Electromagnetic Noise in Grace Mine€¦ · LIST OF FIGURES Page Figure 2-1. Figure 2-2. Figure...

Preview:

Citation preview

ELECTROMAGNETIC NOISE IN GRACE MINE

J. W. Adams W. D. Bensema M. Kanda

E lec t romagnet ics Div is ion I ns t i t u t e for Basic Standards Na t iona l Bureau o f Standards Boulder , Colorado 8 0 3 0 2

The v iews and conc lus ions con ta ined in t h i s document shou ld n o t be in te rp re ted as necessar i ly r ep resen t i ng t h e o f f i c i a l pol ic ies or recommendat ions o f t h e In te r io r Depar tment 's Bu reau o f Mines o f t h e U. S. Government

June 1 9 7 4

Prepared f o r U. S. Bureau o f Mines U n i t e d States Depar tment o f t h e l n t e r i o r P i t t sbu rgh , Pennsylvania 1 5 2 2 2 Work i ng Fund Agreement HO 133005

U S DEPARTMENT OF COMMERCE, Freder~ck B. Dent, Secretary

N A T I O N A L B U R E A U O F S T A N D A R D S R ~ c h a r d W Robert5 D~rectc,r

FOREWORD

T h i s r e p o r t was p r e p a r e d by t h e N a t i o n a l Bureau o f S t a n d a r d s , Bou lde r , Colorado, under USBM C o n t r a c t No. HO 133005. The c o n t r a c t was i n i t i a t e d under t h e Coal Mine H e a l t h and S a f e t y Research Program. I t was a d m i n i s t e r e d under t h e t e c h n i c a l d i r e c t i o n o f t h e P i t t s b u r g h Mining and S a f e t y Research C e n t e r w i t h Mr. Howard Pa rk inson and M r . Harry Dobroski a c t i n g a s t h e t e c h n i c a l p r o j e c t o f f i c e r s .

T h i s r e p o r t i s a summary of t h e work completed a s p a r t o f t h i s c o n t r a c t d u r i n g t h e p e r i o d J a n u a r y 1973 t o June 1974. T h i s r e p o r t was s u b m i t t e d by t h e a u t h o r s i n October 1974.

CONTENTS

Page

1 . 2 M i n e D e s c r i p t i o n - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3

MEASUREMENT INSTRUMENTATION--- - - - - - - - - - - - - - - - - - - - - - 5

SPECTRUM MEASUREMENT R E S U L T S - - - - - - - - - - - - - - - - - - - - - - - 11

3 .2 Antenna S i t e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11

3 . 3 E l e c t r o m a g n e t i c Noise Spec t rum R e s u l t s - - - - - - - - 1 2

3. 3 . 1 I n t r o d u c t i o n - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 2

3 . 3 . 2 U n c e r t a i n t i e s - - - - - - - - - - - - - - - - - - - - - - - - - - 1 3

3 . 3 . 3 C r u s h e r Room A r e a - - - - - - - - - - - - - - - - - - - - - - 1 3

3 . 3 . 4 P r o d u c t i o n A r e a - - - - - - - - - - - - - - - - - - - - - - - - 1 7

3 . 3 5 Development Area- - - - - - - - - - - - - - - - - - - - - - - 1 9

3 . 3 . 6 Cros s D r i f t S u b s t a t i o n - - - - - - - - - - - - - - - - - 2 0

3 . 3 . 7 Underground Workshop-Lunchroom- - - - - - - - - 2 1

3 . 3 . 8 Composi te o f Worst Case S t e a d y N o i s e - - - 2 2

3 . 4 P u l s e Produced w i t h E x p l o s i o n - - - - - - - - - - - - - - - - - 2 2

3 . 5 Mine Noise Con tou r M a p s - - - - - - - - - - - - - - - - - - - - - - - 2 4

3 . 6 M i s c e l l a n e o u s M e a s u r e m e n t s - - - - - - - - - - - - - - - - - - - - 24

3 . 6 . 2 Measurement o f V o l t a g e Between "Roof B o l t s " - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - 2 5

iii

CONTENTS ( c o n t i n u e d )

Page

3 .7 I n t e r c o m p a r i s o n o f M a g n e t i c - F i e l d Noise i n D i f f e r e n t M i n e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 26

3 . 7 . 1 Summary o f 1 t o 3 kHz D a t a - - - - - - - - - - - - - 2 6

3 . 7 . 2 M a g n e t i c - F i e l d S p e c t r a 3 kHz t o 180 kHz 27

4 . AMPLITUDE PROBABILITY DISTRIBUTION MEASUREMENT R E S U L T S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 5

4 . 1 I n t r o d u c t i o n and U n c e r t a i n t i e s - - - - - - - - - - - - - - - - 6 5

4 .4 Summary C u r v e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 69

5 . HOIST-PHONE MEASUREMENT R E S U L T S - - - - - - - - - - - - - - - - - - - - 116

LIST OF FIGURES

Page

F i g u r e 2 - 1 .

F i g u r e 2 -2 .

F i g u r e 2 - 3 .

F i g u r e 3 - 1 .

F i g u r e 3 - 2 .

F i g u r e 3 - 3 .

F i g u r e 3 - 4 .

F i g u r e 3 - 5 .

F i g u r e 3 - 6 .

F i g u r e 3 - 7 .

F i g u r e 3 - 8 .

F i g u r e 3 - 9 .

F i g u r e 3 - 1 0 .

Block d i ag ram o f p o r t a b l e i n s t r u m e n t a t i o n - - - 8

System f o r f i e l d r e c o r d i n g d a t a t o o b t a i n a m p l i t u d e p r o b a b i l i t y d i s t r i b u t i o n s - - - - - - - - - 9

Block d i ag ram o f l a b o r a t o r y r e c o r d i n g sys t em m o d i f i e d for f i e l d u s e - - - - - - - - - - - - - - - - - - - - - - 10

S i m p l i f i e d map o f Grace Mine where measu re - ments were m a d e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 8

Expanded map o f underground deve lopmen t , p r o d u c t i o n , and c r u s h e r - r o o m a r e a s - - - - - - - - - - 2 9

Expanded map o f underground workshop and lunchroom a r e a - - - - - - - . . . . . . . . . . . . . . . . . . . . . . . 3 0

Spec t rum o f a r e a n o i s e b e f o r e e x p l o s i o n . Measurements a t deve lopment foreman o f f i c e w i t h s p e c t r a l r e s o l u t i o n o f 7 8 . 1 H z - - - - - - - - - 31

Spec t rum when c r u s h e r i s n o t o p e r a t i n g . Measurements a t c r u s h e r s u b s t a t i o n w i t h s p e c t r a l r e s o l u t i o n o f 7 8 . 1 H z - - - - - - - - - - - - - - 3 .. 2

Spec t rum a t h i g h e r g a i n when c r u s h e r i s n o t o p e r a t i n g . Measurements a t c r u s h e r s u b - s t a t i o n w i t h s p e c t r a l r e s o l u t i o n o f 7 8 . 1 Hz- 33

Spec t rum when c r u s h e r i s o p e r a t i n g . Meas- u remen t s a t c r u s h e r s u b s t a t i o n w i t h s p e c t r a l r e s o l u t i o n o f 7 8 . 1 H z - - - - - - - - - - - - - - 34

Expanded s p e c t r u m o f c r u s h e r o p e r a t i n g . Measurements a t c r u s h e r s u b s t a t i o n w i t h s p e c t r a l r e s o l u t i o n o f 3 . 9 1 H z - - - - - - - - - - - - - - 35

Spec t rum when c r u s h e r i s n o t o p e r a t i n g . Measurements a t c r u s h e r a c c e s s d r i f t w i t h s p e c t r a l r e s o l u t i o n o f 7 8 . 1 H z - - - - - - - - - - - - - - 36

Spec t rum when c r u s h e r i s o p e r a t i n g . Meas - uremen t s a t c r u s h e r a c c e s s d r i f t w i t h s p e c t r a l r e s o l u t i o n o f 7 8 . 1 H z - - - - - - - - - - - - - - 37

LIST OF FIGURES (Continued)

Page

F i g u r e 3-11.

F i g u r e 3 - 1 2 .

F i g u r e '3-13.

F i g u r e 3-14.

F i g u r e 3-15.

F i g u r e 3-16.

F i g u r e 3 -17 .

F i g u r e 3-18.

F i g u r e 3 -19 .

F i g u r e 3-20.

F i g u r e 3 -21 .

Expanded spectrum of c r u s h e r o p e r a t i n g . Measurements a t c r u s h e r a c c e s s d r i f t w i t h s p e c t r a l r e s o l u t i o n of 3 .91 H z - - - - - - - - - - - - - - 38

Spectrum of n o i s e a t i n t e r s e c t i o n 603 p r o - d u c t i o n a r e a w i t h s p e c t r a l r e s o l u t i o n of 78 .1 H z - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 39

Spectrum comparison between s t e a d y - s t a t e background n o i s e and LHD n o i s e a t e n t r y and d i n i n g a r e a 606E. S p e c t r a l r e s o l u t i o n i s 78 .1 H z - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 0

Spectrum of V-8 d i e s e l LHD. Measurements a t e n t r y and d i n i n g a r e a 606E w i t h s p e c t r a l r e s o l u t i o n of 78 -1 Hz- - - - - - - - - - - - - - - - - - - - - - - 4 1

Expanded spect rum of loaded LHD. Measure- ments a t e n t r y and d i n i n g a r e a 606E w i t h s p e c t r a l r e s o l u t i o n of 3 .91 H z - - - - - - - - - - - - - - 4 2

Spectrum of o p e r a t i n g pneumatic f a n h o l e d r i l l . Measurements a t jumbo d r i l l working f a c e w i t h s p e c t r a l r e s o l u t i o n o f 78 .1 Hz- - - - 4 3

Spectrum of lowes t n o i s e l e v e l measured i n Grace Mine. Measurements a t Number 2 mine t r a n s f e r d r i f t w i t h s p e c t r a l r e s o l u t i o n of 78 .1 H z - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 4

Spectrum of V-10 d i e s e l LHD a t Number 2 mine t r a n s f e r d r i f t . S p e c t r a l r e s o l u t i o n i s 78 .1 H z - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 5

Expanded spectrum of V-10 d i e s e l LHD a t Number 2 mine t r a n s f e r d r i f t . S p e c t r a l r e s o l u t i o n i s 3 -91 H Z - - - - - - - - - - - - - - - - - - - - - - - 4 6

Expanded spect rum a f t e r V-10 d i e s e l LHD l e f t t h e v i c i n i t y . Measurements a t Number 2 mine t r a n s f e r d r i f t w i t h spectrum r e s o - lution of 3 -91 H Z - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 7

Spectrum of background n o i s e measured a t Number 6 c r o s s d r i f t s u b s t a t i o n . S p e c t r a l r e s o l u t i o n i s 7 8 . 1 Hz - - - - - - - - - - - - - - - - - - - - - - - 4 8

LIST OF FIGURES (Cont inued)

Page

F i g u r e 3 -22 .

