125

ONR WORKSHOP ON NONLINEAR SEA LOADS AND SHIP RESPONSE:A BASIS FOR SHIP STRUCTURAL DESIGN

JULY 7A,19.4

ADDITIONAL DISTRIBUTION

Dr. John Daidola Mr. Thomas GrootM. Rosenblatt & Son, Inc. ORINCON Corp.350 Broadway 9363 Towne Centre DriveNew York, NY 10013 San Diego, CA 92121-3017t 212 431-6900 t 619 455-5530

x 230f 619 453-9274

Prof. Dale G. Karr Mr. Harold KeaneDept. of Naval Arch. and Marine Engr. ORINCON Corp.University of Michigan 9363 Towne Centre Drive2600 Draper Road San Diego, CA 92121-3017Ann Arbor, MI 48109-2145 t 619 455-5530t 313 764-3217 x 271f 313 936-8820 f 619 453-9274

Prof. Dong Joon Kim Prof. Alaa MansourDept. of Naval Architecture Dept. of Naval Architecture and OffshoreNational Fisheries University of Pusan Engineering599-1 Daeyeon-Dong, Nam-Gu University of California, BerkeleyPusan, 608-737, KOREA Berkeley, CA 94720f 82-51-628-7433 t 510 642-5464

f 510 643-8653

Mr. Richard MooreMarine SystemsUniversity of MichiganTransportation Research Institute (UMTRI)Ann Arbor, MI 48109-2150t 313 763-2465f 313 936-1081

>.4U

01

000

0zz

0 -

00

0~0

)0 WU *0

Eu. u

0

V) w

- I0--

0 %Q4

z zI~ 0u 0

0 I>4I

U w

z Iwum Rr~nI

040oz

z

H Z

F-4

00

0I

........

z HI0I

H --- ---------

01J

o z 0~z c

u~z 0

0 (0 00o4 20-4 n

- 0 -Jel c

0 00

j )

0I0

I U.INE

HcV

ICIz

0Ic

0U

Olt,_ _ S _ _ _

CY

d d

IN OV a I IvW

IL z~zJ

0

ON0 00

00, Z

C~j co F

I s46cILBVV U3 0WO

010

Qz I=00

- 0

0 zOno !S.

C.) a00,

-NVO a3ZMO

0i0

CC

p.L 0

* -I4

Z CD

-Y 0 t0

*; 6 iINW 03IEYUO

.41 AD00

o - -

00

IMEI

H 0 0.LN3YOYY aznvmO

0 i0 1 _ _ _ _ _*

i II

0.

0

I zII 1 .11if

* d

0L3Vl 1 nW8 N0

>4 I0 i

0 z

I q

0 C2

U141 I

(SBIE10a) 31ONV 3SV~d

_ _ _ _ _1 ii0

Io

0 (n I

*M4 0

(IISNJ- Q~.LO INWMINO

Oilmi 7m

6 V)

0:a*

.( ~I~I t

~I~w

- -

ULIn

46-

L~z oV.OO NWO NII3

>4I0 z

Z Un

IiL

z>4m

00

;;1 ZZL>00

0 ,iO

U 1 If 0 U J . g

00 <I Orn

IjzC0Ic-C

I L

"o U

-0 z

zz

1 zJ

0 -

0.4-E- > 0 IIu (n I

In*___adU IZ IZI

01LZ

UcrU

- 00

040

I Fm

000 0z4

u 0 0 0- O**Wiz*4 (n U (n (nuJ

>4I0"' ;1 U

04 Mi

0 I

z ~zJ

0 C41.4 0uI

z gM 0 uI

_ _ _ _

U UIC) z 0IC)I

I

HH-

I o _g

E n o E -0

, z , :

*0U4 00

ZLZ

,z!

1.4Wr0.r u P-4

Z 0~H= uz

I

I I 0

I U,'z0

I -"

:I , .0 0 •.-I -- 0

!C -

cc cu

9z 00

I -~ zZ0

OnEn

IU

Moe-

Thi isex ctl w at e ite d t smulte

..... ..... ..... .........

*NII

Z w

1 il

i .'-I

cc 0*

4) _ ;4 1" 06

I "°

*

0 • ufp- ,I

i i

rAI

C,, ~rjAii

z1

"'I

0-4~

C-CI- I

wOuI

C,) p.~I

o I Io ;T

-- I

C,) I

III÷

I -

IU

I II I I le

-. -.

La

P,

oN 4'n/

00

it,~

I ,

1 OUTLINE OF PRESENTATION* _AND SPONSORSI

I. Status Report on IDEAS Motion and Load System

A. System Development1. ARPA (1988-90) * System Integration

* Large-Amplitude Code

2. USCG (1989-94) • Safety (IMO) and Capsizing

3. ABS (1992-94) • Motions and Loads for StructuralDesign

4. ONR (1992-94) • LAMP Development* Installation at Tech Center

* B. System Applications1. NAVSEA (1990-91) * CG47 AEGIS Calculations

2. ARPA (1993-94) • Simulation Based Design

3. ARPA (1994-97) • Hypercomputing and Design(Rutgers)

* C. Related Work

1. ONR/USCG (1992-94) • High-Speed Craft with

MARINTEK

2. ONR (1990-94) * Nonlinear Seakeeping RANS/Potential Flow Coupling

IH. Needed Improvements and Extensions

ISAn Eniploy.-Own~d Compalny

0 oil

-PENN

zIC*n

00 mM1

40a~min"u

0 -l~4uI)*PoC I qi)

I LAMP CODE FORMULATION

I

I1 FMaster Geometry

* ~Physical Domai

I Comput aton DomainFigure 2: Master Geometry and Panel Distribution in

both Physical and Computation Domains.

An Emnploy.-Owfld Conpany

E 0

COO 0E Go

E In

40'

.~~C P" _ _4) ID r0 -* =2

-j .-

43 44

.- 00

0

C:,b.) bO -d ,- n 0

rI

II

______________________________________ ¶1I -

I - C

0 -

rj� 0 4.)4.)

UI Cuo C,,

I - __ _____

II j ___

* Cu0

I ____

I z -0� 0

p -a.)3 a.)

C,, � <�� 1p4

- __ ______

I - - . . - - . - -

-� -1 3'..0

� E- Ct,..- � W

* bO.,-I,.�* 0'��

I -_______

II

IVALIDATION SERIES 60

!\pitch /

UMU

oii

A'

3 , S I

Heave Series 60. C, ,0.70'1A

u? LAMP-I d,0 SMP ,,I

SAbW/X=1/40 J Exp. "._._ _

' i xpLAMP-1

0Exp.

".. H eave --' . .....

S Pitch P a %,

a --

.c 0 6 a x["" I. ', I.

SLAMP-I "- -' 0 '-- SMP -----

w a oc h/X=1/50 Lo •"

A h/X=l40 "II = I I I I 10.5 0.7 0.9 1.1 1.3 0.4 0.7 1.0 1.3 1.6

L/l. L/X

An Employee.Owned Compan, •

+ 6

I 0~

+

+ +* C5u 1 0

I-- al 0* VSW *7. L3)0 6IP1 /- .

z cm) + 0 ;

M3 + +N0

5 0i

c,,

- + 0i

041 ++1 0. -'T, C

+ /E 6

I

MIDSHIP BENDING MOMENT UI

I

v LAMP-2, HogV L rAMP-2, Sag!U

cI LAMP-4, Hog

CL4 LAMP-4, Sag I

Fn, = 0.27S-X/ - L= 1.200

0.00 0.01 0.02 0.03h/)L

Comparison Between Linear (LAMP-i), ApproximateNonlinear (LAMP-2) and Fully Nonlinear (LAMP-4)

An Employee-Owned Company

* SAIC Large Amplitude Motion Program (LAMP)

AEGI'rS CRUISER IN WAVES

LAIP TII '

L..NIP-IIAM

--- -- -

171ITieI'(n (.

"° ! I

so

=o I

LO

o I

C6

0

C6

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

t iT-ITime Record of Wave Elevation and Linear (LAMP-i,----) and Nonlinear (LAMP-2,--)Predictions of Pitch and Bending Moment for APL Containership at Fn = 0.244 in UnidirectionalIrregular Head Seas with hj3 = 6.261 meter.a,C)

*- LAMP-i

a LAMP-2. Hog •..

0.0 3.0 3. i.O 1z.

SlpfmaM Wm HeWd bw (

BM It,( as a Function of Hjr3 for APL Containership Body Plans for CG47 AEGISat F,, = 0.244 in Unidirectional Irregular Head Seas Cruiser and APL Containership

An Employee-Owned Company

w

I SIMULATION-BASED DESIGN* June '94 Demo

Sequence #7* Multi -Disciplinary Physics-Based Design

* Hydrodynamic Wave Loads... .... .-.

Stutua Response

:I u

.*mI I

rrJ

E4 L i• TI

olwI'm

'Pa

1.0

a m

' - . I IIJ..

* oz

PC 0

4aCu. . .

omom0 C. Cc

Iw 4m *PO OPIU P-- -WU 0 j

In 0

oIFOF

141

Z u~

zz -it196~ w

II SIMULATION OF PLANING CRAFT MOTIONS55' Patrol Boat at 40 knots In Sea State 5

IIIIIIIUIIUIIIIU

Ww w Th�

OIt

C0lCalal

E- a a

1000

0 ~0 u*-II -111*11MM0 V

0 0i

hiz.

