Experimental Investigation of Quantum Phenomena in a ...Quantenelektronik 2 Contents 1. Introduction...

Preview:

Citation preview

Quantenelektronik

1

Experimental Investigation of Quantum Phenomena in a Persistent Current Qubit

E. Il‘ichev, N. Oukhanski, A. Izmalkov, U. Hübner, T. May, Th. Wagner, I. Zhylaev, Ya. S. Greenberg,H. E. Hoenig, H.-G MeyerInstitute for Physical High Technology, P.O. Box 100239, D-07702 Jena, Germany

M. Grajcar, W. KrechInstitute of Solid State Physics, Friedrich Schiller University, D-07743 Jena, Germany

M. H. S. Amin, A. Smirnov, Alec Maassen van den Brink, A. M. ZagoskinD-Wave System, Inc., 320-1985 West Broadway, Vancouver, B.C., Canada

Quantenelektronik

2

Contents

1. Introduction – single junction interferometer2. Idea of measurements:classical case3. Idea of measurements:quantum case4. Technology5. Response of the qubit to nonresonant

excitation. 6. Response of the qubit to resonant excitation. 7. Rabi spectroscopy 8. Summary and outlook

Quantenelektronik

3

Single-junction interferometer

Intern. flux

Extern. flux

-2

-1

1

2

3

-2 -1 0 1 2 3

β=0.8

ϕ /π

ϕext/πβ=1.5

Φ 0-Φ 0

Φ=Φext−LI

ϕ=ϕext-βsinϕ, where

β=2πLIC/Φ0

ϕ π= 20

ΦΦ

Quantenelektronik

4

Single-junction interferometer

-1 0 1 2 3-2

0

2

4

6

8

Magnetic flux

Ener

gy

U∝ (ϕ-ϕx)2/2-βcosϕ,

where β=2πLIc/Φ0

Intern. flux

Extern. flux

-2

-1

1

2

3

-2 -1 0 1 2 3

β=0.8

ϕ /π

ϕext/πβ=1.5

Φ 0-Φ 0

Quantenelektronik

5

FCEBDA

UJ

energy vs phase at different external fluxes

Idea of measurements: single-junction interferometer in classical case

Quantenelektronik

6

FCEBDA

UJ

energy at different external fluxes

Idea of measurements: single-junction interferometer in classical case

M

L LT CT

Quantenelektronik

7

FCEBDA

UJ

energy at different external fluxes

Idea of measurements: single-junction interferometer in classical case

M

L LT CT

Φ

Φe

A

D

B

E

C

F

Quantenelektronik

8

FCEBDA

UJ

energy at different external fluxes

Idea of measurements: single-junction interferometer in classical case

M

L LT CT

Φ

Φe

A

D

B

E

C

F

ΦdcExternal flux Φrf + Φdc

Quantenelektronik

9

FCEBDA

UJ

energy at different external fluxes

Idea of measurements: single-junction interferometer in classical case

M

L LT CT

Φ

Φe

A

D

B

E

C

F

ΦdcExternal flux Φrf + Φdc

Φdc

V

Voltage across the tank vs Φdc

Quantenelektronik

10

FCEBDA

UJ

energy at different external fluxes

Idea of measurements: single-junction interferometer in classical case

M

L LT CT

Φ

Φe

A

D

B

E

C

F

ΦdcExternal flux Φrf + Φdc

Φdc

V

Voltage across the tank vs Φdc

Quantenelektronik

11

FCEBDA

UJ

energy at different external fluxes

Idea of measurements: single-junction interferometer in classical case

M

L LT CT

Φ

Φe

A

D

B

E

C

F

ΦdcExternal flux Φrf + Φdc

Φdc

V

Voltage across the tank vs Φdc

E.Il’ichev et al. Rev. Sci. Instrum. 72, 1882, 2001

Quantenelektronik

12

Idea of measurements – quantum case

FCEBDA

UJ

energy at different external fluxes

Quantenelektronik

13

Idea of measurements – quantum case

FCEBDA

UJ

energy at different external fluxes

Φe

B E

F

C

A

D