F i g u r e 3 - 2 3 .

F i g u r e 3 - 2 4 .

F i g u r e 3 - 2 5 .

F i g u r e 3 -26 .

F i g u r e 3 - 2 7 .

F i g u r e 3 - 2 8 .

F i g u r e 3 -29 .

F i g u r e 3 - 3 0 .

F i g u r e 3 - 3 1 .

F i g u r e 3 -32 .

F i g u r e 3 - 3 3 .

F i g u r e 3 - 3 4 .

Spectrum o f L H D ' s b e i n g r e f u e l e d 30 m e t e r s d i s t a n t . F l u o r e s c e n t l i g h t a r e a i n shop o f f i c e . S p e c t r a l r e s o l u t i o n i s 7 8 . 1 H z - - - - - 49

Expanded s p e c t r u m measured a t shop o f f i c e . F l u o r e s c e n t l i g h t a r e a . S p e c t r a l r e s o l u t i o n is 3 . 9 1 Hz- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 0

Spectrum o f LHD p a s s i n g by t h e shop l u n c h - room a r e a . S p e c t r a l r e s o l u t i o n i s 1 9 . 5 Hz-- 51

Spec t rum compar ison between s t e a d y - s t a t e background n o i s e and LHD n o i s e which i s t h e h i g h e s t s p e c t r a measured a t Grace Mine. S p e c t r a l r e s o l u t i o n i s 7 8 . 1 H z - - - - - - - - - - - - - - 5 2

Spec t rum o f e x p l o s i o n impu l se measured a t development foreman o f f i c e . S p e c t r a l r e s o - lution i s 7 8 . 1 H z - - - - - - - - - - - - - - - . - - - - - - - - - - - - 53

Contour map showing n o i s e g e n e r a t e d from a group o f d e t o n a t i o n s c o m p r i s i n g a " s h o t , l 1

a s a f u n c t i o n of time - - - - - - - - - - - - - - - - - - - - - - - 54

Three -d imens iona l view o f two d e t o n a t i o n s from a l a r g e r group c o m p r i s i n g a " s h o t 1 ' - - - - - 5 5

Grace Mine n o i s e c o n t o u r map f o r 2 k H z - - - - - - 56

Grace Mine n o i s e c o n t o u r map f o r 10 k H z - - - - - 57

Grace Mine n o i s e c o n t o u r map f o r 20 k H z - - - - - 58

Grace Mine n o i s e c o n t o u r map f o r 60 k H z - - - - - 59

Unprocessed d a t a showing e l e c t r i c f i e l d s t r e n g t h o b t a i n e d w i t h an a c t i v e d i p o l e a s a f u n c t i o n o f f r e q u e n c y . Measurements a t c r u s h e r a c c e s s d r i f t . S p e c t r a l r e s o l u t i o n is 7 8 . 1 H Z - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 O

Vo l t age spec t rum o f r o o f b o l t a t c r u s h e r a c c e s s d r i f t - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 61

v i i

LIST OF FIGURES (Continued)

Page

F igure 3-35.

Figure 3-36.

Figure 3-37.

F igure 4-1.

F igure 4 - 2 .

F igure 4 -3 .

Figure 4 - 4 .

F igure 4 -5 .

Figure 4-6 .

F igure 4 - 7 .

F igure 4-8 .

Figure 4 -9 .

F igure 4 - 1 0 .

F igure 4-11.

F igure 4-12.

F igure 4-13.

F igure 4-14.

F igure 4-15.

Figure 4-16.

F igure 4 - 1 7 .

Comparison of magnetic f i e l d s t r e n g t h s of Grace and Robena Mines a s a func t ion of d i s t a n c e from no i se s o u r c e - - - - - - - - - - - - - - - - - - 62

Comparison of E-M no i se l e v e l s near o p e r a t i n g machinery (no ise sources ) from four d i f f e r e n t m i n e s - - - - - - - - - - - - - - - - - - - - - - - - 63

Comparison of E-M n o i s e l e v e l s along haulageways i n fou r d i f f e r e n t ope ra t i ng mines. Machinery was no t o p e r a t i n g i n v i c i n i t y a t t imes of measurements - - - - - - - - - - - 64

APD, 10 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - 7 0

APD, 30 kHz, v e r t i c a l component- - - - - - - - - - - - - 7 1

APD, 70 kHz, v e r t i c a l component - - - - - - - - - - - - - 7 2

APD, 130 kHz, v e r t i c a l component - - - - - - - - - - - - 73

APD, 160 kHz, v e r t i c a l componen t - - - - - - - - - - - - 7 4

APD, 250 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - 7 5

APD, 1 MHz, v e r t i c a l componen t - - - - - - - - - - - - - - 76

APD, 2 MHz, v e r t i c a l componen t - - - - - - - - - - - - - - 7 7

APD, 6 MHz, v e r t i c a l componen t - - - - - - - - - - - - - - 78

APD, 1 4 M H z , v e r t i c a l component - - - - - - - - - - - - - 79

APD, 32 MHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - 8 0

APD, 10 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - 81

APD, 30 kHz, v e r t i c a l component - - - - - - - - - - - - - 82

APD, 7 0 kHz, v e r t i c a l component - - - - - - - - - - - - - 83

APD, 130 kHz, v e r t i c a l component - - - - - - - - - - - - 84

APD, 0 . 5 MHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - 8 5

APD, 1 MHz, v e r t i c a l componen t - - - - - - - - - - - - - - 8 6

v i i i

LIST OF FIGURES (Con t inued)

F i g u r e 4 - 1 8 .

F i g u r e 4 - 1 9 .

F i g u r e 4 - 2 0 .

F i g u r e 4 - 2 1 .

F i g u r e 4 - 2 2 .

F i g u r e 4 - 2 3 .

F i g u r e 4 - 2 4 .

F i g u r e 4 - 2 5 .

F i g u r e 4 - 2 6 .

F i g u r e 4 - 2 7 .

F i g u r e 4 - 2 8 .

F i g u r e 4 - 2 9 .

F i g u r e 4 - 3 0 .

F i g u r e 4 - 3 1 .

F i g u r e 4 - 3 2 .

F i g u r e 4 - 3 3 .

F i g u r e 4 - 3 4 .

F i g u r e 4 - 3 5 .

F i g u r e 4 - 3 6 .

F i g u r e 4 - 3 7 .

F i g u r e 4 - 3 8 .

F i g u r e 4 - 3 9 .

F i g u r e 4 - 4 0 .

Page

APD, 2 MHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - - 8 7

APD, 6 MHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - - 88

APD, 30 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - 8 9

APD 70 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - - 9 0

APD, 110 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - 91

APD, 130 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - 9 2

APD, 160 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - 9 3

APD, 205 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - 94

APD, 250 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - 9 5

APD, 500 kHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - 9 6

APD, 1 MHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - - 9 7

APD, 2 MHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - - 98

APD, 6 MHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - - 99

APD, 14 MHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - 100

APD, 32 MHz, v e r t i c a l c o m p o n e n t - - - - - - - - - - - - - 1 0 1

APD, 10 kHz, h o r i z o n t a l E-W c o m p o n e n t - - - - - - - 102

APD, 30 kHz, h o r i z o n t a l E-W c o m p o n e n t - - - - - - - 1 0 3

APD, 70 kHz, h o r i z o n t a l E-W component - - - - - - - 104

APD, 130 kHz, h o r i z o n t a l E-W c o m p o n e n t - - - - - - 105

APD, 160 kHz, h o r i z o n t a l E-W c o m p o n e n t - - - - - - 10 6

APD, 250 kHz, h o r i z o n t a l E-W c o m p o n e n t - - - - - - 107

APD, 500 kHz, h o r i z o n t a l E-W c o m p o n e n t - - - - - - 108

APD, 1 MHz, h o r i z o n t a l E-W c o m p o n e n t - - - - - - - - 109

LIST OF FIGURES (Continued)

Page

F i g u r e 4 - 4 1 .

F igure 4-42.

F i g u r e 4-43.

F igure 4-44.

F igure 4-45.

F i g u r e 4 -46 .

F i g u r e 5-1.

F i g u r e 5 - 2 .

F i g u r e 5 -3 .

APD, 2 MHz, h o r i z o n t a l E-W c o m p o n e n t - - - - - - - - 1 1 0

APD, 6 M H z , h o r i z o n t a l E-W c o m p o n e n t - - - - - - - - 111

F i e l d s t r e n g t h e x c u r s i o n s between 0 . 0 0 1 and 99% of t h e t ime a s a f u n c t i o n of f r e q u e n c y , v e r t i c a l component, development foreman o f f i c e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1 2

F i e l d s t r e n g t h e x c u r s i o n s between 0.001 and 99% of t h e t ime a s a f u n c t i o n of f r e q u e n c y , v e r t i c a l component, c r u s h e r subs t a t i o n - - - - - - 113

F i e l d s t r e n g t h e x c u r s i o n s between 0.001 and 99% of t h e t ime a s a f u n c t i o n o f f r e q u e n c y , v e r t i c a l component, shop o f f i c e - - 1 1 4

F i e l d s t r e n g t h e x c u r s i o n s between 0 . 0 0 1 and 99% of t h e t ime a s a f u n c t i o n o f f r equency , h o r i z o n t a l E-W component, shop o f f i c e - - - - - - - 115

Top view of p e r s o n n e l h o i s t "A" s k i p - - - - - - - - 118

Magnetic f i e l d s t r e n g t h , dB pA/m, o r r e l a - t i v e S/N r a t i o a s measured a long t h e t r a n s m i s s i o n l i n e f o r t h e p e r s o n n e l h o i s t l o c a t e d in "A" s h a f t - - - - - - - - - - - - - - - - - - - - - - - - 119

Magnetic f i e l d s t r e n g t h , dB p A / m , o r r e l a - t i v e S/N r a t i o a s measured a long t h e h o i s t rope f o r t h e p e r s o n n e l h o i s t l o c a t e d i n I I A l l s h a f t - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 2 0

ELECTROMAGNETIC N O 1 SE IN GRACE MINE

J . W . Adams, W . D . Bensema, and M . Kanda

Two d i f f e r e n t t e c h n i q u e s were u s e d t o make measu re - ments o f t h e a b s o l u t e v a l u e o f e l e c t r o m a g n e t i c n o i s e i n a n o p e r a t i n g h a r d r o c k mine , Grace Mine, l o c a t e d n e a r Morgantown, P e n n s y l v a n i a . D ie se l -powered h a u l a g e e q u i p - ment i s u s e d i n t h i s mine , and t h e e l e c t r o m a g n e t i c n o i s e env i ronmen t i t c r e a t e s was measured t o s e e how i t d i f f e r s f rom t h e env i ronmen t c r e a t e d by e l e c t r i c - p o w e r e d h a u l a g e equ ipmen t . One t e c h n i q u e measures n o i s e o v e r t h e e n t i r e e l e c t r o m a g n e t i c s p e c t r u m o f i n t e r e s t f o r b r i e f t i m e p e r i o d s . Data a r e r e c o r d e d u s i n g broadband a n a l o g mag- n e t i c t a p e and a r e l a t e r t r a n s f o r m e d t o g i v e s p e c t r a l p l o t s . The o t h e r t e c h n i q u e r e c o r d s n o i s e a m p l i t u d e s a t s e v e r a l d i s c r e t e f r e q u e n c i e s f o r a s u f f i c i e n t amount o f t i m e t o p r o v i d e a m p l i t u d e p r o b a b i l i t y d i s t r i b u t i o n s .