Ci2 | - - - - I,lIOllllO

Lo io

U -

4 1

CDbIIocl)C

---------

iI

if

if'

if

iSr

CI,

*1 ii - -s I I iI

.. b '

H I, -n IIIIII III

0 "1

C gill.~ 1A 1 -I

~0 000

t I-.

ad -

Ad -Mo 0

I we- -•be

i . - 0

II /cis-- " -

AWN'ulaI i

Selm ' 1

L f Ii

JJI

U-31 I

UPA! V,.

w ý-A

0 ~

CIS (D

-k A

CUC 4zI

uI

II* SHIP MOTIONS

AND

WAVE INDUCED STRUCTURAL LOADS

I BY THE CODE

I SWAN

Iby Paul D. Sclavounos

MIT Department of Ocean Engineering

II

Presentation to

I ONR WORKSHOP

ON NONLINEAR SEA LOADS AND SHIP RESPONSE

A BASIS FOR SHIP STRUCRURAL DESIGN

College of EngineeringUniversity of Michigan, Ann Arbor

July 7&8. 1994

III

III

REVIEW

OF SHIP MOTION i

AND STRUCTURAL LOAD IPREDICTIONS

IBY THE

FREQUENCY DOMAIN CODE i

SWAN-1

IIiIIII

I ! tI

IIIIIIIIIIIIIII

0

I C2

II 40

I

'IIII

* II

=0.20 , _ IIIII

4 IF=0.20 , /7

wv�.= 5.o IIIUIII

IIIII

=3.0

IIIIIU

Fr='o.3, wfP=Loy

IIIIII

UI

0I

Ct0

_ _ - - " . - i"• - - '

* /OM

WOC; let•

m " ---- Strip Theory Exeiet

o. 6.. II I

0

*1 E x p e r im e n t s

10 SWAN~hor Strip Theory

-SWOA N• • - SWA

0 _ _ _ _ _

.4 , ; . .

°

/4

I I

0I

COa

Cb.5 1.0 1.5 2.0 2.5 Cb~s 1.0 1.5 2.02

AIL AIL

Figure 10 : Heave and pitch exciting forces and motion-- of a modified Wigley model advancing atFroude number F =0.3 through regular head waves.3

IIIIIIIIIIIIIIIIH Fipare 2: Hull and Free Surface Discretisation for 5-175 Hull.

II

I

- SWAM 4 -Me.. SWAM ( * 4

6 V,4m am I - * Ia

I'mI

• =,

'" I"is.5

j' I'=B I " m "U Iagem

-00=60000 in

IND

"" |

IIMI

n"s-. _ I

Figuro 10 H eave and Pitch Motions for the S-175 Hull in Head. Beam andQuartering Wa~ves at Fr = O.MT.I

is- S 4 I

III STRUCTURAL LOADS EVALUATED BY

* SWAN

III

I

I p(•)

I

I

U~~~ 14Fj E S~A R FOR CF B~-- (BTT

01M(1;, M, ME SENJO1ING MOMENT F RANM

m I

II

- - m.

swan

0.100.

14 S"i IIN I 154 N

3.00 -

* WM .... •, b- .m

OVWA

----- SWA0 ( 0 .

2. . . W

L -/,--,

Huil in Head Waves at Fr = 0.3.I*1

@9 'I n N I Ii . m . I i-l0 2. 30 0 SO 00 " 20 _ :•'0 .

Fiue9: eri~ SerFre n edngMmn a isi Scino."teS-SHuU n Hed Waes I Fr 0.3

l i , , , m m n mm I I I I I

IIIIIi SEAKEEPING BY THE

UTIME DOMAIN CODEI

l SWAN-2

IIIUIIIIII

I

Y distance traveIled=(Ut)/L=O 10 75

0.50 I

0.25 / I

-15 -1.0 0.5 U.0 0.5 I

AYS0,751 /

0.751(Ut)A.=OA

0.50

-10 ••.5••. K0.5 I

0Y \ . (Ut)/L=1.0

N I0.50

0.25 N "

0 00-h3

0.75, ,\ (Ut)/L= 6.0>\>0.75 , , \ ,

0.50 1

0.25

0.00 -1.,- -5 o. o,

Figure 5-2: Transient wave elevation and body pressure contours for the Series 60

hull in steady forward motion at F = 0.2. started impulsively from rest at t = 0.

78 3

IIIIII

I 4

I AI N 4'I

IIIIIIIII

- --

A.A

714

I .9Z

IIIIIIIII

IIIIII Figure 5-8: Radiated wave pattern for the Series 60 hull in forced. periodic heave at

Y = 0.2 and encounter frequency w/(g/L)i = 3.335, viewed from above and behindthe vessel. A snapshot of the steady-state periodic wave pattern taken at the middle

* of the heave cycle.

II I I I I II[ 7

1.25

2.001

--O -- I-

0.75-

1.00

0.50- C E0.nm5ns0-. . . . . . . . . S W A N I0 .5

SWAN2 I os

0.25

0.075- 0.150

0.050 - 0100

- - - -.. ...

0 025 0.050-

0.000 0.00020 2.5 3.0 3.5 4.0 4.5 50 S.5 2.0 2.5 3.0 35 40 :5 5Z 5.5w (Lig), 12 w~l (

Figure 5-12: Diagonal added mass and damping coefficients for the Series 60 hull inheave and pitch at -Y = 0.2.

91

III

:400o

3 0.025

.......... SWAN1 0.100

0.075,- SWAN2 .

ii 0.075 .

S: 0.100

0.050-

I00750

" -.1 00

•0050

I.

-02 -O.0-0.025-I

2.0 2.5 3.0 3.5 40 45 50 55 2.0 25 3.0 3 5 40 4.5 5.0 5.5

w jug) W 2Lig): 2

I Figure 5-13: Crom-coupling added mass and damping coefficients for the Series 60

hull in heave and pitch at F = 0.2.

II

9')

I

.:stance IraveiIed=iU*, L=0.2I

3 25 1

.1 -05 . 0.5 T Oy (Ut)/L=O.4

0.006 - .

y(Ut 4/=1.00.75I

(t/=6.0I

0.50

Fieure - :Transient wave elevation and body e contours for a transom hullin steady forward motion at -F = 0.3. started impuisiveiy from rest at t = 0.

IrIIIIIIIIIIII"II

i Figure 5-14: Steady wave pattern for a transom hull at F" = 0.3, v'iewed obliquely

i from above and behind the vessel.

I 95

Heave

Diff actiI

Fiur 518 H av ad ifratin av aters ndliea bdyprssrepatenfora rasomhul t = .3an enoute fequnc a~gl )2= .2

102

W%1

I mIa ci U

IicU x 0I 0i

C~~-

coJ

i I,

C4u

- ~-UCu

0,£

w UU

0 CML0

XCI 0)

6 00

mC0CDc 0

Co U3

Ii 0001 1of panels along body WL

------.3 0i -. 40

o.0o0 50

.0.001

I IV

0.003 Sinkage

I -0.004

o}1o0

Ii 0.005

I ~ ~~0.000 V • •,•IIJA '•-/ Trim

1!.005 v

-.0,10

0.0 5.0 10.0 15.0 20.0 25.0 30

t (gIL)"',

Figure 6-1: Convergence of heave and pitch motions with spatial discretization for themodified Wigley hull in the transition from rest to steady-state equilibrium position

at Y.= 0.3.

I109I

0.O01 time-step size. A t (g/L) "2

-------- 0.04

--------- 0.02

0.000 0.01 I

I0.001

'21%I/A

-0.003

-0.004 I

0.010 I0.005 I

A

0.000 I

40010VI

0.0 5.A 10.0 15.0 20.0 25.0 30t (g/L)''2

Figure 6-2: Convergence of heave and pitch motions with temporal discretizationfor the modified Wigley hull in the transition from rest to steady-state equilibriumposition at T = 0.3.

110 I

I.-WI

I~II

F/-g __- -44-5A

Fp V ---50

I -----

-0.07S

F/pgV-0.100

II

-0.005

I-0.010 / -•..... •-:......=..

M/pgLV

40151

-.0w0!

10 20 Xt(GVL),-2

I Figure 5-16: Convergence of forces with spatial discretization for a transom hull insteady forward motion at Y = 0.3.

II

97I

III

-0 000 time-step size. A t (g/L)1 2

S---- 0.04

-o.oo'54 il- 0.02S- 0.0100I

-00100 --- -- -. .

.io I

, I-

0 I 0Il I

-0.020]

0 ~10 2

t (g4L)I 3Figure 5-17: Convergence of forces with temporal discretization for a transom hull in Isteady forward motion at T = 0.3. I

1

-- =• • I II II

I I_

_ _ _ _

_II__

_I_

_ _ _ _

_ _ ,

11.5

I011.0

i 0.5

---- SWANI7 SWAN2

0 Exunments. GemntsmaI 0.0

180-

I o120* 60-

-31

(deg) 0

-60

-120

10.50 1.00 1.50 2.00

X /L

I Figure 6-7: Magnitude and phase of the heave response amplitude operator for theSeries 60 at Y = 0.2.

117

7.5

"0so/ 0'

I Z.511.A .

2.5 '

------ SWANISWAN2

0O E-enments: Gemtsma

0.0180-

120

60z~s /

(deg)

-60

-120

-1800.50 1.00 1.50 2.00

X./L

Figure 6-8: Magnitude and phase of the pitch response amphitude operator for theSeries 60 at F = 0.2.

118

Ii C,)

0

0 Mw C,)

OccI ~ui-

*Z 6Pý0 0

.0 ~0 loW<ýjL

Si co 2, w

UUzE 0 qLUC

I *mZ z 0 ,) Z

<uiw LL 2-

v5 LU

0 0

IdLL0Ic

LL.

020

20LL.

(I) ow;C I

> LL 0 z

Fn Clo > Co

w C, 0-, O 2I--I

a. 0 Co

0U CA 4iI- a l l

C4 2l 0 0 Co )

CL 4~ Wi z

.j I- 0zW9 -0 Do

0m 4i 0.W 2

2U DLL2u W C

z* 0

M1 0 z3i 0

0 z0z LU

CL 0Z z Zw) -

* 0 0I- -

LUm u

LU 0 cr.*z > 0<

I LU 0 CZ F LU ZL

* 0 00L

I- Cc. LD < 0CZ*Z LU LUN

0L 00

I0 0A Cc 0 0

0

I-IL 0

LLU

00

Z ~ur

cow I

LUJ

LI. LL.0ow

00

cc nj m

0

ILU U-L

LU L LL* U LL u-r

cl Dz LA.Cf* 0 DU U

0 CO) LU 04 urn

a 4L (.) 0 Z

z~~ LU1-)

* 0 LU0 2zI j u- l L

0

LUULU >J x

cc 0z 0 >IU ClD LL 0<

2 ~~LU >

I . 0 n CL~E

*L 0 .D r. 0

Ihc > cIu

0

z U>

o zoz 0

z 0 Iý- 0

LU M.