Φ0/2

UJ

Quantenelektronik

14

Idea of measurements – quantum case

Φ

Φe

A

D

B

E

C

FFCEBDA

UJ

energy at different external fluxes

Φe

B E

F

C

A

D

Φ0/2

UJ

Quantenelektronik

15

Idea of measurements – quantum case

Φ

Φe

Φdc

Φdc

V

External flux Φrf + Φdc

Voltage across the tank vs Φdc

A

D

B

E

C

FFCEBDA

UJ

energy at different external fluxes

Φe

B E

F

C

A

D

Φ0/2

UJ

Quantenelektronik

16

Idea of measurements – quantum case

Φ

Φe

Φdc

Φdc

V

External flux Φrf + Φdc

Voltage across the tank vs Φdc

A

D

B

E

C

FFCEBDA

UJ

energy at different external fluxes

Φe

B E

F

C

A

D

Φ0/2

UJ

Quantenelektronik

17

Φ

Φe

Φdc

Φdc

V

External flux Φrf + Φdc

Voltage across the tank vs Φdc

A

D

B

E

C

F

Idea of measurements – quantum case

Ya. S. Greenberg et al. PRB 66, 214525, 2002

Ya. S. Greenberg et al. PRB 66, 224511, 2002

FCEBDA

UJ

energy at different external fluxes

Quantenelektronik

18

Nb technology for the coil of the tank circuit.

T. May, et al. Rev. Sci. Instrum., 74; March 2003

Quantenelektronik

19

•Nb coil is prepared on oxidized Si substrates lithographically.•The line width of the coil windings was 2 µm, with a 2 µm spacing. •Various square-shape coils with between 20 and 150 µm windings were designed.•We use an external capacitance CT.

Nb coil without concentrator.

Quantenelektronik

20

Al qubit

•Material: Aluminium, Shadow-evaporation tecnique•Two contacts ~600x200nm, (IC ≈ 600 nA), the third is smaller, so that α=EJ1 /EJ2,3 ~0.9•Inductance L ≈ 20 pH•J.E. Mooij et al., Science 285, 1036, 1999.

Quantenelektronik

21

Nonresonant excitation of the qubit - setup

Amp Lock In Amplifier

RF Generator5-100MHz

DC Generator0.1-10Hz

Oscilloscope

QUBIT

T=2K T=300K

Amp

T=10mK

Quantenelektronik

22

Tank voltage vs external flux – large Φac

Quantenelektronik

23

Tank voltage vs external flux near Φdc= Φ0/2 – small Φac

Quantenelektronik

24

Idea of Rabi spectroscopy - resonant excitation

M

L LT CT

Ω

Quantenelektronik

25

Idea of Rabi spectroscopy - resonant excitation

Resonant circuit

Rabi spectra

Voltage

Frequency

ωR∼ Ahf

<Sx> ∼ sin(ωRt)sin(Ω t)

<Sy> ∼ sin(ωRt)cos(Ω t)

<Sz> ∼ cos(ωRt)

H

S

Quantenelektronik

26

Resonant excitation of the qubit - setup

HF Generator 0.1-3GHz

Amp Amp

DC source

QUBIT Spectrum Analyzer

T=2K T=300KT=10mK

Quantenelektronik

27

The voltage spectral density on the tank circuit at different microwave amplitude at 868 ± 2 MHz

2/ toclose 0ΦΦ

Quantenelektronik

28

0.96 0.98 1 1.02 1.04

(P/P0)1/2

0.9

1

1.1

ωR/ω

T

(b)

0.96 0.98 1 1.02 1.04

(P/P0)1/2

0

0.5

1S V

,max

/S0

(a) b

ca

bac

Decoherence time

τRabi~2.5µs

22222

2

22222

22

22

2

2

)()()()(2),(

TT

T

R

R

TRV C

LIkSγωωω

ωωωωω

ωωωεωω+−

×Γ+−

ΓΩ

=

E.Il’ichev et al., preprint , cond-mat /0303433, 2003

Quantenelektronik

29

Summary and outlook

Response of the single qubit to nonresonant and resonant excitation

Nonresonant response is macroscopic quantum tunneling

• Resonant response is similar to NMR for the single spin

• In contrast to quantum optics experiments, where Ω ± ωR were detected, we detected ωR

Recommended