The s p e c i f i c measured r e s u l t s a r e g i v e n i n a number o f s p e c t r a l p l o t s and i n a m p l i t u d e p r o b a b i l i t y d i s t r i - b u t i o n p l o t s .

Key words : Ampl i tude p r o b a b i l i t y d i s t r i b u t i o n ; d i g i t a l d a t a ; e l e c t r o m a g n e t i c i n t e r f e r e n c e ; e l e c t r o m a g n e t i c n o i s e ; e l e c t r o m a g n e t i c p u l s e ( c h e m i c a l ) ; emergency c o ~ . m u n i c a t i o n s ; F a s t F o u r i e r T rans fo rm; Gauss i an d i s t r i b u t i o n ; i m p u l s i v e n o i s e ; m a g n e t i c f i e l d s t r e n g t h ; measurement i n s t r u m e n t a t i o n ; s p e c t r a l d e n s i t y ; t i m e - dependen t s p e c t r a l d e n s i t y .

1. INTRODUCTION

T h i s r e p o r t g i v e s d a t a c o n c e r n i n g e l e c t r o m a g n e t i c n o i s e

i n a h a r d r o c k mine . I n t h i s s e c t i o n , background i n f o r m a t i o n

and a b r i e f mine d e s c r i p t i o n a r e c o v e r e d . I n S e c t i o n 2 ,

measurement i n s t r u m e n t a t i o n i s d i s c u s s e d . I n S e c t i o n 3 ,

s p e c t r a l p l o t s o f d a t a a r e p r e s e n t e d . I n S e c t i o n 4 , a m p l i -

t u d e p r o b a b i l i t y d i s t r i b u t i o n s (APD) o f m a g n e t i c - f i e l d n o i s e

a r e g i v e n . I n S e c t i o n 5 , measurement r e s u l t s o f a t t e n u a t i o n

and e l e c t r o m a g n e t i c n o i s e on a h o i s t phone a r e r e p o r t e d .

The l a s t two s e c t i o n s ( 6 and 7 ) c o v e r c o n c l u s i o n s and

recommendat ions .

Only r e p r e s e n t a t i v e samples o f t h e t o t a l d a t a measured

a r e g i v e n i n t h i s r e p o r t . A l i m i t e d s e t o f d a t a - p r e s e n t a t i o n

f o r m a t s have been u s e d . I f a d d i t i o n a l d a t a , o r d a t a p r e s e n t a -

t i o n i n o t h e r f o r m a t s , a r e r e q u i r e d , c o n t a c t any o f t h e a u t h o r s .

With t h e s p e c i f i c p e r m i s s i o n o f t h e Bureau o f Mines, we w i l l

s u p p l y t h e a d d i t i o n a l d a t a . A more comple t e d e s c r i p t i o n o f

t h e measurement sys t ems u s e d i s g i v e n i n t h e Robena Mine

r e p o r t [ I ] .

1.1 Background

The need f o r r e l i a b l e communicat ion sys t ems i n mines i s

a l o n g - s t a n d i n g problem. For emergency u s e , when a l l power

i n a mine i s o f f , t h e r e s i d u a l e l e c t r o m a g n e t i c n o i s e i s no

problem. However, i f a communicat ion sys t em were d e s i g n e d o n l y

f o r emergency u s e , i t would have two s e r i o u s drawbacks . F i r s t ,

i t would n o t be r e a d y f o r immediate u s e i n a n emergency; s e c o n d ,

i t would n o t be o f any v a l u e d u r i n g normal o p e r a t i o n s . T h e r e -

f o r e , t h e Bureau o f Mines d e c i d e d t o d e s i g n a communication

sys t em t h a t c o u l d be used f o r b o t h emergency and normal o p e r a -

t i o n a l c o n d i t i o n s . A l s o , two-way communicat ion t o p e r s o n n e l i n a moving

h o i s t i s d e s i r a b l e f o r normal o p e r a t i n g c o n d i t i o n s , and i s

n e c e s s a r y i n emergency c o n d i t i o n s .

During o p e r a t i o n , t h e machinery used i n mines c r e a t e s a

wide r a n g e o f many t y p e s o f i n t e n s e e l e c t r o m a g n e t i c i n t e r -

f e r e n c e (EMI) . T h i s EM1 i s a major l i m i t i n g f a c t o r i n t h e

d e s i g n o f a communicat ion sys t em.

The work r e p o r t e d h e r e g i v e s t h e r e s u l t s o f comprehens ive

measurements o f t h i s EM1 i n c r i t i c a l communicat i o n l o c a t i o n s

where mine r s e x t r a c t o r e .

T h e r e a r e s e v e r a l EM1 p a r a m e t e r s t h a t c a n be measu red :

m a g n e t i c f i e l d s t r e n g t h , H ; e l e c t r i c f i e l d s t r e n g t h , E ; c o n -

d u c t e d c u r r e n t , I ; and v o l t a g e , V , b e tween two c o n d u c t o r s .

One p a r a m e t e r was e m p h a s i z e d , m a g n e t i c f i e l d s t r e n g t h . T h e r e

a r e s e v e r a l r e a s o n s . F i r s t , e l e c t r i c f i e l d s e n s o r s a r e v e r y

i n s e n s i t i v e a t l ower f r e q u e n c i e s , a n d hence p r o b a b l y w i l l n o t

b e u s e f u l i n any p r a c t i c a l low f r e q u e n c y w i r e l e s s mine com-

m u n i c a t i o n s y s t e m . S e c o n d , a t any a i r - e a r t h i n t e r f a c e , o n l y

t h e m a g n e t i c f i e l d i s e s s e n t i a l l y u n d i s t u r b e d , w h i l e t h e

e l e c t r i c f i e l d i s s e v e r e l y r e d u c e d . T h i r d , any c u r r e n t s w i l l

i n d u c e m a g n e t i c f i e l d s , and h e n c e measurement o f t h e m a g n e t i c

f i e l d w i l l d i r e c t l y s e n s e c u r r e n t s . F o u r t h , power l i n e

v o l t a g e s a r e p r o p a g a t e d a s t r a n s m i s s i o n l i n e phenomena, a r e

d i r e c t l y r e l a t e d t o t r a n s m i s s i o n l i n e c u r r e n t s , and h e n c e t o

m a g n e t i c f i e l d s g e n e r a t e d . T h u s , m e a s u r i n g m a g n e t i c f i e l d

s t r e n g t h g i v e s a r e p r e s e n t a t i v e c o m p o s i t e p i c t u r e o f n o i s e

f r om c u r r e n t s and v o l t a g e s f r om most s o u r c e s , a s w e l l a s

m e a s u r i n g t h e m a g n e t i c f i e l d s i n d u c e d by a r c i n g e q u i p m e n t .

A l though m a g n e t i c f i e l d s t r e n g t h measu remen t s a r e

emphas i zed h e r e , even t h i s o n e p a r a m e t e r i s d i f f i c u l t t o

measu re m e a n i n g f u l l y . The I E E E d e f i n i t i o n [ 2 ] o f m a g n e t i c

f i e l d s t r e n g t h , H (magn i t ude o f t h e m a g n e t i c f i e l d v e c t o r ) ,

i s u s e d i n t h i s r e p o r t . S i n c e t h e r e a r e a m u l t i t u d e o f d i f -

f e r e n t s o u r c e s t h a t g e n e r a t e many t y p e s o f n o i s e , t h e r e s u l t a n t

m a g n e t i c f i e l d s t r e n g t h n o i s e v e c t o r i s a f u n c t i o n o f f r e -

q u e n c y , t i m e , o r i e n t a t i o n , and l o c a t i o n . Sma l l v a r i a t i o n s

i n t h e s e p a r a m e t e r s c a n c a u s e s e v e r a l o r d e r s o f m a g n i t u d e

d i f f e r e n c e i n measu red f i e l d s t r e n g t h .

1 . 2 Mine D e s c r i p t i o n

The r e s u l t s and d a t a p r e s e n t e d i n t h i s r e p o r t a r e b a s e d

o n measu remen t s made on A p r i l 24 and 26 , 1 9 7 3 , i n t h e Grace

I r o n Mine l o c a t e d near Morgantown, sou th o f Reading,

Pennsylvania . The mine belongs t o Bethlehem S t e e l Company

and produces i r o n o r e i n t h e form of magne t i t e . The dep th

o f l e v e l 6 , where a l l measurements were t aken , i s 715 meters

below t h e s u r f a c e . The o r e body i s a l a r g e , f l a t , oval

s t r u c t u r e about a hundred meters t h i c k , and i s mined by under-

c u t t i n g and a l lowing t h e o r e t o f a l l i n t o b i n s c a l l e d e n t r i e s .

A i r - coo led , V - 8 d iesel -powered, r u b b e r - t i r e d , Load-Haul-Dump

(LHD) v e h i c l e s use f r o n t - l o a d i n g scoops, t y p i c a l l y of 5 cub i c -

yard c a p a c i t y (1 cub ic yard = 0.76 m3), t o p ick up l a r g e

chunks o f o r e , haul t h e o r e t o t h e underground c r u s h e r , and

dump i t i n t o t h e c rushe r o r e b i n . A f t e r t h e o r e i s crushed

i n t h e o r e c r u s h e r , i t i s t r a n s p o r t e d by conveyer b e l t h o r i -

z o n t a l l y 8 2 5 mete rs , then l i f t e d t o t h e s u r f a c e by a s k i p .