0 Lu 0

Cl) 0LU 0o z cco 0 U. 00-LU _ LL. 0z 0 -a<: 0 0CLlU.. I- Clz 0- 4:wr.

Ul) 0U WO 0Z0 LL_a 0-(1)1- 0 cn c.0

> z xw0 1=0 Uc) 0=~ 0 < c0L .LL. >~ ca..

LU

-J LU

jLU L

U-LU cc'

I LU 0oz LL

SLL. 0U0 cc

Cl)lL LU

LU LU Z LU

ix < 0Ir LL Ow L..

* 2 w LU L-0 0 0

z 0 0-LUU0 LU Lw x2 ~C/) LU

IVI

W-4_

7~F.-]~ .'

kz~ n

UIIIIIIIIIIIIIIIIII

I

I:2.0 - -�

N ____ - I-o

III

U IU

IU

II 3c.J'U I

I

IUII

II

IIIIIUIUIIIIIIIIIII

w /)

0 EUc0 14% E Mr *% qNL 6O LO6666o

0>I

C/) LLJ alwu

Z-/W N CWU LL =J

0Zo~ _ I <

xWL

LON 1Q0 0

C-4IQ LO E co,C\ E-I,

V 66

W b0oo

co 6

I I 0

1400 00

b cb0 0l 0U j%.Q~ 0

0

0@

C 0 0- 0 0 0;I 0

CN

o0 (0 co

I

iI,

ItII.

ItJ

~ ~. ji~3' g

II _______

IIIIIIIII UI

I,-LI�

III

I N�rII

II

II

IIIIIIIIIIIIIIII

I -tI r 4

P ~ 6

000

IIU

3 I___ ___ ___ I

I- IIUU

-

__ __ __ __ �iI.5 1

II

__ __ __ __ __K__ __ __ __ __ LJ� I

E I '0 10 - I I� I

0 0

60 0 0 30 0

0 0 0

U2 III

fA

100,

00 0

U / 0

o co'ad ,

ool* 6~o0

* *1*4

.0 \ dl14o,

CI Cq4 N i

t~.to00

.9N.

IiV 0 0

4* C1

C4

-4 '0

0I l

.00 . 01

.to

' . -. ...... ...... ..... . -. 9 -

1000.0. . . 00.. . -9

'- . ""...... .. - -

- / . . . . . . . . . ... "".. . .-.

.,, .... ....--.. - • I. O

-S ".--5.. I- *

r .. I..

ClU

In

-"..-""/ //0

-" ............. /S

.)"....

III I I

0 0 0 0 0 0-0

IN.N 0 00,

I I U

IlooI

N oh

C*4 C14

z

E E

ww

E- LLO I% ='ILU~ w

LI wL

C,) -w (7)W

LLJ 10Ocrccw

00

x

C14

-414

IC"Ito.

pSi

.. ~ .. ........

III IIUIIIIIIIIIIIIIII

101

z co0 0

0 LLU U. 0 z C; I< ýD 0

X<OX

LO 00

0iC

UL

~ 0

*J w0<~ -

> a.. OD 13

0 0Q~U-3

0 0

0~ 00

oo ssa00i ~

co)1

ICO

co co

0

a)

(Ma) :)J ~ (YOaAvaH

Ie

I....... ...

iEE

NNC

...

C12<o C1

Ioio aAa IS. H,

II

I I I'p

� $* II

-� I.1

I

� 1V\ \

�v. * III

A' II

44 Ia

* III

II

I --- -...

I - - -•

I - - _ _ _ _ _

I I

Elii

Ec:.

4 -Z 44 C;

z

x

Figure 1: Description of Coordinate Systems and Geometry of the Body

Figure 2: Photograph of the Oscillating Body and its Supporting Structure

AZIMUTHAL IMAGES Z

xI

10 IDE NL

ZI

TI

xI

SINGLE STRIP OF PANELSI

*ON BODY AND ON FREE SURFACE -

YI

* p44

0

F. (D -V4 -

00v

0..)0~ W~to

em .- GI

-0 )424

ORO

2A >c

III

*1 II

N I

II

0 II

-- _ _ I__ __ I_ _ _ _ _ _ I_ _ _ _ _ I

N Ot� _____

N

- 0

IU20I

II

E 0o �

i.1�

II

S~I

III

I

i~iII

II I

II0

ti

II

I

III

ICI7

m~

I

I

IIII

S~I

S~I

Io

U IIIIIIII

UNIVERSITY OF MICHIGANI* FULLY NONLINEAR

HYDRODYNAMIC LOADS USING1 DESINGULARIZED METHODS

I Robert F. BeckI Armin W. Troesch

Yusong CaoI Steve ScorpioII Minglun Wang

I

I,

IIII

III

PROBLEM FORMULATION I• I

* Basic Assumptions:

1. Incompressible and Inviscid fluid

2. Irrotational flow I3. Surface tension neglected

* Initial boundary value problem: 10 = Uo(t)x +#(x,y,z,t) I

JKineratIC and - U(t)Dynamic Conditions

I I

, " u-U.(t)nl + v. ,Sol IV2.# = n"o n

/---=-U.(t)nj + v1, - I

Initial Conditions:

, =o (950),a~o {g•o)

FREE SURFACEBOUNDARY CONDITIONS

Kinematic condition:

(Vo - V). Vq U0 W C (on F.S.)St az ax

axst 'X (on F.S.)

8y V y (on F.S.)8t

Dynamic condition:

4 = -glq I V0. V0 + V. Vo La Uo(t)LO (on F.S.)8t 2 p ax

8 awhere T=-t 5i + v -v is the time derivative following

a node moving with velocity v.

Fixed Horizontal Nodes (v(0 0

Dt~

Vý. 1, -UO W(or F.S.)&~ az a

and 1

DSt -- +Vq•'VPt 0t

M Material Nodes (v = Ua(t)i + Ve)

DXF=UO(t). + V

IN I

where XF W) = (XF W), YF W), ZF(t)) is the position vector of

a fluid particle on F.S. and

is the material derivative.I

FULLY NONLINEARSOLUTION METHOD

Time-Stepping Procedure

1. Solve a mixed BVP at a given instant oftime by a desingularized boundary integralmethod.

2. Integrate the nonlinear free surface kinematicand dynamic conditions with respect to time.

3. For free body problem, must compute • or&

& at present time step, then integrate the bodyequations of motion.

I

DESINGULARIZED BOUNDARY IINTEGRAL METHOD

"* Simple sources can be used because of Udesingularization

"* Easy discretization (nodes only, no panels)

"* Desingularization distance related to the local nodespacing I

"* Simple algorithm, easy programming and highperformance on supercomputers

"• Can lead to O(N) algorithm II

z ySOURCE POINT

xI~xI

S°D.

Sgiven "

7 NoIOlLOCATION PomIT

II

HYDRODYNAMIC FORCES

Fi =-•IsP ni ds

where

p=-- Uo(t) 4-gz -Iv vý-V

- 021r-~ Yv-wy+-

_8St h gz-l2V

* - perturbation potential in moving coordinate system.

z V

II

APPLICATIONS OF THE IFULLY NONLINEAR

DESINGULARIZED METHOD I"Verification by comparison with analytic solutions for flows Igenerated by isolated singularities and bodies of simple geometry(Cao, Schultz, and Beck 1991 and Cao, Lee, and Beck 1992)

"* Shallow water solitons due to a moving disturbance I(Cao, Beck, and Schultz 1993a)

"• Two-dimensional wave tank with an adsorbing beach(Beck, Cao, and Lee 1993 and Cao, Beck, and Schultz 1993b)

"* Submerged spheroid traveling at constant forward speed(Bertram, Schultz, Cao, and Beck 1991) I

"* Two-dimensional added mass and damping for forced heave, sway Iand roll ( Lee 1992, and Beck, Cao, and Lee 1993 ) I

"• Two-dimensional heave, sway and roll motions of a rectangularbody due to incident waves (Cao, Beck, and Schultz 1994)

"* Three-dimensional cylinder in forced heave (Beck, Cao, and Lee 31993)

" Exciting forces on a Tension Leg Platform I

"• Calm water resistance and added mass and damping of a Wigley Ihull (Beck, Cao, and Lee 1993, and Beck, Cao, and Scorpio 1994)

II

Free Surface Elevationsfor a 2-d tank with a 45 degree

wedge shaped body

with and without spray damping

Area of Interest

4P

Spray damping area

L- =30H=3

B/2= 11PI =-0.1

B/2

(B/2) 2-g(0 g

3

30Spray root Undmpe

2.5 t*=50

2.0 I

1.5

t*=4I1.0

..... .............................I.........0.5

0.0 .... ............ t*=30

Spray damping area

-0.51 --5 -4 -3 -2 -1

Distance

Wave profiles near the wedge

Energy

.o .o 0o .o .

