ELI Nuclear Physics Workshop Magurele Feb. 1. 2010 Gérard Mourou

Preview:

Citation preview

ELI Nuclear Physics WorkshopMagurele

Feb. 1. 2010Gérard Mourou

ELI Integrated Infrastructure

CZ Prague

HO Szeged

RO Bucarest

The ELI’s Ultimate Scientific Goal:“ Study of the structure of matter from Atom

to Vacuum “

Photonuclear Physics:Photonuclear Physics:Exploring Nuclei with LaserExploring Nuclei with Laser

Rel

ativ

istic

Ultr

a R

elat

ivis

tic

Rel

ativ

istic

Com

pres

sion

EQ=mpc2

Ultra-relativistic intensity isdefined with respect to the proton EQ=mpc2, intensity~1024W/cm2

NL Optics

QCD ~1035W/cm2

ELI Cardinal Features

• Ultra High intensity• Relativistic and ultrarelativistic regime• Ultrashort Pulse of high energy radiations and

particles because(Power-Pulse Duration Conjecture)

• Pristine synchronization between beams within a fraction of the period

• Unique laser properties:

- ultrahigh fields

- ultrashort pulses

• Novel techniques:

- production of brilliant photon beams

Peak Power -Pulse Duration Conjecture

1) To get high peak power you must decrease the pulse duration.

2) To get short pulses you must increase the intensity

Q-Switch, DyeI=kW/cm2

Modelocking, DyeI=MW/cm2

Mode-Locking KLMI=GW/cm2

MPII>1013W/cm2

Laser Pulse Duration vs. Intensity

Relativistic and Ultra R Atto, zepto….?

RelativisticRelativistic Optics Optics

r F =q

r E +

r v c

∧r B

⎛ ⎝ ⎜

⎞ ⎠ ⎟

⎝ ⎜

⎠ ⎟

a)Classical optics v<<ca)Classical optics v<<c , , b) Relativistic optics v~cb) Relativistic optics v~c

x~ax~aoo

z~az~aoo22

aa00<<1, a<<1, a00>>a>>a002 2 aa00>>1, a>>1, a00<<a<<a0022

a0 =eA0

mc2=

eE0λmc2

Relativistic Rectification(Wake-Field Tajima, Dawson) sE

r+ -

1) pushes the electrons.

2) The charge separation generates an electrostatic longitudinal field. (Tajima and Dawson: Wake Fields or Snow Plough)

3) The electrostatic field

r F Bz

=qr v c

∧r B

⎛ ⎝ ⎜

⎞ ⎠ ⎟

r v ∧

r B

Es=cγmoωp

e= 4πγmoc

2ne

Es≈EL

Front and back acceleration mechanisms

Peak energy scales as : EM ~ (IL×)1/2

C

Vp ~0

Vp ~C

C

Non relativistic ions

Relativistic ions >1024 Photons

Photons

Ep ~ I1/2

Ep ~ I

The Ultra relativistic:Relativistic Ions

High Energy Radiation

Betatron oscillation X-ray laser

Harmonic generation Thomson/Compton Scattering

Radiation reaction

Attosecond pulse generation by Relativistic Compression

ε =1−ω 2

p

γ 0ω2

where γ 0 = 1+ a0

2

Scalable Isolated Attosecond Pulses

Amplitude, a

1D PIC simulations in boosted frame

Duration,

t (as) 2D: a=3, 200as

tas)=600/a0

I=1022W/cm2 (Hercules)

l=1019W/cm2 (3

laser)

optimal ratio: a0/n0=2, or exponential gradient due to wcr=w0a-1/2

n0= n/ncr

Attosecond Electron Bunches

N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, and G. Mourou, Attosecond Electron Bunches, Phys. Rev. Lett. 93, 195003 (2004).

Attosecond pulse train

Attosecond bunch train

25÷30 MeV

a0=10, t=15fs, f/1, n0=25ncr

D. Habs

Expectations

• Romania must do its share. It must become the world premier facility in Laser-Based Nuclear Physics.

• Must become a recognized pan-european Infrastructure, with collaboration from the ELI Partners (Cz, Hu, De, Fr, UK, …..) and beyond.

Recommended