Entry i s made by a personnel cage i n A s h a f t . This cage

o p e r a t e s i n one p a r t i t i o n , whi le two o r e s k i p s o p e r a t e i n

ano ther p a r t i t i o n of A s h a f t . B s h a f t was undergoing

maintenance a t t h e t ime of t h e measurements.

There a r e o t h e r types of haulage equipment used i n t h i s

mine, bu t they , t oo , a r e d i e s e l powered and rubber t i r e d . A i r

d r i l l s a r e used f o r d r i l l i n g , and n i t r a t e s a r e used f o r b l a s t -

i n g . A l l haulageways a r e e i t h e r through r e l i a b l e rock o r a r e

h e a v i l y r e i n f o r c e d wi th conc re t e and s t e e l . There i s a mixture

o f incandescen t , mercury-arc , and f l u o r e s c e n t l i g h t i n g . A

d i r e c t d i a l phone system i s used f o r p o i n t - t o - p o i n t communica-

t i o n . There i s no p o r t a b l e communication system except on

t h e personne l cages .

The temperature and humidity a r e h i g h , a l though no t

exces s ive i n most p l a c e s .

2 . MEASUREMENT INSTRUMENTATION

Two measurement t e c h n i q u e s were u s e d . The f i r s t t e c h n i q u e

c o v e r s a l a r g e p o r t i o n o f t h e spect rum a s a "snapshot" d u r i n g

one r e l a t i v e l y s h o r t p e r i o d o f t i m e . I n t h r e e - d i m e n s i o n a l

form, s e v e r a l such "snapshots" can show how d r a s t i c a l l y a

s i g n a l v a r i e s , n o t o n l y w i t h f requency , b u t a l s o w i t h t i m e .

The second t e c h n i q u e g i v e s v a r i a t i o n s over a 20-minute t ime

i n t e r v a l a s measured i n a v e r y narrow band of f r e q u e n c i e s .

U s u a l l y , a s e t o f twelve d i f f e r e n t c e n t e r f r e q u e n c i e s were

u s e d . Both t e c h n i q u e s were used t o measure two o r t h o g o n a l

components o f magnet ic f i e l d s t r e n g t h . Th i s was done e i t h e r

by u s i n g two systems s i m u l t a n e o u s l y o r by v a r y i n g t h e o r i e n t a -

t i o n o f one sys tem. Both t e c h n i q u e s were used i n a s many

d i f f e r e n t l o c a t i o n s a s p o s s i b l e .

With t h e e x c e p t i o n of t h e e l e c t r i c d i p o l e s p e c t r a l p l o t s ,

a l l measured n o i s e i s r e p o r t e d i n a b s o l u t e q u a n t i t i e s ( i n s t e a d

o f r e l a t i v e ) t o a l l o w o t h e r s t o make e f f e c t i v e u s e of t h e d a t a .

For t h e magnet ic f i e l d s t r e n g t h measurements, t h e NBS f i e l d

c a l i b r a t i o n c a p a b i l i t y was used w i t h each comple te measurement

sys tem t o a s s u r e c o r r e c t c a l i b r a t i o n [ S ] . A c o m p l i c a t i o n i n making t h e s e measurements i s t h e mine

envi ronment , which i s g e n e r a l l y humid, d u s t y , and p o o r l y

l i g h t e d . I n Grace Mine, a s i g n i f i c a n t f r a c t i o n of t h e d u s t

was magne t i c . We used b a t t e r y - o p e r a t e d , d u s t - p r o t e c t e d g e a r

f o r a l l o f o u r p o r t a b l e measuring equipment .

There a r e two t y p e s of n o i s e r ecorded i n t h e s p e c t r a l p l o t s ,

and hence two d i f f e r e n t magnet ic f i e l d s t r e n g t h p a r a m e t e r s a r e

r e q u i r e d , H and Hd. R e s u l t s a r e g iven a s t h e rms v a l u e o f one

component o f magnet ic f i e l d s t r e n g t h , H , v e r s u s f requency f o r

d i s c r e t e f r e q u e n c i e s , o r a s one component o f m a g n e t i c - f i e l d -

s t r e n g t h spect rum d e n s i t y l e v e l [2 ] , Hd, v e r s u s f requency f o r

broadband n o i s e i n t h e s p e c t r a l p l o t s . I n t h e ampl i tude

p r o b a b i l i t y d i s t r i b u t i o n s , r e s u l t s a r e g iven a s t h e r m s

va lue o f one component o f magnetic f i e l d s t r e n g t h versus p e r c e n t o f t ime t h i s value i s exceeded. The APD g ives t h e

d i s t r i b u t i o n of t h e a c t u a l ins tan taneous va lues on ly a s f a r

a s t h e measurement-system d e t e c t o r bandwidth w i l l a l low t h e

d e t e c t o r t o fo l l ow t h e time v a r i a t i o n s o f t h e a c t u a l magnetic

f i e l d . ( I n t h i s c o n t e x t , no i se envelope i s sometimes used . )

Thus, t h e r e s u l t s a r e a p p l i c a b l e f o r a communication r e c e i v e r

whose bandwidth i s s i m i l a r t o t h e measurement-system d e t e c t o r

bandwidth.

Three measurement systems were used t o make measurements

underground. The t h r e e block diagrams a r e shown i n f i g u r e s

2-1 , 2 - 2 , and 2 - 3 . Figures appear a t t h e end o f each s e c t i o n

i n t h i s r e p o r t . For a d e t a i l e d d e s c r i p t i o n of t h e s e sys tems,

s e e a p rev ious r e p o r t , Elect romagnet ic Noise i n Robena # 4

Coal Mine [ I ] . The changes i n t h e measurement systems a s

used i n Grace Mine from' t h e way they were i n Robena Mine a r e

a s fo l l ows :

F i r s t , t h e p o r t a b l e s p e c t r a l measurement system had

10 kHz, h igh-pass f i l t e r s added on two channels whi le a t h i r d

channel remained unchanged. The purpose of t h e s e two f i l t e r s

was t o reduce t h e e f f e c t o f power l i n e harmonics so t h a t

r e c e i v i n g system n o i s e could be reduced by i n c r e a s i n g p r e -

a m p l i f i e r g a i n . I n some l o c a t i o n s where t h e r e were f l u o r e s c e n t

l i g h t s (broadband no i se s o u r c e s ) , t h i s s t r a t e g y gave on ly

moderate improvement, but i n some case s t h e improvement was

s i g n i f i c a n t . Second, t h e p o r t a b l e APD measuring system was unchanged

i n des ign except f o r t h e a d d i t i o n o f a dus t -p roof enc losu re .

A p rocedura l change i s t h a t about twelve f r equenc i e s were

covered r a t h e r t han e i g h t , a t t h e expense o f e l i m i n a t i n g

measurement o f one component o f h o r i z o n t a l f i e l d s t r e n g t h .

Thus, t h e same amount o f time was r equ i r ed underground t o

make t h e s e measurements a s be fo re .

T h i r d , t h e sys t em t h a t had been used on t h e s u r f a c e was

changed s i g n i f i c a n t l y and was used underground t o i n c r e a s e

t h e amount o f d a t a r e c o r d e d underground. I t i s n o t a mine-

p e r m i s s i b l e sys t em. The r e c o r d e r was equipped t o o p e r a t e

a t 30 i p s speed i n a d d i t i o n t o 15 i p s s p e e d . Two c h a n n e l s

o f FM c a r d s e t s were r e p l a c e d by two s e t s o f d i r e c t r e c o r d

c a r d s . T h i s gave an upper s p e c t r a l l i m i t o f 180 kHz r a t h e r

t h a n 20 kHz. These two d i r e c t c h a n n e l s a l s o had 10 kHz,

h i g h - p a s s f i l t e r s added f o r t h e same r e a s o n a s mentioned i n

t h e f i r s t sys tem. One FM channe l was r e t a i n e d t o measure

t h e v e r t i c a l component o f magne t i c f i e l d s t r e n g t h below a f r e -

quency o f 20 kHz. I t d i d n o t have a 10 kHz, h i g h - p a s s f i l t e r .

The r e c o r d e r was o p e r a t e d m o s t l y a t 30 i p s . Two d i r e c t chan-

n e l s on t h i s t h i r d sys t em were used t o r e c o r d d a t a f o r APD's.

T h i s gave APD measurements a t two underground l o c a t i o n s i n s t e a d

o f one . A t 30 i p s , t h i s sys tem r e c o r d e d 24 minu tes o f t ime

i n s t e a d o f 48 minu tes a t 1 5 i p s , b u t 24 minu tes had been

de te rmined t o be an a d e q u a t e t ime f o r s t a t i s t i c a l v a l i d i t y

i n t h e Robena work [ l ] r e p o r t e d e a r l i e r . The d a t a p r o c e s s i n g

equipment was unchanged.

SIGNAL MONITORS

SYSTEM #I

LOOP ANTENNA BROADBAND n AMPLIFIER

PORTABLE TAPE RECORDER (30 ips, record)

u METERS 1 MPEDANCE OF CABLE

TRACK I (FM)

1 ' TRACK 2 (DIR)

SYSTEM

TRACK 3 (FM)

TRANSFORMER

A

100-kHz LOW PASS

FILTER .

TRACK 6 (Dl R)

TRACK 7 (FM) d

TRACK 4 (DIR)

TRACK 5 (FM )

SYSTEM

MICROPHONE EDGE TRACK (VOICE

2 0 W z CRYSTAL OSC 1 LLATOR

Figure 2-1 Block diagram of p o r t a b l e ins t rumenta t ion . The tape r e c o r d e r ' s FM t r a c k s a r e used t o record from 40 Hz t o 100 kHz; d i r e c t t r a c k s a r e used from 3 kHz t o 320 kHz. Systems 2 and 3 a r e i d e n t i c a l t o system 1. When t h e d i r e c t t r a c k s a r e used, t h e 100-kHz low pass f i l t e r s a r e e l imina t ed , and t h e a m p l i f i e r bandwidth is increased from 100 kHz t o 300 kHz. The microphone i s used f o r occas iona l voca l comments by t h e opera tor .

-----------

v COLLAPSIBLE LOOP ANTENNA

LOOP ANTENNA

CHANNEL I (FM)

CHANNEL 2 (DIR)

1 1

j 10 kHz -

HIGH PASS 1 FILTER

(SENSITIVE AXlS VERTICAL)

OSCl LLATOR

CHANNEL 3 (DIR)

COLLAPSIBLE LOOP ANTENNA

BALUN b

EQUIPMENT SIMILAR TO 3, CHANNEL 5 (DIR) BUT WITH ANTENNA ORIENTATION

FIELD STRENGTH METER

10 kh-2mkH2, . , ,455 kHz

LOOP ANTENNA (SENSITIVE AXlS VERTICAL)

1

MIXER kHz

I

S

Figure 2-3 Block diagram o f laboratory recording s y s tan modif ied f o r f i e l d u s e .