0

N

0

4%QQ

.0<

<I

0.08 - --- r- I-- -- IL .05 - Horizontal Drift Force A0.04 - Al *L

0.03- l r :C4 0.02 * 3Ca 0.01 -' .25(r)0 .. . .. .. :

S-0 .01 - it" dn"N. 1, , undamped-0.02 - , ,' ,:

i.. -0.03 - V-0.04 1 1 0 - 1 L , I I

0 10 20 30 40 50 60 70

0.08 .,0Heave Force

• 0.06 - A it',#.% 0.04 -

!'i0 ... ... ... ... .. .... .... .. .... ......... g

-0.02 -f,, Io,,

II I I-0.04 -1 1 I

-0.060 10 20 30 40 50 60 70

0.01- Roll Moment

0.005

-o0.005 : :::-0.01 1

gg g I I

-0.015 '

-0.02

0 10 20 30 40 50 60 70

B / -2)

III

Freely Floating Body Dynamics

IfdXF F

Hydrodynamic -=F1(X F, XG,VG)I problem dtF

- = F2(XF, •F, XG,VG)

I

Euler's equation dXG =-VGof motion

dV1dd-t = F3(XF,•,FXGVG,

dVGt

Iwhere the state variables are defined by the generalized vectors:

XF = location of free surface nodes

4F = potential of free surface nodesXG = location of vessel center of gravity in 6-degrees of freedomVG = 6 components of body velocity at center of gravity

IIIIU

II

Hydrodynamic force at present time step

Fi = -11p ni dsS

P= Uo(t) - gz - !t

I8_ - aOL z - vt t v t+

To evaluate or

"* Backwards differencing for - UStI

"* Direct solution of BVP 8

v2 0 in fluid I

-g. - - v -- on SF

Ia o-ý avlOSHSa f,,' an 5T, vH-)+n._a on SH, Ss

at) T H i',~ t

0 R -* oo

II

I

I* WAVE-INDUCED FREE BODY MOTIONS IN

A TWO-DIMENSIONAL WAVE TANKIIII

IPneumatic wavemaker Floating body Wave absorbing zone

IpI,

I

IIIIII

0.3 - ,

-. .=SwyO-a=O J

S..-... ,. io*,

0.15

0.1 I0.0 I

-0.05 I-0.1 0 10 20 30 40 so so

- Sway Force

4a-1~ IO~0.05

0 ........... ..... .

.0.05 I,.I

-0.1 1 - I0 10 20 30 40

Effect of error tolerance on sway (dt* = 0.2)

I

-- - * Heave d'= 0.2

I ..... e-iOr

0,06

I ... ............. ........ ..|I''

-0.05

I

I.0.1

_ _0 ~~ aBa. 05%s

S...... i. rs ON,

0... .... .. ..... .O. .......

I

-0.05

!0 .

0 10 20 30 40 50 s0

Effect of error tolerance on heave (dt* 0.2)

-i.0

02n =0. i0=26- Roll d 0.2I

0.15 ... .aI*.*

S..... caIO l -

0.1 a* I

0.05

-0.06

0.1 1

-0.2

0 10 20 40 so so

o.3,,0-.-- Roll Moment

a

02 a. .. .

0.2 .-... u 0

-0.31.I

IIIIa

a a

0.2 i )

0 10 20 30 40 0 60 1tVv7ff

IEffect of error tolerance on roll (dt* = 0.2)

I

0.3W1 - im~lSway =10-4

o.oo0.2

0.15

- ~ 0.1

I0.05

0I-0.05I

-0.1 s0 10 20 30 40 s0 o0

I.0.1

Edc'-o., Sway Force.... di'-O.2

-- dt'sl

1 .-0.05

I-0.10 10 20 30 40 50 60

,vf'TH

Effect of time step size on sway (e -- 10-6)

0.1

- dt'sO Heave - 10-4*.. d'suO.5

0.05 I

S........................... .. ... i0,06 I

•o i I

-0.06 I

0 10 20 30 40 so so

0.1

-- dHeave Force

0.05 -- di'l

0 ............. I

-0.05

0 10 20 40 40-soEe iz nh

Effect of time step size on heave (e• = 10-6)1

I

I0.2 - v Ioi va wI

I 01 ' '- duld..

I 0.0

i.0.21-

.0.10

I 1

0 .05

40.15I. .

-0.25

010 20 3 40 so O

1 ,,u... Roll Moment0.15 ... di'uU

OVOW

I,• 0.1•I

-0.05

-0.

I-4.1S

0 10 20 30 40 50 5o

I Effect of time step size on roll (e = 10-6)

0.3 'Sway I0.25 - Scbe A d11'u.2

S..... $Cos 8lO•

- Ischeme a~u0.2

0.15

0.1I

0.05I0. .... .. \

-0.05 I.0 .1 1 ., - 0 - - -

0 10 20 30 40 50 60

0.1 I I

Schem A dt'=O. Sway Force-- Scheme a 41s'=.I

...... Scheme a dln'O.2

. ... Scheme & dt'0i

0.05 I

-0.15I

0 10 20N30 40 s0 6o

Comparisons of sway using the two schemes I&!

0.1

-- Sb A 41.,J Heave- c I 1411.9I

.Schbme dalou

0.05

S...... -.. ......... ..-S-... . . . . . . .

-0.05

-0.1 I I p

0 10 20 30 40 s0 60

0.1 1 , 1

-- �m A dV.93 Heave Force--- ScbeMI41=0.1...... ScMeme B d',

Scheme a d4944

0.05

0 ..... .. ....... .-.-.-. .-.-.- * ~ - - - .

-0.1

0 10 20 30 40 50 so

Comparisons of heave using the two schemes&

. - Scbeee A O'.U Roll0.15 ..... S m, I 'dI

0.1 I

.0.11

-0.15 I

-0.200 I I I020 10 20 30 40 so so

020 :Sch A 49'-4.2 Roll Moment

--- Sckhe" a t•t.

0.15 IS&U a

Sc... . 3d a dt'=.oA

0.1 I

91, 0.05

- 0

•o.. I

-0.05

-0.15 II I

-0.21 I

0 10 20 30 40 so 0otvj71 I

Comparisons of roll using the two schemes II

Wigley Hull

B z 2

where L = model lengthB = model full beamT = model drafta2 = coefficient for bow fullness

- 0.0, standard hull= .2 for modified Wigley hull m

For both the standard hull and the modified hull III, LIB=10 and B/T=l.6.

II

yI

I

ISXi

Control PointI

Source Point0.l1*LdI

Desingularization near the leading edge of a Karman -Trefftz airfoil I

IIII

I

Desingularized distance at leading and trailing edge = 1. *LdEntrance half angle = 13.5 degrees

1.4,,,

I 1

0.48

02 -II

-2 -1.5 , -1 "0.5 0 0.5 1 1.5 2

x

Desingularized distance at leading and trailing edge = 0.5*LdEntrance half angle = 13.5 degrees

1.4 '

1.2

Vt

I 0.4

02

I2 -1.5 -1 -O.S 0 O.S I I.s 2

x

The effect of desingularized distance on surface tangentialvelocity (vt) for a Karman - Trefftz airfoil

II

Desingularized distance at the bow => 0. -*Ld

0.5 *Ld..I

I0.50.40.30-:2

p* 0.1A

0-0.1 '

-0.2

-0.4

-0.3Poo

-10 -04.5

0-

I

0. 1*LdA -Beck et al. (1993)...

(no control points at the bow)

0.5

0.40.3

0.1 I

-10 I0 .- 1 z

x 0 IWigley hull double body solution

pressure on the forward half of the body

I

iIII

io0.04 Experiment

Present Calculation

I 0.... Beck et al. (1993)

I -. 2

-0.041

-1i.0 -03 0.0 0.5 1l0

2x/L

Wave profile along the standard Wigley hull* (Fr = 0.25, fixed sinkage and trim)

IIII

IIII

Wave Elevation Along Centedine and Wigley Hull, Fr-o.25 I

0.6 trg9L 21

0.4 -Experiment

0.2I

0 ....-.... 4......-...-.... ... .. . .... ... ...........

S-0.2 Numerical result

-0.4

-0.6Bow .sternm

-0.8 - o-20 -10 0 10 20 30 4

x(m)

IIII

III

C#1I

II -'

I �0

I 11

I I;.III .9.;.

'S..,

0

II C

II

I ira:

I I

IC

I I

II

IIIIIIIII

wU.� III

o

I' Idci; I

IIIII

Wave Resistance Components for Wigley Hull. Fr-wO.25

I 0.002

I0.0015()

0.001 r

w

.............

-0.0005 -~1P~-0.001a

0 5 10 15 20 25 30

IIII

Added Mass and Dampingin Heave and Pitch

for lModified Wigley Hull III I

IIIIIIIIIIII

0.006

0.006 aPOt4~

0.0040.004 .- Total Force

0.003

" 0.001

*- 0.0020 6 vi-2v2 3

:i , I I I

0 .. hl I. - s pitc excitationF r = 0 .3 . . .t c . . . m. . .t. .e.. . . . . ... " . l5 : • , i " 6I.o,9-.•: -r• pgz

.0.002' , p pI0 6 10 15 20 26 30

Modi fled Wigley hull III - surge force due to pitch excitation

Fr = 0.3, pitch amplitude = 1.5", oI/•i = 2.76642

IIII

oh _ .. , :; -.•... -pg0. / - :.006 -p-,

-0.016-P

40.015

-0.026 -Total Force

-0.03 I0 5 10 1s 20 2630

Modified Wigley hull Ill - heave force due to pitch excitationFr = 0.3, pitch amplitude = 1.5, w/'"JE = 2.76642 -

.• v \" I l, :• I"-" • "" -I

•.• I

0.015

0.01

- ,-0.005

001 i.0: 2 30I10

-od.0i Total Form

-pgz

I0 6 10 16 20 25 30

I ~Modified Wigley hull HI - pitch force due to pitch excitationFr = 0.3, pitch amplitude = 1.5% cofi4-E = 2.76642

I

1.2 'St* baouy - ' bow3-D Hybrd MW - 3-D HybridMe"

DSkAMiamd Meh*Dusmguuhnad M.edo*

23

0.6 2 ,

S-..I

~0.6/

0.4 ~

SI

0.2 0.5/A / I/

0 1 2 3 4 5 6 7 0 1 2 34 5 6 7

0.5 1 1 , , , 0.1 . . ..Suip'7 by -

-

3-D Hybrid Melod --- 3D Hybrid Me• d0.45 Deeogldaried Method * Meod

Ezpe~.eob + Eipeaimm +00.4 0I...--

0.35 -: +

0.3 A1

I•0..25 -0.2I

0.2502 ' /

0.1 //0.1 I

0.1 -0.4

0.05

00 -0.5 --05 6 2 0 1 2 4 5 6 7

Comparisons of experimental and theoretical added mass and dampingcoefficients for forced heave

(Wigley model III, Fr = 0.3, za/L= 0.00833 ) I

0.06 0.125 . .. .

3.D yk~iMe"ad 3-D HybniMOd0.046 Disgulaaminid Mad .

0.44 0.1

0.03 4

0.0.0- .

I0.02 0.075

0.025 \

~0.02 [> 4 0.06 4

"0.015

0.01 0.025

0.006

0 0 70 1 4 567 0 1234567

anu, o.• -J9I0.5 1 I I S

So* -by

0.1 o.is-3-D Hybid Me-thodDeouazdMto 0.45 'Deskwiagiuzd Muthod *

ExeiIo EapeinoWi +

0.40 +

025.0.11

0.3

-0.3 0.15

0.1 4.

-OA ~0.06

.0.5 - 0 . . . .0 ..5 5

0 1 23 4 5 6 7 0 1 2 :rLSA 6 7

Comparisons of experimental and theoretical added mass and dampingcoefficients for forced pitch

(Wigley model III, Fr = 0.3, pitch amplitude = 1.5*)

UIII

Forced Oscillation Uof I

Large-Flare Body I

Uo0= IIIIIIIIIIII

ICin

.. .. .. ..... -

.. ...... ..................•......... ,.,,

.. . .............

N O " .. ............

......-.-.. .. .. ... Y

H\ ...........

If I

. .. . . . . . . . . . .

0

Lu RI.

4-4~

34

I n ... ........ C• 0, -a,-

I , (q .) Z.

I~.v -- !•..

IIII

C')

II

I0 I

a) IC4J

I0a)Uo Io

4-bo

* - III

a) I0

I I I

In C') C�J 0 C�J 0)

(qj) ZtI

I

- ogn

Iin

0f cm0UmoC

'5l)z

C3

I I

co 0

4)ql U

In Wi

OD toI mI

* -'a- za

C.)j

4)

4) =

44)

O.) cm0C

(-q0-

III

LOADS ASSOCIATED WITH THEI HYDRODYNAMIC IMPACT OF

FLAT WEDGES (flat cylinders)

I

William S. Vorus

I The University of Michigan

IIIIIIIIII

II

a) Zero Viscosity

b) Zero Compressibility

c) Zero Gravity

Hydrodynamic Impact of: U1) Relatively Flat Cylinders (2D) )

2) of Otherwise Arbitrary (smooth) Geometry

3) Including Variable Impact Velocity U(with oscillatory perturbation)

4) Time Varying Contour Shape

5) Multiple Contours

IIIIIII

DEMONSTRATION IN TERMS OF SELF-SIMILAR SEMIf-INFIfiTEWEDGE RIMPACT

IItIpje

BIWI00 y

v z(t)

I WEDGE IMPACT FLOW* FIGUREl1

y ~z -c(t) z ch

Iv

V Z b(t)

CYLINDER IMPACT (CUW)MFIGURE la

yZ ch Ij

z

___ __ ___ __ __ ___ __ _y wi v

z Zb(t)I

CYLINDER PENETRATION (CW)MFIGURE l b

I C (ztt)

I a. Solution SpaceII =0

I J • ..... WL •Vs(z,t) I VtI zYw

- , Zb(t)

- Zct)Z b. kinematic linearizationz c(t) to z-axisIZ

C (z,t) I C=0

V v,(z,t) V,(z,t) V,(z1,t)(large) (small)

PHYSICAL APPROXIMATIONFIGURE 2

vortex sheets (bIZdZ d-b -1. 1 b

Ys 0 Ys 7(c) \c0y xA 0 CVn( ,O)O Cp (,O) = 0

MATHEMATICAL MODELFIGURE 4

I

FREE CONTOUR DYNAMIC BXIYVARV CCNDfTXO

ICp() - 0 on

ICp(0=1-V2()- (O+ 2zciJ 2,vY(o)eCo + CYC((]

II

0=1-v2(C)+2z b[J (Co)dC0 + Cos(0 1!9 ICb

This condition is clearly satisfied for Vs(•) = Vj, a constant in 1 < < Igiving:

Jb ý2V. IWith Zbt = Zctb,1

and Vj = -27s

IIII

WEDGE CONTOUR KINEMA TIC BOCNJDARY CONDITiON

1 1 _ _ '- 1 Yln _b2 -CC2

Solution:

Y 2

I+Y(2_ 1;LP;L;L+11-2_ I-c C2;,; 1 (b2 -1))~1

[r 2). - _ •""+ ,b._22 2 F J

Here, A a. and F is the hypergeometric function of one argument

with puatan-r(sin).

VELOC17Y CONTINUITY

Remove singular terms as:

LLY b2 ) F(•.•,;L,X + 1; 1- b2 0

ir 21.

DISPLACEMENT CON77NUITV

yI

y (Zt) I

VtI

- - -- - - - - - - --

dy (z)t+ 1 Icztsndt 2C

In terms of a displacement potential, :

yC(4)=1I+ tanP v(4)1y*(4sinPI

40 =c-d1+4ztanP0!491

2 CC

*(bt _o . tanos~ (1-t~( -L[

VX3 1 -L 2(30)

For continuous displacement at =z/zb = 1:

coýi n __)- I

I SYSTEM SOLUTIOV SUMMARY

II

UNKNOWNS: CONDITIONS:I

I Continuity of Displacementzb,_

'bt 3 r- t.an l(sinfi)2r(A)r(--L)cos/itanf 2 z

* 2

I Continuity of Pressure

I vj,

I Continuity of Velocity

* b (b =zb/zc)

1 + -71 (b~ F(;AAA;L+l1;l1-b2)= Y S -2Vj.9t 2X

Wedge Vortex DistributionI

Q I c( C)= L,2 Q tF ( A, A. 2 + 1;Q ) , w ith Q (C;b ) - (2 )

I Wedge Pressure Distribution

C (C()= ,2((C)Zctrc(1Xb-l)+ I ,c(CO)dC•+Cc(C)j = Zbt/b.I 'CO =C

I

COMPLrA TIONS

UWetting Factor ("jet rise") U

IW F= Vt =z z tan

IWF= 1!J(A) with, J(A). a F( and t=I3 - I2br(,X)r(!-..X)ms 2 i

2

I

WEDGE SOLUTION CHARACTERISTICSTABLE II I

13,degrees Vj b WF J Cf5 34.63 1.00063 1.512 .9629 846.310 16.65 1.00192 1.460 .9293 180.315 10.68 1.00340 1.413 .8997 68.9320 7.711 1.00491 1.373 .8740 33.5625 5.944 1.00640 1.338 .8519 18.6830 4.777 1.00790 1.308 .8328 11.32

IIIU

zc(t) Zb(t)

j z1 (t)I

TRUNCATED JET CHARACTERISTICSFIGURE 7

For continuity of mass, to second order:

I 2

I

II

3 From the displacement ptnil

I

II

8jt = 8j/t

.23 I

.1 1I

10 20 30 (degrees)

IJET THICKNESS AT JET-HEAD TRUNCATION

FIGURE8 8

Jet thickness distribution, for Cp = 0: 1( I I

SW86() V= -z-J Zbt :5! Zi (56)

I

For 8(zlt) = 0: I

(57) I

Smp Y - x f) ADDED MASS OF IMPACTING WEDGESI ½X(wi tanfif FIGURE 6

I2.4

I--- - von Karman' (1929)

2.0 -x-x-x-x-x Wagner (1932)+ - + -+ Wagner-Sydow, Sydow (1938)

Mayo (1945)Dobrovol'skaya (1969)

0 Hughes (1972)1. '-Zhao(1993)SIM1.6 A•-~---ZX Zhao(1993)ASYMP

S- - - Vorus (1993)

I *1.2

I~.8I

i .4

I

I 20 40 60 80

I Wedge Side-Angle, I (deg)

I

d(t)I

MORE GENERAL CONTOURSFIGURE 10

.51.

JETHED SPAATIN FJOIT, V(1,IAND FFST, c(,),, erss TmeI

JV)ETHA SEARTONCAVELOIY Vs(1¶)

.5 0I

.2 .4 .6 .8

* Cp(O,'O)

110.0 CKEEL

PRESSURE COEFFIC0ENT

Cp(V0) versus Time, 'IWG FIGURE 13

II

J I (,r)

II ___ __ _-,__ __ _ ._ .__ __ _- ___ __ __ __ ____,__ __

i .5 ¶mx1

I20.- NORMAL FORCE COEFFICIENT

Cf(¶z) versus Time, -T

I!

Figure 14

5 CONCAVE, OFT. 1.844

WEDGE, CFT- 1.739r=

.5 rmax I

WEDGE CONTOUR pRESSURE DISTRIBUTJI(ONIFIGURE 1

cpi II

20.

III

I, I

lp~q ..1,2,..., 11

II

91 13I

121.0

ywI10

103

I 96I 918681..

6II

I -1.0 2.0

FREE-SURFACE DISPLACEMENTWVEDGE CONTOUIR

FIGURE 12

I

FUTURE WORK I

Nonsymmetric Cylinders ULinear Gravity Flow Beyond the Jet Head ULifting Surface (3D) Corrections HExtraction (inverse impact) URapid Lateral Expansion of Thin Cylinders(vertical line-source) i

Gas Entrapment

III

IIII

C,., Cu

I -

C..)

�Im 4 c/�

I* �Ci�E '0 Q

� ?1�o- 0Z� � 0

�) � � 0I OCf)* o0� �* ,�C,2

�)*H

Iz -

U z0I z z

III

III

eSm

op-o

- I

0 P

0~ 0 00 a-A C,

Cu 0 Ic9 000 I- •J *• •0mon

o • r•rr C HQl

uI *• >E, E4i

II

_ rjA

Vq)0 a! 4..

W' c

Xwo

III

II

I• I

U , I

/° II I

II

I/ III

III

I

/ -U- U

* C!