CHANNEL 6(D\R) BALUN .

CHANNEL 7 (FM)

,

FIELD STRENGTH

METER 1% kHz-32MHz

&

455kHz , MIXER >

+

40kHz

3 . SPECTRUM MEASUREMENT RESULTS

3 . 1 I n t r o d u c t i o n

I n t h i s s e c t i o n of t h e r e p o r t , spect rum p l o t s a r e

p r e s e n t e d and d i s c u s s e d . Most o f t h e s e p l o t s a r e of magnet ic

f i e l d s t r e n g t h up t o 1 0 0 kHz. Measurements were made a t many

d i f f e r e n t l o c a t i o n s , and r e s u l t s can be used t o c h a r a c t e r i z e

e l e c t r o m a g n e t i c n o i s e l e v e l s g e n e r a t e d by most f i x e d and

mobile equipment used i n t h i s mine.

3 .2 Antenna S i t e s

F i g u r e 3 - 1 i s a map of most of l e v e l 6 where measurements

were made. The map has been s i m p l i f i e d by t h e removal o f

o v e r l y i n g (and a few u n d e r l y i n g ) work ings , and i s i n t e n d e d t o

show t h e s c a l e r e l a t i o n s h i p o f t h e e n t i r e mine. There i s an

825-meter s e p a r a t i o n between mining o p e r a t i o n s n e a r t h e

c r u s h e r and t h e v e r t i c a l s h a f t s where a l l t h e o r e and p e r s o n n e l

a r e t r a n s p o r t e d t o t h e s u r f a c e . Th i s s e p a r a t i o n i s t o p r e v e n t

mining o p e r a t i o n s and r e s u l t i n g subs idence i n and over t h e o r e

body from i n t e r f e r i n g w i t h t h e i n t e g r i t y o f t h e s h a f t s .

F i g u r e 3-2 i s an expanded map of t h e underground deve lop-

ment, p r o d u c t i o n , and c rusher - room a r e a s . F igure 3 - 3 i s an

expanded map o f t h e underground workshop and lunchroom a r e a

l o c a t e d n e a r t h e main s h a f t s . Noise spect rum measurements

were t a k e n i n e l e v e n l o c a t i o n s , d e s i g n a t e d by l e t t e r s A through

K on f i g u r e s 3-2 and 3 - 3 . These l o c a t i o n s were chosen ( a f t e r

c o n s u l t i n g w i t h mine p e r s o n n e l ) a s be ing l o c a t i o n s where men

a r e normal ly found working, and t h e r e f o r e , where communications

would p o t e n t i a l l y be used .

3 . 3 E l e c t r o m a g n e t i c Noise Spectrum R e s u l t s

3 . 3 . 1 I n t r o d u c t i o n

When r e a d i n g v a l u e s from t h e s p e c t r a l p l o t s i n t h i s

r e p o r t , keep t h e f o l l o w i n g p o i n t s i n mind:

1. F i e l d s t r e n g t h v a l u e s above t h e uppe r r o l l - o f f

f r e q u e n c y and below t h e lower r o l l - o f f f r e q u e n c y a r e

n o t c a l i b r a t e d and a r e t h e r e f o r e n o t shown on t h e

s p e c t r a l p l o t s .

2 . The c o r r e c t u n i t s f o r t h e s p e c t r a l peaks a r e mic ro -

amperes p e r m e t e r (pA/m).

3 . The broadband n o i s e between s p e c t r a l peaks i s a s

s e e n by a r e c e i v e r hav ing t h e same bandwidth a s t h e F a s t

F o u r i e r Transform (FFT) s p e c t r a l r e s o l u t i o n bandwidth

u s e d t o compute t h e s p e c t r u m . The c o r r e c t u n i t s f o r t h e

background n o i s e between peaks a r e microamperes p e r me te r

p e r s q u a r e r o o t x h e r t z [ ( p ~ / m ) / m ] , where x i s t h e

s p e c t r a l r e s o l u t i o n o f t h e FFT (x e q u a l s 7 8 . 1 Hz f o r t h e

1- to-100-kHz p l o t s ) .

An e a s y way t o o b t a i n t h e s p e c t r a l d e n s i t y p e r (one)

r o o t h e r t z f o r broadband n o i s e i s t o s u b t r a c t t h e r e q u i r e d

number o f dB, remembering t h a t t h e u n i t s have now changed t o

( p A / m ) / G . For s p e c t r a w i t h a r e s o l u t i o n bandwidth o f 78 .1

Hz, s u b t r a c t 10 loglO (78 .1) o r 1 8 . 9 3 dB.

The Appendix g i v e s t h e code key used i n d e t e r m i n i n g t h e

meaning o f t h e numbers i n t h e heade r b l o c k a t t h e t o p o f

e a c h spec t rum. The r e s o l u t i o n bandwidth i s a l s o g i v e n on t h e

o r d i n a t e o f t h e p l o t s .

The underground mine workings a r e d i v i d e d i n t o t h r e e

p a r t s f o r d i s c u s s i o n p u r p o s e s , and a r e c a l l e d t h e c r u s h e r -

room a r e a , t h e p r o d u c t i o n a r e a , and t h e development a r e a .

The c r u s h e r room a r e a i s d e f i n e d a r b i t r a r i l y t o be t h e c r u s h e r

room and a d j o i n i n g a r e a s w i t h i n 30 m e t e r s . The p r o d u c t i o n

a r e a s . a r e t h o s e a r e a s p roduc ing o r e , w h i l e t h e development

a r e a s a r e t h o s e a r e a s t h a t do n o t y e t produce o r e .

3 .3 .2 U n c e r t a i n t i e s

The s p e c t r a t o 100 kHz, t o 4 kHz, and t o 20 kHz have

u n c e r t a i n t i e s o f + 1 dB o v e r t h e f o l l o w i n g p o r t i o n s of t h e

s p e c t r a . The 100 kHz s p e c t r a a r e v a l i d e i t h e r from 1 t o 100

kHz o r 10 kHz t o 100 kHz a s s t a t e d o r shown. The 40 Hz t o

4 kHz s p e c t r a shown i n t h i s r e p o r t have t h e u s u a l u n c e r t a i n t y

l i m i t s (+ 1 dB) between 100 Hz and 3 kHz. From 4 0 Hz t o

100 Hz, t h e u n c e r t a i n t y l i m i t s a r e 2 6 dB. From 3 kHz t o

4 kHz t h e u n c e r t a i n t y i s + 1 dB b u t t h e a l i a s e d s i g n a l s a r e

l e s s t h a n t h e s p e c i f i e d 60 dB down. The 20 kHz s p e c t r a

have an u n c e r t a i n t y o f + 1 dB from 750 Hz t o 2 0 kHz.

The s p e c t r a shown t o 180 kHz have an u n c e r t a i n t y of

+ 2 dB from 3 kHz t o 180 kHz.

3 . 3 . 3 Crusher Room Area

F i g u r e 3 - 4 , upper c u r v e , shows t h e magnet ic f i e l d n o i s e

spect rum r e c e i v e d a t t h e an tenna l o c a t i o n i d e n t i f i e d a s A

( i n f i g u r e 3 - 2 ) . Loca t ion A i s t h e development fo reman ' s

o f f i c e and i s about 6 meters from t h e c o r n e r o f t h e c r u s h e r

room. The lowes t c u r v e i n t h i s , and i n f o l l o w i n g f i g u r e s ,

i s t h e r e c e i v i n g sys tem n o i s e . I t i s inc luded t o i n d i c a t e

f r equency ranges i n which sys tem n o i s e may predominate . The

lower c u r v e i s o b t a i n e d by r e p l a c i n g t h e an tenna w i t h a

dummy a n t e n n a . I n f i g u r e 3 - 4 , mine n o i s e i s h i g h e r than

system n o i s e a t a l l f r e q u e n c i e s . The an tenna loop was

p laced f l a t on t h e ground ( t he s e n s i t i v e a x i s was t h e r e f o r e

po in t ed up-down, i . e . , v e r t i c a l l y ) . The n o i s e spectrum a t

l o c a t i o n B (known a s "601 i n t e r s e c t i o n " ) i s s i m i l a r t o

l o c a t i o n A above and i s no t shown.

The e l e c t r i c a l s u b s t a t i o n a t t h e o re - c rushe r i s i d e n t i -

f i e d by l e t t e r C on f i g u r e 3-2 . The o re - c rushe r s u b s t a t i o n

c o n t a i n s two 500 KVA t r ans fo rmer s f o r s t epp ing down t h r e e -

phase 4160 v o l t s , t o th ree-phase 480 v o l t s . The s tepped

down v o l t a g e i s used by c rushe r f e e d e r s , smal l conveyers ,

f a n s , and o t h e r s i m i l a r equipment i n t h e a r e a of t h e c r u s h e r .

The o re - c rushe r (a jaw c rushe r type) i s run by a 150-horsepower,

t h r ee -phase , 4160 v o l t , 20.3 ampere, wound-rotor motor. The

main c o n t a c t o r s f o r t h i s motor a r e a c t i v a t e d by dc c u r r e n t .

The dc c u r r e n t i s supp l i ed by a s i n g l e - p h a s e , 230 v o l t ,

b r idge r e c t i f i e r . The spectrum of t h e no i se measured i n t h e

c rushe r s u b s t a t i o n i s shown i n f i g u r e 3-5. From 2 0 kHz up,

t h e spectrum i s s i m i l a r i n ampli tude and s lope t o t h e no i se

spectrum a t t h e development foreman1 s o f f i c e ( l o c a t i o n A).

Below 2 0 kHz s e v e r a l d i f f e r e n c e s appear . A t about 13 kHz,

t h e r e i s a r e l a t i v e maximum, 10 dB h ighe r than a t A. Also,

t h e no i se a t 6 0 H z i s about 30 dB s t r o n g e r a t C ( c rusher

s u b s t a t i o n ) than a t A. F igure 3-6 was taken a t l o c a t i o n C ,

b u t w i t h h igher g a i n t o reduce rece iver - sys tem n o i s e . To be

a b l e t o use h ighe r r e c e i v e r g a i n , t h e high-ampl i tude, low-

f requency n o i s e was a t t e n u a t e d below 1 0 kHz, and t h e r e f o r e

t h e spectrum shows d a t a only from 1 0 kHz t o 1 0 0 kHz.

F igure 3-6 was taken wi th t h e c rushe r n o t o p e r a t i n g .