Ii 0

.. . • II •,-- N " '"0

"" 0

I _

I, C-,__ ,-

i

ii

ii

I

III

I •. I4)

.C-

40

II W 4.

in I 0

III

I a)

IyI

.~ a C.)

U I - ,~0

ca a

a) -

II

I ... • ........ ........i • ----' • - .~ ..." ----" -" - " -'-. -. '- " ":. . ; --.. ....•

Cx.

i "-

= X)

Ci

!~x. . ., , I I I I-

0- U

-1:

It a

tcr) 0I*

a3

0*itq

0

to to 0t0o0v 0 0 0

UlU ccU

-u

CSoQ

S cq

. C'4 C.) IrFl LQ

co 0 00

I

1I

w ka-.-

0. -

X,~ S

co

ca ou

MI

- iO-

Itý

0-

Q) C9o EIE

o Oi 0LfCQ~

Leta

*00

00

SSCd~

00

0X

0*e q

it)I II

0 0 LO

0 0t 0Ci)

xI

-j C4

py,

zfCCIO

If X li-

WSU Pa'UOAI

ILI

-. ON"

3e c

rag;m('~ *VIU3 Pa:a

-4--

WS2 I 0 AI

u/

00

cc)~C CZ Uz ")cc z

o 4 )

ce)

-ce-

#.DU

IciII cri

C#OQ

00

IN CoI co2

In II I,, N

JII

Iq C,,

00~

A to Iq I

to I

I L6

3 00

QCQ C4

Il cvO 1102 C;

II

ccI

f ),j= ~/ ,'I'

// II

a)// - m,II1-4-- Ct

C 3

a) III ICQC

IVOE

I U 0

CJ 003 aW0 E- -o

0

I I- 3 I9

I# l

iiMon

a3 2

o oo0Lf C;I

PIC 00o koI

0 Q 'Q 0 C

III

UI -� * 1 CQ

I C I

uS J.� � I C�cJ�c�a I �I.aV a I -"

S I

I ��IL�I II * a

@5 I 0�

C) I 00 U I �

I �-I j >eII

II�a II IC) SI 00

* - I -o 6I -� I II* I

__________ IIo - I I I:-.IUIIII

Ix

**lo

H '-.4

41.R1

0. L O 3 1

0II 3I c

IL

a00

P- 0g

0 00

Q) C

co emo It Q 0c

-r 1 '-

I a1

C'2

aI 0 -= iIiii

0) 00

ci 0

II) cc C,- I

SHIP STRUCTURES

Jerome Sikora

CDNSWC

I CODE 66.1

I Bethesda, MD 20084-5000

---I

I - iPOE -

.13

0 U

0

"H A "-

0Hcc0

zI

I UUz0

CS,maa

ec 4*~ * <

mess eeg

ccI~ gee eee~~~~ 0

I I-II o

a. w

"I" III Suute0MWI

Anx lommicOtt fisa s iiat Jo"oL A.W (TO-W. izinii on ax mu

U)

1< z cus I--#HZ3 II. SM1

z tU~U

z

UZ +1

LLLOI3 W. wOO1

wZ

00

LLJ0

a (1oo10U wU03 3AMG4-)wk

LUU

00

L) Fg~iL)JN3 1Y.3

usIIU

co 00 Iid csI

JLNaN ~aznIO

IC____ ____ ____ ___ ___ ____ _ ___00

I --

I -00-

I -- S.

414

4,**

40 C4, U

4,3YY 0ZTrU

2SLOPE =0.986

..

0

... * ....-...................... ..................... . ................ .......

----. -- - ..-... ....

*DATA LINEARIE

-4 -2 0 12LN(WHIP MOMENT/CHARACTEFISTIC VALUE)

" 31 TYPICAL WE1BULL PLOTS OF 0G-el FULL SCALE MIDSHIP W4IPPING MOMENTSo) VERTICAL BENDING SEA STATE 6.20 2oKOTS, HEAD SEAS

SLOPE - 0.74M

-I -~ --------- - - -- - ------- .........-.-......

. 3. .. .....................................................

- I I I i I I1

-4 - -1 0 1 21LN(WHIP MOMENT/CHARACTERISTIC VALUE)

FIGURE 6 TYPICAL WEIBULL PLOTS OF CG-81 FULL SCALE MIDSHIP WHIPPING MOMENTS •CO VERTICAL BENDING, SEA STATE 6, 25 KNOTS, HEAD SEAS U

I

I(

I lop_ _ _ _ _ _ _

I * -b

L)

0.

I C 8U~ IC:4? V.'4O zmN1

MAXIMUM WAVE PLUS0LOW FREQUENCY WNW" MOj WAVE-INOUCED

NOD.N(tamSAG OFF SET

SLAfA4NOOlM

4) YvIADIIONAL BULL bOmmO Man MUACI

LOW FOK40UNM NA^- M ftA4

0 * 0. 6 so0.

A A

HMnm Frw UBC

-as &V %l m

b) CG-4 7 CLASS PHASE ANGL OWV FLARE IMPAMT

FIGURE 27 TYPICAL BENDING MOMENT TMgINE ISOpIES SNOWING pEAEANGLES BETWEEN ORDINARY WAVE ANID VWE IMP16

WI

I ,II~I *p I, ,

rp4

INhE HITORY

ORDN'Ry WAVETWE HISTORY *'ft" " .TA9I I

5RSPNS AMPU. TS -

~ us.. u.&qb

EXCEEDANLCE CUV -LTINAYI

EXCEEDDJ4CE URVE PLO&hIA A~lYS

PROFILE1 1MM £1AO8 8.6A &5*5636IL&L666

us4.

~ fls6WULm an 10s Mm -3

6511141 *do. own Iessmeamu

As5b

DWEEDANC

I Oumcm

UhI

VirginiaIN~ch

INTEGRATED SHIP STRUCTURAL DESIGNI METHODOLOGY

Prof. Owen HughesAerospace & Ocean Engineering Department

Virginia Polytechnic Institute and State University

I Tobin R. McNattProteus Engineering

X vginia ~II

I

Program Objectives

"* Leveraging of past work in ship structural designconducted in the US into a practical, computer-basedsystem.

"* Resolution of important technical requirements related tofatigue, ultimate strength and reliability which willfacilitate the implementation of a reliability-based designsystem.

"* Utilization of ongoing efforts in predicting ship motionsand loads.

"* Preserving the technical leadership of the US in shipstructural design capabilities.

" Providing advances in the safety and cost effectiveness ofmilitary and commercial ship structures, offering dual-useof the integrated, computer-based structural design toolwhich will be produced by the research efforts.

" Enabling the rational, reliability-based structural design ofships from first principles, so that new or advancedgeometries (e.g. double hulls, SWATHs) can be practicallydesigned by non research groups such as shipyards andnaval architects.

II

I

XirginiaI Ip1ech

Overview of Research and Development Program

I Ship Structural Design Technology Developmen

Struglurgi-DisciD~lnes Focus Group

Task 1. Fatigue Design

(Task 2. Ultimate Strength

(Task 3. Damage Tolerance

T ansk 4. Slam-induced Structural Response

Structural Design Svstem Focus Grou,

CT Task 5. Structural Reliability Technology

Task 6. intertacing Hydro -Structures Cod"s

Task 7. Integrating Structural Design System

CTaskS8. MultI-Disciplinary Design Optimization

Year! I Year 2 Year 3 Ye 4 e

IVirginia

WTech

II

Years One/Two Tasking II

Task 1. Develop a Fatigue Design Procedure

Task 2. Improve Ultimate Strength Analysis Methods

Task 2. Develop Damage Tolerance Design Technology

Task 4. Computation of Slamming-Induced Structural UTask 5. Structural Reliability Technology m

IIIIIIIII

VirginiaI •I•Qpkech

Ii

Task 1. Develop a Fatigue Design Procedure

* Reformulatelextend the analysis method and the designmethod to include fatigue

I * Define fatigue-related load data as needed from a Hydroprogram (e.g. the influence of whipping)

* Define a modular interface with such a programI* Extend the stress analysis to get cyclic stress transfer

functions; initially for stiffeners and frames

IVirginia

&Tech

II

Task 2. Improve Ultimate Strength Analysis Methods

"* Member Level - top priority need: a better model forflexural-torsional buckling of beams I

"* Overall Level - further improve the current analysis model Ito better account for post-buckling stiffness I

IIIIIIIIIII

IVirginia

Tech

II

Task 3 Develop Damage Tolerance Design Technoloav

Define relevant load conditions for damage tolerant designII (e.g. grounded and/or flooded conditions)

II • Develop detailed plan for incorporation of DamageTolerance Approach into design practiceI

UUIIIIIIIII

IVirginia

II

Task 4 Computation of Slamming-Induced StructuralResponses

"* Define local and global slamming-related load data needed Ifrom Hydro program(s)

"* Later phases will address the computation of structuralresponse to slamming and the interfacing between slamload prediction codes and structural response codes I

IIIIIIIIII

II ••rgi

Tech

II

Task 5 Structural Reliability Technoloay

Define the basic technology requirements for a reliability-II based format for ship structures

II • Assess the state-of-art for the technology requirementsand determinelprioritize the development needsI

* Develop a plan for ensuing years' effortsI* Identify and establish liaison with current relevant3I research

IIIIIIIII

IVirginia

WTechII

Implementation of Results

"* Overall Objective: To incorporate these developments, itogether with the other components of design, into anintegrated structural design system which can be used bythe ship design community

"* ONR has decided that MAESTRO will be the vehicle forimplementing the results into an existing structural design Itool I

" MAESTRO integration with other design tools has beenselected under the Maritech Modular Tanker Consortiumproject

"* Our team will also be participating in the US-Norway iresearch project Dynamic Analysis of Surface Ships.