F igure 3-7 was taken wi th t h e c rushe r o p e r a t i n g . The only

n o i s e appa ren t ly caused by t h e c rushe r occurs between 60 kHz

and 9 0 kHz a s an i n c r e a s e vary ing from 0 t o 8 dB. I n t e r f e r e n c e

l i n e s a r e p r e s e n t and a r e s e p a r a t e d by approximately 360 H z .

The t h r e e l o c a t i o n s A , B , and C a r e a l l w i t h i n 30 meters .

( d i r e c t l y th rough rock) of t h e c r u s h e r room. The t h r e e l o c a -

t i o n s show abou t t h e same n o i s e a m p l i t u d e , and t h e same r a t e

o f n o i s e r e d u c t i o n ( s l o p e ) w i t h i n c r e a s i n g f r equency above

2 0 kHz. The s l o p e i s measured t o be 4 . 5 dB d e c r e a s e i n n o i s e

p e r 1 0 kHz, i . e . , t h e n o i s e d e c r e a s e s w i t h i n c r e a s i n g f r e -

quency ( - 4 . 5 dB p e r 1 0 kHz). These s p e c t r a show background

n o i s e t h a t i s p r e s e n t a t a l l t i m e s . Superimposed on t h i s

background a r e s h o r t d u r a t i o n s p i k e s , presumably s w i t c h i n g

t r a n s i e n t s . Th i s p a t t e r n of s t e a d y background w i t h s u p e r -

imposed s p i k e s was found a t eve ry l o c a t i o n . A t a l l o t h e r

l o c a t i o n s ( o t h e r t h a n A , B , and C) however, t h e a m p l i t u d e was

l e s s and t h e r a t e o f n o i s e d e c r e a s e w i t h f r equency was g r e a t e r .

I n t h e immediate v i c i n i t y o f t h e c r u s h e r room, t h e n o i s e was

g r e a t e s t . The s t e a d y - s t a t e n o i s e background c o n s i s t e d o f a

t r a i n o f power l ine r e l a t e d s p i k e s a v e r a g i n g 2.78 m s a p a r t .

T h i s t ime s e p a r a t i o n i n d i c a t e s r e c t i f i c a t i o n o r o t h e r f u l l -

wave u s e o f t h r e e - p h a s e power. A t h r e e - p h a s e mercury r e c t i -

f i e r f o r t r o l l e y hau lage purposes i s p r e s e n t e l sewhere i n t h e

mine (more t h a n 250 m e t e r s away h o r i z o n t a l l y and abou t 90

m e t e r s v e r t i c a l l y ) . A s w i l l be shown l a t e r , measurements

made n e a r t h e 4160 v o l t l i n e s powering t h e c r u s h e r showed

much lower n o i s e t h a n t h e c r u s h e r room a r e a . The c o n c l u s i o n

i s t h a t something , a s y e t u n i d e n t i f i e d , i n t h e c r u s h e r room

a r e a g e n e r a t e d t h e harmonics o f 360 H z . Noise c o n t o u r maps

t h a t conf i rm t h i s c o n c l u s i o n w i l l be p r e s e n t e d l a t e r .

F i g u r e 3 -8 shows t h e spect rum (measured i n l o c a t i o n C

w i t h t h e c r u s h e r runn ing) from 40 Hz t o 4 kHz. T h i s shows

t h e l a r g e s t ampl i tude 60 Hz measured i n t h e mine. F e a t u r e s

o f t h i s spec t rum a r e (1) t h e p r e s e n c e o f s t r o n g odd numbered

ha rmonics , and (2) t h e absence o f s t r o n g 360 Hz and i t s

harmonics . S t rong 360 Hz and harmonics have been a s s o c i a t e d

w i t h t h r e e - p h a s e f u l l wave r e c t i f i e r s i n o t h e r mines measured.

To cover t h e ampl i tude range o f t h e measured s i g n a l , t h e

a b s c i s s a o f f i g u r e 3-8 shows 130 dB of ampl i tude range . A l l

o t h e r s p e c t r a u s e an a b s c i s s a w i t h 100 dB of ampl i tude range .

Two o t h e r a r e a s t h a t were a l s o w i t h i n 30 mete r s o f t h e

c r u s h e r room a r e t h e c r u s h e r a c c e s s d r i f t ( l a b e l e d D on

f i g u r e 3-2) and t h e 603 i n t e r s e c t i o n ( l a b e l e d E) . F igure

3-9 shows t h e spect rum measured a t l o c a t i o n D . The n o i s e

ampl i tude i s lower a t D t h a n a t A by 10 t o 20 dB below

1000 H z , and by about 3 dB between 1500 Hz and 10 kHz. Above

10 kHz t h e n o i s e changes w i t h a s l o p e of -6 .75 dB per 10 kHz

o f i n c r e a s i n g f requency ( a s opposed t o - 4 . 5 dB p e r 10 kHz a t

l o c a t i o n A). Loca t ion D was t h e o n l y a r e a where measurements

were made on two d i f f e r e n t d a y s . F igure 3-10 shows t h e

spect rum o b t a i n e d two days l a t e r a t l o c a t i o n D . Although

t h e spect rum s l o p e i s s i m i l a r , t h e ampl i tude i s 3 t o 8 dB

lower on t h e l a t e r day . An e x c e p t i o n i s a minor "bump" be -

tween 1 2 and 15 kHz where t h e ampl i tude i s o n l y about 1 t o

2 dB l e s s . The spect rum o b t a i n e d f o r a h o r i z o n t a l a n t e n n a ,

o r i e n t e d f o r maximum p ickup , was about 6 dB lower , and i s n o t

shown. I n g e n e r a l , n o i s e f l u c t u a t i o n s were l e s s i n t h i s mine

t h a n i n o t h e r mines where EM n o i s e has been measured. F igure

3-11 shows t h e 40 H z t o 4 kHz spectrum measured a t l o c a t i o n D .

The one remaining measurement t a k e n w i t h i n 30 mete r s o f

t h e c r u s h e r room was t a k e n a t i n t e r s e c t i o n 603 ( l o c a t i o n E )

and i s shown i n f i g u r e 3 -12 . Immediately a p p a r e n t i s t h e

much f a s t e r r a t e o f n o i s e d e c r e a s e w i t h i n c r e a s i n g f requency

( s t e e p e r s l o p e ) . The s l o p e measures -14.75 dB p e r 10 kHz.

The ampl i tude i n t h e r e g i o n o f 5 t o 6 kHz i s 1 o r 2 dB lower

t h a n a t A ( t h e h i g h e s t n o i s e l o c a t i o n ) . The n o i s e ampl i tude

below 1 kHz i s 10 t o 20 dB lower . No e x p l a n a t i o n i s o f f e r e d

f o r t h e v a r i a t i o n i n s l o p e .

3 . 3 . 4 Product i o n Area

The p r o d u c t i o n a r e a s a r e d e f i n e d a s a r e a s t h a t a r e

c u r r e n t l y p roduc ing o r e . The p r o d u c t i o n a r e a measured was

t h e 606E e n t r y l a b e l e d F on f i g u r e 3-2. Th i s e n t r y was one

o f a s e r i e s o f s i m i l a r e n t r i e s l i n e d up 1 5 me te r s under t h e

o r e body where L H D ' s would l o a d w i t h o r e . No power l i n e s

were i n t h e a r e a . The p a r t i c u l a r e n t r y where n o i s e was

measured was i n u s e a s a d i n n e r a r e a . The middle c u r v e i n

f i g u r e 3 - 1 3 shows t h e background n o i s e measured a t l o c a t i o n

F. The background n o i s e a t 10 kHz i s about 9 dB lower than

t h a t found a t l o c a t i o n A. The r a t e o f change o f t h e n o i s e

w i t h f r equency ( s l o p e ) i s - 6 . 0 dB p e r 1 0 kHz, s l i g h t l y

s t e e p e r t h a n a t A . A t l o c a t i o n A , p ickup by t h e a n t e n n a w i t h

t h e s e n s i t i v e a x i s h o r i z o n t a l and o r i e n t e d f o r maximum pickup

(45' t o t u n n e l ) v a r i e d from 11 dB l e s s a t 1 0 kHz t o 14 dB l e s s

a t 35 kHz (no t shown) t h a n f o r v e r t i c a l p i c k u p . I n f i g u r e

3 - 1 3 , t h e upper c u r v e shows a t y p e o f "high f requency" n o i s e

produced by a LHD t h a t has p a s s e d by . The LHD was o u t o f

s i g h t around a c o r n e r and was abou t 1 0 t o 1 5 m e t e r s away. The

fundamenta l i s n e a r 11 ,900 H z , and harmonics (up th rough t h e

8 t h n e a r 96 kHz) a r e v i s i b l e . T h i s "h igh f requency" n o i s e i s

h i g h e r t h a n t h e background by a t l e a s t 1 0 dB a t 60 kHz. The

l o o p a n t e n n a w i t h h o r i z o n t a l s e n s i t i v e a x i s p i c k e d up about

1 2 dB l e s s "high f requency" LHD n o i s e t h a n t h e loop w i t h t h e

s e n s i t i v e a x i s v e r t i c a l ( n o t shown). The s o u r c e o f t h i s

"h igh f requency" LHD n o i s e i s unknown.

F i g u r e 3-14 shows a much more s e v e r e t y p e o f n o i s e

e m i t t e d by t h e LHD a t l o c a t i o n F. The LHD was p a s s i n g

d i r e c t l y by t h e a n t e n n a s e t i n t h e e n t r y ( s e n s i t i v e a x i s

v e r t i c a l ) and was t h e r e f o r e abou t 2 me te r s away. The f r e - - quency o f t h e fundamental component o f t h i s n o i s e i s abou t

425 H z . T h i s "low f requency" LHD n o i s e i s some 6 dB s t r o n g e r

t h a n t h e "high frequency1' LHD n o i s e a t 96 kHz. The "low

frequency" LHD n o i s e a t 850 Hz a t l o c a t i o n F , i s some 4 0 dB

h ighe r t han t h e background no i se a t 850 H z a t l o c a t i o n A.

A t 2550 Hz ( t he 6 t h harmonic) t h e LHD n o i s e i s some 2 0 dB

h i g h e r than t h e background no i se a t l o c a t i o n A . F igure 3-15

shows t h e 40 Hz t o 4 kHz spectrum of t h e LHD going by

l o c a t i o n F. In t h i s spectrum, t h e comparat ively weak

fundamental can be s een . This spectrum covers a r e a l time

p e r i o d o f 1.34 seconds . During t h i s t ime , t h e d i e s e l engine

changed i t s speed so t h a t t h e a l t e r n a t o r i n t e r f e r i n g funda-

mental frequency swept over t h e range from 330 Hz t o 4 1 0 H z .