IIIIII

IuywlIi

aI-j ýj l-;:-

upI;-Y;ýII II iILI iiu i

ýeaij l

j)ýLý ýPýV4

by JILiI

Io

Ifj_ý4IWýd-4kj-JjbY.!-'m

I,7

Uij-ý iJ /jjy-

. . ... ..I

Jt)=cs~;s I ~

jŽJ ýj1XS l 'JIJ wjd) AI~

Uabj.r~j 916'I

I '4y

I W

W7I

s U~i :

-if f t fI

ACI

AD L/1ILLI 'Av I4DAI

elfL4U

fIiiA -w

I-

J!Jý Xi

SIOM M'd.issIPro cI/am Iin clsteI

eiiI0 rfcal endig wil b

0 kwtm amon ofown mpIrMI'MI

modoumdamminlockad rspoI

4ýI

II

0 CDi I..

.0.)coc

E C .> 0I 0. :(. -,

I lU-ll l IaI)I I

II

Representative Cargo Loading Conditions IIII

_____ _____ II

____ _____ III

_____ II

_____ II

CARGO OIL BALLAST I rULL OIL rmrsii w.

III

U)I

(0 0lE U) '-I (U)

o u) U)

ECuo Q0

0)c

0 Is-

4I 0 0r

I L

QLI___ I-

co ýI2L flO0. LJ>1I0. Wvj

*0 Uz ICD I.c

0ccnI

I-CDCla)

4..c 0 UCU as 4-J)

co o CO~c U)I

0' 0-tc> )C) CD).2t Ou'C CD

0( 0 b) c

a)U 0U)

Q).0E U)0

a)0- U). -1_olf (cu -CcIz C(/) C

C l)

SON 0ccIcCIcuc

ICX AA

cu V)0I

o a3- D

0) (10c

0)~o 0.0.CO m)

*0 ICoaD a

Lu. ) ~C cca

ac: 0 toL.0o E c- +

0) U) -o Co as

L.. 0U I0Lcu CO 41 C) U)

C. C.) () U):0 0a

CI

0

0 _ )IM c 0)

CC

Cu mZ

(0 U)

O~DDI 0 @

Co I~C/)

cD-2

czI

IIIII FE �,de1inq &

IUII -�

* -�

II -_

II �Jz

IEquivalent Wave in Partial Loading (67% LQAD(C))

DLP : Maxi�u� Hogging Condition

II

11

I

THE DYNAMIC LOADING APPROACH (DLA)

FOR IANALYZING SHIP STRUCTURE 1

1I1

Presented at ONR Workshop onNonlinear Sea Loads and Ship Response

Ann Arbor, Michigan

7-8 July 1994 1

I

Yung S. Shin I

AMERICAN BUREAU OF SHIPPING III1

UI

I ,

II

IIIIIIIIII

I

IIUIUIIIII

2" I

JY�J*�JJY�JJ�IW IIIIIIII

1 -W 40

04 CO M,;

aU)

Co

LIc

SC5

I- z

m~ (i

o Lo -

P4 m

u~-0

IIIII

CU III

o II

w ILL I

0 I(I!)

Icm, I

* -

0. I

III

4-J 0

-U 0 CD

IU -U 4 0

*E EU. 0

I%-+-' a, Uoo E+ _o

.0;u-. 0 m-E

0 n 0

I CD ' Wa CD

I. < a

0

LLEC

20E

LL -+ 4i

oc -co

C

0) E 0

EC LL CU

0 -3 cn)~

0 C

* 0 0 Iu

LU CL V I

IIII Internal Tank Pressure DistributionIII!IIIII

Pressure Components due to

i eVapor Pressurei e Roll and Pitch Inclination

* AccelerationsIII

II

External Pressure and Distribution

II

I

Pressure Components due to

" Wave I" Vertical Motion" Lateral Motion" Roll

III

I N. BALLAST/33% PARTIAL/

I0I LU•o

LL 30

0

*z FULL

20

I 100

I DISP.DISP.(FULL)

50 100

I ROLL ANGLE V.S. SHIP'S DISPLACEMENT(AT MAX. ROLL CONDITION)

IIII

Long Term Response andEquivalent Wave System

UI

IU I

I

U I

Log (Probability)I

Ix

-360 cos

I

3 Short Term ResponseI

I

_

_

_

_

__•

,

U

I

WAVE SPECTRUM

IS

I

.

FRF OF DESIGN LOAD PARAMETER

I SI

RESPONSE SPECTRUM

OF DiP

II

UJU

CL )00

I~LO

0. ~ 0

0~ - .

ULcJ -J - _ _ _ _ _ _

(D co _____

>z CCCC -o UQ

9L Lai2 LhICC0 :.I.

_ _cuj

CL 0 -

a)__0_CC0

0G-

LEE EE E0000000099990M L lMD M. M oiM. ll iMMMIMI 0) 0

0000

0-4+XO4-KN)-XXM-

I . . -

* _ _ _ _

riL~

*~~ L L.__

C 1l Osi OVI 06 *0 090 Oco "D 10cf

a)* 1.

UI

Equations of Motion6-Degrees of Freedom Motion

I* Surge* Sway I* Heave

* Pitch I* Roll* Yaw I

I

6I

IEC [(.Vij• + .••)•ik + Bi• + cik7]k=-1 F je w'; j = 1 . .

1731 1I2 I

-- /

n, = surge =3 = heave 71 = pitch772 = sway 74 = roll 76 = yaw

III

III0

IL CuuE* .

C)z

u~S2 L.).

LUJ*z oU .

Ec OLJ)

* C3

to-

0 LU

CL0 . _ _ _ _ _ _ __OSSTC N0 w

C/I

(M) ___ ___E _ _

WCL

CU0

o I34-d

1mm

U> I

0U-t6

U)) Ocu

C.)Cl)0 0

0 Cl) a)

*E a. w)00 (n 0l

ou cu .co0 cu 0.

w S- :

cII

am 1.2 I,- I

0MU

0

0 _ I

0

0

*" I0.

II

II APPLICATIONS AND BENEFITS

U • VIRTUAL PROTOTYPING :ft reduce or eliminate the need for costly and time

consuming physical prototypes- rapid virtual prototyping allows for fast creation and

modification of prototype

I • ENGINEERING ANALYSIS:Integration of analysis results (e.g., CFD, FEM) withvirtual prototypes

* OPERATIONAL SIMULATIONS:- direct Involvement of humans for ergonomic, human

factors, and performance studies- simulation of assembly, production, and maintenance

* tasks reveal problems at an early stage of thedesign process

- training for operation, maintenance, safety

CONCURRENT ENGINEERING:- explore all aspects of a design or a process by an

Interdisciplinary engineering team* -shared virtual environments allow for participation

from remote locations- VR as an integrating tool for: design - engineering -

analysis - production planning - manufacturing -marketing & sales - maintenance - training

* * OVERALL BENEFITS:savings in cost - savings in time - reduced designcycle - Improved market response - better product

II

1

IIIIII

i!;j� �K I5" I

jit ii'titt gill

I)t liii

ifs __________ Iiii. it

- I- 't.111 �i

� Ig,

ItRh. lii, I� gig

�%k. #m�s: ��*l

l� I*

*t *- At�4 *g

4 I -

�ti 4 I �'�-�- I

I I�1 � i�

* ?' � -j I

II

IIII

IHead mounted display(superposition)

3D sound cuing Multisensorydata space (3600)

I Virtual contol panel/telescience workstation

I ,

I

*I

6 DOF gesture

I and feedback

II

'I

I

i THE IMMERSIVE EXPERIENCE OF VRI

0 Convincing Illusion of Being Fully Immersed in an3 Artificial Three-Dimensional World

* Depth Perception through Stereo Viewing

• Full Look-Around & Walk-Around Capability

i Full Scale Representation of Virtual World

i Realistic Interactions with Virtual Objects

0 Strong Sense of Realism and Spatial Perception

II

ASSETS FOR DESIGN AND MANUFACTURINGIU Optimal Analysis Tool for Spatial Problems Involving

Complex Three-Dimensional Geometry(arrangements, mechanical systems, abstract systems)

* Realistic Integration of Humans with Virtual World(especially effective If humans are part of a system)

I . Optimal Communication & Demonstration Tool

III

IrlmI

i u

I

II

S'I

I

IFigure 2. Data glove with fiexion sensors and tracking receiver.

II

II THE ENABLING TECHNOLOGIES OF VR

II . Head-Mounted Display (HMD)

I Motion Tracking System

I0 Image Generation System

• Interactive Input Devices (Gloves, Suits)

I *Tactile and Forced FeedbackI

Additional Component Technologies

Eye Tracking Systems

Telepresence Technologies

Directional 3D Sound

3 Voice Recognition / Speech Synthesis

I* Alternative Display Technologies

3 Head-Coupled Display (HCD)

See-Through HMD/HCDI Shutter Glasses

Large Screen Projection

Retinal Laser DisplayI

I , i I I II

II1IIIIIIIIIIIIII1I

I | I IIIi

IIIIIS

II%:'.,

! -

I ~N

I

I

III. . I I I I IIII

Klaus-Peter Beler University of Michigan

II

VIRTUAL REALITY (VR)

VIRTUAL ENVIRONMENTS (VE) UIIN DESIGN AND MANUFACTURING

II

* The Enabling Technologies of Immersive VR

* Applications In Design and Manufacturing II* Virtual Prototyping (case study: automotive Interiors)

* Augmented Reality in Assembly and Maintenance II

* The University of Michigan Virtual Reality LaboratoryIIUI

I

I CMS-SSC STRUCTURALI RELIABILITY THRU ST

* OTHER RELIABILITY PROJECTS

I SSC 363 - 1992Uncertainties in Estimating Loads and Load Effects on

Marine StructuresEstratos NikoladisI[ Developed estimates of bias and uncertainty in loads and

load effects

SSC 371 - 1993I Establishment of a Uniform Format for Data Reporting of

Structural Material Properties for Reliability AnalysisI Fleet Technology Limited

Developed a standard format so that the properties ofI materials will be available in a probabilistic format

3 SR- 1338Uncertainty in Strength Models for Marine Structures

I Owen HughesObjective - Quantify bias and uncertainty in structural

I strength formulations in order to evaluate safety marginsand derive design criteria.I

SR-1344* Assessment of Reliability of Existing Ship Structures

Alaa Mansour* Will estimate the reliability levels associated with

important failure modes for several existing ships

I

UIII

CMS-SSC STRUCTURALRELIABILITY THRUST I

PHASE III- SR-1345Probability-based Ship Design: Implementation of Design I

Guidelines for ShipsAlaa Mansour I

Project began in May 1994 with the objective of developingship structural design procedures that are reliability-based.