The second harmonic swept over twice t h e range o r 660 Hz t o

820 H z . The t h i r d harmonic i s not v i s i b l e . The f o u r t h

harmonic swept over t h e range from about 1320 H z t o 1640 H z ,

and so on. While no t considered neces sa ry , a 3-D p l o t could

r e s o l v e whether t h e engine speed was i n c r e a s i n g o r dec reas ing ,

and whether t h e LHD was approaching o r reced ing . The f r e -

quency of t h i s n o i s e was noted i n t h e mine t o vary over wide

l i m i t s i n p ropo r t i on wi th engine speed , c e r t a i n l y over a

f requency range g r e a t e r than two t o one . This n o i s e can

t h e r e f o r e be expected t o cover a l l t h e spectrum above t h e

lowest fundamental ( i . e . , it w i l l l e ave no permanent h o l e s ) .

The n o i s e i s presumed t o be genera ted by t h e a l t e r n a t o r on

t h e d i e s e l eng ine . The power i s used f o r h e a d l i g h t s , b a t t e r y

cha rg ing , and o t h e r v e h i c l e a c c e s s o r i e s . The LHD's u t i l i z e

a mechanical to rque c o n v e r t e r , so a p o s s i b l e n o i s e f i e l d from

a d i e s e l - e l e c t r i c type d r i v e system can be r u l e d o u t . The

L H D ' s a r e h igh ly mobi le . Level 6 i s des igned t o be 1 0 0 p e r -

c e n t a c c e s s i b l e by LHD. There fore , any p l a c e i n t h e mine w i l l

be s u b j e c t t o t h e type of n o i s e shown i n f i g u r e s 3-13, 3-14,

and 3-15, whenever a LHD i s p r e s e n t .

3 . 3 . 5 Development Area

The development p o r t i o n s o f t h e mine a r e d e f i n e d a s

a r e a s n o t y e t p roduc ing o r e . Measurements were made a t t h r e e

l o c a t i o n s , l e t t e r e d G , H and I . Loca t ions G and H were n e a r

pneumatic rock d r i l l s and l o c a t i o n I was n e a r t h e e x c a v a t i o n

o f a new underground c r u s h e r room. These t h r e e l o c a t i o n s were

100 m e t e r s , 140 m e t e r s , and 200 m e t e r s d i s t a n t from t h e c r u s h e r

room, r e s p e c t i v e l y . The background n o i s e measured a t t h e s e

t h r e e a r e a s d e c r e a s e d monoton ica l ly a s d i s t a n c e from t h e

c r u s h e r room i n c r e a s e d . The n o i s e measured a t l o c a t i o n G , t h e

j u m b o - d r i l l i n g f a c e , i s shown i n f i g u r e 3-16. The n o i s e

spect rum a t l o c a t i o n G i s 20 dB lower t h a n a t l o c a t i o n A .

The s l o p e i s t h e same a s a t A ( - 4 . 5 dB/10 kHz).

Loca t ion H was l o c a t e d n e a r an o p e r a t i n g f a n h o l e d r i l l .

The pneumat ic , f a n h o l e d r i l l was v e r y n o i s y a c o u s t i c a l l y ( t h e

o p e r a t o r wore e a r p r o t e c t o r s ) . However, s i n c e t h e d r i l l used

no e l e c t r i c a l power, it produced no measurable magnet ic n o i s e .

The spect rum measured a t l o c a t i o n H i s n o t shown. I t i s

s i m i l a r t o t h a t shown i n f i g u r e 3-16, b u t i s abou t 10 dB

lower .

The lowes t n o i s e l e v e l measured i n t h e mine was a t

l o c a t i o n I . Here , e x c a v a t i o n was t a k i n g p l a c e f o r a f u t u r e

underground c r u s h e r room (more e x a c t l y , t h e No. 2 mine t r a n s -

f e r d r i f t ) . Th i s l o c a t i o n was 200 mete r s away h o r i z o n t a l l y

and 85 mete r s lower t h a n t h e c r u s h e r room o p e r a t i n g on l e v e l

6 . Loca t ion I c o n t a i n e d a 40-horsepower, t h r e e - p h a s e , 480-

v o l t v e n t i l a t i n g f a n . F igure 3-17 shows t h e n o i s e measured

a t I , t h e lowes t n o i s e l e v e l measured i n t h e Grace mine.

The n o i s e shown i s e s s e n t i a l l y system n o i s e , and a s such

e s t a b l i s h e s an upper l i m i t t o mine n o i s e i n q u i e t c o n d i t i o n s .

The e x c a v a t i o n a t l o c a t i o n I was be ing performed by

a huge V-10 d i e s e l LHD w i t h an e i g h t c u b i c - y a r d (6.17 m3)

scoop c a p a c i t y . Th i s LHD would load a t I , t r a v e l 750 meters

t o t h e o p e r a t i n g c r u s h e r , dump, and r e t u r n . F igure 3-18 shows

t h e spect rum measured w i t h t h e LHD about 5 me te r s from t h e

a n t e n n a . The fundamental f requency h e r e i s 535 H z , w i t h t h e

s i x t h harmonic predominat ing . The s i x t h harmonic ( a t about

3210 Hz) i s some 4 2 dB s t r o n g e r t h a n t h e background n o i s e .

Again, f r equency v a r i e d wide ly w i t h t h e engine RPM. F igure

3-19 shows t h e low f requency p o r t i o n o f t h e spectrum w i t h t h e

V-10 LHD p r e s e n t . F i g u r e 3-20 was t a k e n w i t h t h e LHD a b s e n t ,

w i t h h i g h e r g a i n , (lower system n o i s e ) and shows t h e background

p o w e r - l i n e n o i s e .

3 . 3 . 6 Cross D r i f t S u b s t a t i o n

A second s u b s t a t i o n where measurements were made i s

l o c a t e d i n t h e # 6 c r o s s d r i f t , i d e n t i f i e d a s J i n f i g u r e 3 - 2 .

This s u b s t a t i o n c o n t a i n s a 300 KVA step-down t r a n s f o r m e r (4160

v o l t s t o 480 v o l t s ) f o r supp ly ing power t o v e n t i l a t i n g f a n s .

Both c i r c u i t s f e e d i n g power t o t h e c r u s h e r room a r e a p a s s

th rough t h i s s u b s t a t i o n . F i g u r e 3-21 shows t h e spectrum

measured a t t h e s u b s t a t i o n . The spectrum s l o p e i s t h e same

a s t h e s l o p e measured a t l o c a t i o n A; however t h e ampl i tude

a t J i s 10 dB l e s s . S ince t h e ampl i tude i s l e s s a t J than

a t A n e a r t h e c r u s h e r , and a l l t h e power f o r t h e c r u s h e r

room equipment p a s s e s through J , i t i s concluded t h e pr imary

s t e a d y - s t a t e mine background n o i s e i s g e n e r a t e d i n o r n e a r

t h e c r u s h e r room. The low f requency expanded spectrum i s

s i m i l a r t o t h a t shown f o r l o c a t i o n D ; w i t h t h e e x c e p t i o n t h a t

t h e 60 H z f i e l d s a t l o c a t i o n J were abou t 1 3 dB more than

t h o s e a t D .

3 . 3 . 7 Underground Workshop -Lunchroom

F i g u r e 3-3 shows an expanded view of t h e underground

s e r v i c i n g and f u e l i n g f a c i l i t i e s f o r t h e L H D ' s . F i g u r e 3 - 1

shows t h e r e l a t i o n s h i p between t h e r e s t o f t h e mine and t h e

shop a r e a . T h i s a r e a a l s o c o n t a i n s o f f i c e s , a LHD p a r k i n g

a r e a , a lunchroom ( w i t h f l u o r e s c e n t l i g h t s ) , o r e s t o r a g e

s i l o s , and t h e motor f o r t h e main conveyer b e l t from t h e

c r u s h e r room. The c o n v e y e r - b e l t motor h a s a 200 horsepower

r a t i n g and u s e s 4160 v o l t s . The o n l y r e c t i f i e r i d e n t i f i e d

i n t h i s a r e a was a sma l l 1 1 0 v o l t s i n g l e - p h a s e u n i t used f o r

l i g h t i n g i n d i c a t o r lamps on t h e conveyer c o n t r o l p a n e l .

Measurements were t a k e n i n t h e lunchroom, l a b e l e d by

l e t t e r K on f i g u r e 3 -3 . F igure 3-22 shows t h e spect rum

measured i n t h e lunchroom. The an tenna s e n s i t i v e a x i s

was v e r t i c a l . With t h e an tenna a x i s h o r i z o n t a l and o r i e n t e d

f o r maximum p i c k u p , t h e measured spect rum i s e s s e n t i a l l y t h e

same a s shown i n f i g u r e 3 -22 , w i t h t h e e x c e p t i o n t h a t t h e

h o r i z o n t a l spec t rum i s 2 t o 4 dB lower between 2 kHz and

5 kHz ( n o t shown). I n comparing t h e s p e c t r a measured a t

l o c a t i o n K and l o c a t i o n A , t h e spec t rum a t K: (1) i s abou t

1 5 dB l o w e r , (2) has about t h e same s l o p e between 5 and

40 kHz ( e x c e p t f o r a bump a t 1 0 t o 1 5 kHz), and (3) e x h i b i t s

a p e r i o d i c n o i s e below 5 kHz and between abou t 40 and 90 kHz.

We s p e c u l a t e t h a t t h e a p e r i o d i c n o i s e comes from t h e f l u o r e s c e n t

l i g h t s i n t h e lunchroom. The p o w e r l i n e - r e l a t e d t r a i n o f

p u l s e s , a v e r a g i n g 2.78 m s s p a c i n g , was obse rved w i t h t h e

p o r t a b l e o s c i l l o s c o p e a t t h e lunchroom a s w e l l a s a t t h e

o p p o s i t e end o f t h e mine n e a r t h e c r u s h e r room.

F i g u r e 3 -23 shows t h e low-frequency , expanded spect rum

measured i n t h e lunchroom. S t r o n g odd harmonics o f 60 Hz

a r e e v i d e n t .

Figure 3-24 shows a LHD pass ing by a r e a K. I t was

measured w i t h d i f f e r e n t i n s t rumen ta t i on . This spectrum

extends o u t t o 2 0 kHz. Spec t ra t aken o u t t o 180 kHz i n d i c a t e

LHD n o i s e con t inues a t a cons t an t o r s l i g h t l y r i s i n g l e v e l

from 100 t o 180 kHz (not shown).