PHASE IV - SR-1362 (New Phase) UProbability-based Design, Synthesis of the Reliability

Thrust AreaProject to begin in FY 1994

Have a group of experts produce a summary of the state ofthe art I

PHASE V (Old Phase IV)Probability-based Design: Novel Hull Forms and

EnvironmentsWill extend previous work to unconventional hull forms

and to unusual load situations IIII

II

CMS-SSC STRUCTURALI RELIABILITY THRUST

* 1983 DESIGN, INSPECTION AND REDUNDANCYSYMPOSIUM

Recommended a program of several projects to determine* and unify reliability of marine structural systems

June 1987 ad hoc Reliability CommitteeDeveloped Four-Phase Reliability Thrust

I SSC-351 - 1990Alaa E. Mansour and Paul F. WirschingA tutorial on structural reliability theory

The basis for SSC reliability work

PHASE I - SSC 368 - 1993I Probability Based Ship Design Procedures -

A DemonstrationAlaa Mansour

Demonstrated the use of probability-based design in the* analysis of a tanker and a combatant ship

* PHASE II - SSC 373 - 1994Probability-based Ship Design: Loads and Load

I CombinationsAlaa Mansour

I Developed standard loads necessary for a probability-baseddesign

II

III

II

COMMITTEE ON MARINESTRUCTURES

AND ISHIP STRUCTURE COMMITTEE

STRUCTURAL RELIABILITY THRUST

IRobert A. Sielski

Marine BoardNational Research Council

July 7, 1994

IIIII

cri 4-J

1.M 0 U)

E I6c0

4- 0) 0)

U) 0~ <) j

so L.

0 cc- Co

j 0

C Co

0)0C

coU CI)cu

Cl) oo C) W )

U0 L L . I0.j- ca > caO 0 I) Co

ti- 0

I c co -E-a J a: LL 0 0

oc~ 0)

*.2 a. (9 U 0u u C/) U) u )

......

CU D0E

*n -C

CD C CDC

Co cc2

a6 ..;CLL >C 0)M

Co M c~CDCL -CoCo

-t 0 W , W C

ca 0

CD LICZ: m E: IA 14 A CUA A

II

Design by Rule] Design by DLA

I Conventional Seakeeping AnalysisAnalysis

I [Dynamic & Static loads

ISFatigue LAStructuralAnalysisri lysis

j Fine Mesh Fine MeshZooming Analysis Zooming Analysisfor structural for Primary

Detail s Members

I- Faigue life IStress/BucklingI -II

FinalScantlings

Design Procedure Using Dynamic Load Approach

U-

CQ

0,

cnIV I

LL

CD

UA

II

16m

I 0

I C

4)

I I-

CL

,_m

I 0

I

4)l

*_o cco *co

0< 0

o V 0

CCo

Co on

0) 0

0<

U) 0

VIRTUAL PROTOTYPING

1 Replace costly and time-consuming physical mockups

• Rapid Virtual Prototyplng: fast creation and modification

i • Create virtual prototype from existing CAD/CAM data

• Apply rendering algorithms, lighting models, texturemapping, and other techniques for realistic appearance

* Realistic interactions with prototype via data glove, etc.

3 Combine virtual display with physical elements if correctforced feedback Is needed (e.g., simplified seating buck)

Examples of Extended Functionality :- employ transparent display techniques for Inspection

of hidden components3 - use prototype already for the analysis of Incompletedesigns (e.g., with parts floating In space)

3 -superimpose design alternatives for comparison- allow for interactive design modifications with

Immediate feedback

3 * Usage of Virtual Prototypes:- Design analysis (clearances, packaging efficiency,

connectivity, motion characteristics, collision, ...)- Human factors studies (visibility, reachabillty,

accessibility, comfort, human performance, appeal, ...)i - Base for other VR applications (engineering analysis.

operational simulations, concurrent engineering,,,mi shared virtual environments, training, marketing, ..)

II

I

CREATION OF VIRTUAL PROTOTYPES

I,GEOMETRY DEFINITION:

CAD/CAM Model : mathematical description through Isurface modeling, soltd modeling, and related methods

Virtual Model : approximation by computer graphicsprimitives (mainly polygons and polygon-meshes)

I* PROCESS: I

Access CAD/CAM database and extract geometry

Approximate boundaries by polygons (tessellation) USimplify geometry : reduce number of polygons forgraphics performance, decide on level of detail

Edit geometry : Identify and remove unnecessarygeometry, correct faulty geometry, Incorporate Itextures

Define display characteristics : color, reflectioncharacteristics (material properties), transparency,lighting configuration, rendering method, ....

Model the behavior of prototype (define Interactivefeedback mechanisms and trigger events, dynamic andother responses, motion restrictions, etc.)

Calibrate virtual environment with user, data glove and Iphysical elements

I

73 VW Super Beetle-H 10364 Vertices10514 Polygons

73 VW Super Beetle-L 1520 Vertices1602 Polygons

Polygonal representations

with different levels of accuracy

3

I ! ! !I • I II | |

II

I

SI,

III

II

II I• I I i= •I

______ I iftI 'mcr

IIIIIIIII

L I

-, IIIIIIIII

I0I

I S

*

IIII

I �. F

I

IIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIII

III

4, IIII

I

IIIIIIIUI

I

EXRATO

Approxi mation~o..

EDITOR

S~Geometry Simplification

Texture Dfihitioh

YU

S~VIEWER

CalEbrationS~Tracking I map Generation

Data Glove Control

I The process of generating

I 4

I

II

VIRTUAL REALITY LABORATORY

THE UNIVERSITY OF MICHIGAN - COLLEGE OF ENGINEERINGDepartment of Naval Architecture and Marine Engineering

ICreated: April 1993 through an Initial grant from Chrysler

with cost sharing by The University of Michigan

Director: Klaus-Peter Beler I

Focus: VR as an Integrating concurrent engineering tool for:design - engineering - analysis - production planning -manufacturing - marketing & sales - maintenance

Goals: • Advance VR technology (cross the threshold of usability)"* Develop methods, algorithms, and software concepts 3"* Prove usefulness through demonstration projects"* Assist Industry with the Introduction of VR 3

ILaboratory Equipment:

- SGI Onyx with 2 processors and VTX graphics U(currently upgrading to 4 processors and Reality Engine graphics)

- Boom2C from Fakespace (currently upgrading to Color Boom3C)

- DataGlove from VPL, Isotrack from Polhemus I- IBM-RS/6000 with CAD/CAM system CATIA 3- SGI Indigo2/Extreme, SGI Iris, SGI Indy, HP and Sun workstations,

Macintoshes, Scanner, Video production equipment, others, ....

I

VIRTUAL REALITY LABORATORY

ONGOING PROJECTS:I* Virtual Prototyping of Automotive Interiors

- for design analysis and human factors studies- sponsored by Chrysler Corporation

* Vlrtual Environments as an Analysis Tool In ComputationalFluid Dynamics and Crash Simulations- focus on high performance computing applications- sponsored by DoE (CRADA)t- in cooperation with five National Laboratories and with

Chrysler, Ford, and General Motors

I Virtual Interior Arrangements for Sailing and Motor YachtsDepartment of Naval Architecture and Marine Engineering

I• Virtual Model: Integrated Technology Instruction Center

future home of the Virtual Reality Laboratory, under constructionII IN PREPARATION:

Augmented Reality in Simulation-Based Design- applications In design, assembly, and maintenance- sponsored by ARPA- to be Integrated with Chrysler project on virtual Interiors

Shared Virtual EnvironmentsI - simultaneous Immersion of users on both sides of the Atlantic

- in cooperation with the Computer Graphics Center (ZGDV)Darmstadt, Germany, Ford/US, and Ford/Europe

* Virtual Diving- virtual models of underwater terrain, structures, ship wrecks- training of divers and ROV operators (M-ROVER)- planning of underwater operations

I

Ia

IR

I C

I~ -*

It

ClI

78 .2 OCý (7N

7ýI

I4

I9I0IcI0

IIIII

a

II1

- II

4 IIIIIII

coo

V-4

-It

--- --- 7ý5V-4

40-

PLI

14

Cox/ 10 1 (POW

..........01 AM

Ja -A-7

U

..........

IIII

II

IIIIIIIIII

41I0I

0 0

Mir

lb lbdw lo

I - Il-_I7

JOA

I0 Z-........" iVAR

MalI

a.I- F

.I .......... ....... .....=UI -

........................

Iu 1Iýý 7RA

0 U

4 I

4 01 . 0444Ai74

ICIw

IA

a)O

> CA-0 _z

C

0to

- rrq

"0 aý-4 )

0 70

o >o >

I z

mo

10 1ccI4ýI

0'4214

ccU

w) I

4-aa

,0

II

IIII

I II- o

I" .

- ccc

I0

!ON0 4Z

-n CA

+ot COO4-4 U% u r

'42_I .~ cia

0-0

II

0 12- 1-I

so"CA,

*Y04 0

I 0Z

IluI

I%I%

*i A

I ~ ) .LLct

CAm

ct2

4-

ma

U4 .

- - I I4) Col to

•'i-C40 U

IOU

0 S ~ ~ 0

0 0

ELI

III

I>

ccS s

I 0)4-4 4

0 = Cd

q V"CDa C0Ob

C;I

AJ 0

00

PLm4

40~

0~- oA It C

4 )Icc-

ciICI

cis00I

0*0

0~

0 C1.4>4- 0

o 0 04-4-

--o. w4- P.4

> cjz a) -0 r-.4ci 4N 0)

o >1c- -0.

Recommended