3 .3 .8 Composite of Worst Case Steady Noise

F igure 3-25 is a composite of t h e h i g h e s t s t e a d y - s t a t e

background n o i s e ( a r ea A) o v e r l a i n by t h e h i g h e s t LHD s p e c t r a

measured ( a r ea F ) . A l i n e (or envelope) drawn over t h e peaks

o f t h e LHD and background n o i s e may reasonably be used f o r

h i g h e s t expected n o i s e l e v e l s i n Grace Mine. Figure 3-17

shows t h e lowest n o i s e l e v e l measured (a rea I ) , some 65 dB

lower a t 1 0 0 0 Hz t o 35 dB lower a t 4 0 kHz.

3.4 Pu lse Produced wi th Explosion

Seve ra l impulses a s s o c i a t e d w i t h b l a s t i n g i n t h e mine

were recorded. The c l o s e s t exp los ion produced t h e s t r o n g e s t

impulse; t h e compression wave i n t h e rock and t h e sound

fol lowed t h e impulse by a f r a c t i o n of a second. Figure 3-26

shows t h e spectrum of t h e impulse, which was recorded a t

l o c a t i o n A a few seconds a f t e r t h e n o i s e background spectrum

was recorded. Compared t o t h e wors t c a s e composite ( f i g u r e

3-25) , t h e impulse spectrum ampli tude i s 13 dB lower a t 1 kHz,

equal a t 5 kHz, and up t o 7 dB h igher from 10 kHz t o 90 kHz.

Figure 3-27 shows a 1.02 second segment of d a t a t aken

dur ing t h e exp los ion . The f i g u r e i s a contour map (produced

from 157 i n d i v i d u a l s p e c t r a ) showing magnetic f i e l d s t r e n g t h

from 1 t o 1 0 0 kHz a s a f u n c t i o n of t ime . The contour i n t e r -

v a l i s 3.33 dB. The f i g u r e coo rd ina t e a x i s format i s i n t e n -

t i o n a l l y chosen t o be unconventional so t h a t t h e axes w i l l

be c o n s i s t e n t w i th t h e 3-D f i g u r e p resen ted l a t e r . Figure

3-27 shows t h r e e groups of 5 t o 7 i n d i v i d u a l de tona t ions

w i th a s i n g l e de tona t ion a t 1 . 0 second d e l a y . The f i n a l

de tona t ion may be t h e beginning of a p o s s i b l e f o u r t h group,

o r s i n g l e i s o l a t e d sho t used near t h e roof o f t h e d r i f t . The

d u r a t i o n of a group of de tona t ions i s about 1 2 5 t o 1 7 5 m s .

The s e p a r a t i o n between t h e f i r s t de tona t ion of s e q u e n t i a l

groups i s 2 5 0 t o 4 5 0 m s . While no p o s i t i v e i d e n t i f i c a t i o n a s

t o l o c a t i o n and type o f b l a s t was made a t t h e time t h e meas-

urements were made, i t i s be l i eved t h e b l a s t was i n a small

3 by 2 . 1 meter development d r i f t . These b l a s t s t y p i c a l l y use

2 0 t o 2 4 ho l e s f i l l e d wi th exp los ives ( f i g u r e 3-26 shows

approximately 2 1 i n d i v i d u a l d e t o n a t i o n s , o r ho l e s ) . The ho le s

a r e sho t i n c o n c e n t r i c "wedges" (or groups) ; t h e c e n t r a l

wedge i s de tona ted f i r s t , w i t h fo l lowing wedges delayed by

m u l t i p l e s of 2 5 m i l l i s e c o n d s . This type of s h o t i s sometimes

done n e a r t h e noon hour ; d a t a f o r f i g u r e 3-27 was taken a t

11:35 a.m. The p o s s i b i l i t y t h a t t h e s i g n a t u r e shown came

from t h e e l e c t r i c a l pu l se used i n i g n i t i n g t h e cap i s r u l e d

o u t . A l l caps i n t h e e n t i r e b l a s t a r e connected e l e c t r i c a l l y

i n p a r a l l e l and a r e i g n i t e d s imul taneous ly by a s i n g l e e l e c -

t r i c a l impulse . The r e q u i r e d de l ay i s b u i l t i n t o each cap .

The magnetic s i g n a t u r e shown i n f i g u r e 3-27 probably o r i g i n a t e s

from t h e movement of f r e e ions i n t h e expanding plasma p ro -

duced by t h e de tona t ing n i t r a t e exp los ives .

F igure 3- 28 shows a computer -drawn th ree-d imens iona l (3 -D)

view of t h e f i r s t two "wedges" f i r e d . The time covered i s

4 5 0 ms. This shows t h e i n e q u a l i t y i n i n t e n s i t y of each ho le

(which i s t o be expected a s each ho l e i s of d i f f e r e n t l e n g t h

and loaded d i f f e r e n t l y ) .

3 . 5 Mine Noise Contour Maps

To g i v e a b e t t e r p i c t u r e o f how n o i s e v a r i e d a s a

f u n c t i o n o f l o c a t i o n , s e v e r a l c o n t o u r maps a r e p r e s e n t e d .

Four f r e q u e n c i e s were s e l e c t e d , 2 kHz, 10 kHz, 20 kHz and

60 kHzy and from t h e s e d a t a f o u r c o n t o u r maps were p roduced .

Each map i s produced by s e l e c t i n g a g i v e n f r e q u e n c y , s a y 2 kHz,

and t h e n r e c o r d i n g t h e ' a m p l i t u d e measured a t each l o c a t i o n

i n t h e mine on a map. L ines o f c o n s t a n t magne t i c n o i s e l e v e l

a r e t h e n drawn on t h e map. Areas of h i g h o r low n o i s e l e v e l

can t h e n be more e a s i l y l o c a t e d . I t i s acknowledged t h a t

e l e v e n measurement l o c a t i o n s a r e n o t enough l o c a t i o n s t o

p r o v i d e a d e t a i l e d map, a c c u r a t e enough t o produce r e l i a b l e

e x t r a p o l a t i o n o f n o i s e i n t e n s i t i e s a t a r e a s f a r from l o c a -

t i o n s a c t u a l l y measured. The i n t e n t i s t o g i v e a f e e l i n g of

t h e o v e r a l l n o i s e d i s t r i b u t i o n u s i n g a v a i l a b l e i n f o r m a t i o n .

F i g u r e s 3 - 2 9 , 3-30 , 3-31 and 3-32 show Grace Mine n o i s e

c o n t o u r maps f o r f r e q u e n c i e s 2 kHz, 10 kHz, 20 kHz, and 60 kHz,

r e s p e c t i v e l y . Every map shows an a r e a o f h i g h n o i s e c e n t e r e d

a p p r o x i m a t e l y on t h e c r u s h e r room. Note a l s o t h a t t h e n o i s e

t e n d s t o f o l l o w t h e p o w e r l i n e s ( t h r o u g h a r e a J) t o some e x t e n t .

3 . 6 Misce l l aneous Measurements

3 . 6 . 1 E l e c t r i c F i e l d

An a c t i v e d i p o l e , 1 . 9 3 m e t e r s l o n g , was used a s a s e n s o r

on t h e second day w h i l e i n a r e a D ( c r u s h e r a c c e s s d r i f t ) .

T h i s d i p o l e has n o t been c a l i b r a t e d , n o r have any sys t em

n o n l i n e a r i t i e s i n g a i n v s . f r equency been removed by a

c o r r e c t i o n c u r v e . A l l f i e l d s t r e n g t h i n f o r m a t i o n i s t h e r e -

f o r e q u a l i t a t i v e o n l y . F i g u r e 3-33 shows u n p r o c e s s e d d a t a

r e s u l t s o b t a i n e d w i t h t h e d i p o l e ends p o i n t e d a c r o s s ( p e r -

p e n d i c u l a r t o ) t h e d r i f t . Measurements t a k e n w i t h t h e d i p o l e

p o i n t e d v e r t i c a l l y (up -down) and i n t h e d i r e c t i o n o f ( p a r a l l e l

t o ) t h e d r i f t gave s p e c t r a t h a t were 10 o r more dB lower t h a n

f i g u r e 3 -33 . Maximum n o i s e p i c k u p was found a few t e n s o f

m e t e r s away a l o n g t h e d r i f t u n d e r some s t e e l r e i n f o r c i n g r i b s .

The n o i s e s p e c t r u m h a s t h e same shape a s f i g u r e 3-33 and i s

2 dB h i g h e r .

Because o f t h e r e l a t i v e n a t u r e o f t h e e l e c t r i c f i e l d

measurements , t h e p r i n c i p a l c o n c l u s i o n s t h a t can be drawn a r e

r e s t r i c t e d t o : (1) a n e l e c t r i c n o i s e f i e l d e x i s t s i n l o c a t i o n

D; (2) it i s p r i m a r i l y a t r a i n o f s p i k e s , s i m i l a r t o t h e mag-

n e t i c f i e l d n o i s e , o c c u r r i n g a t an a v e r a g e r a t e o f 360 t i m e s

p e r s e c o n d ; and (3) t h e e l e c t r i c f i e l d i s s t r o n g e s t f o r h o r i -

z o n t a l d i p o l e o r i e n t a t i o n a c r o s s ( p e r p e n d i c u l a r t o ) t h e d r i f t .

3 . 6 . 2 Measurement o f V o l t a g e Between "Roof B o l t s "

A s i n g l e r o o f - s u p p o r t - b o l t measurement was per formed a t

l o c a t i o n D on t h e second d a y . The s e p a r a t i o n between t h e two

b o l t s was 10 m e t e r s , and t h e v o l t a g e was measured u s i n g non-

s h i e l d e d c o p p e r w i r e c l i p p e d t o t h e b o l t s . F i g u r e 3-34

shows t h e r e s u l t i n g s p e c t r u m . No r e c e i v e r sys t em n o i s e

c u r v e i s a v a i l a b l e f o r t h i s spec t rum. However, s i n c e t h e

c h a r a c t e r i s t i c 360 H z harmonic s t r u c t u r e e x t e n d s o u t t o

a b o u t 40 kHz, v a l u e s o u t t o 40 kHz a r e p r o b a b l y n o t o b s c u r e d

by sys t em n o i s e . I t i s n o t p o s s i b l e t o s a y t h a t t h e v o l t a g e

measured between b o l t s was induced by any s i n g l e mechanism.

I t may be any combina t ion o f e l e c t r i c f i e l d and magne t i c

f i e l d a c t i n g on t h e copper w i r e s c o n n e c t e d t o t h e b o l t s , a s

w e l l a s by any p o t e n t i a l p roduced by c u r r e n t f l o w between

t h e b o l t s . To enhance e l e c t r i c f i e l d e f f e c t s , a measurement

was made w i t h a s i n g l e w i r e ( a "monopole"). The r e s u l t i n g

n o i s e s p e c t r u m i s 10 t o 1 5 dB h i g h e r i n t h e r ange from 1 kHz

t o 30 kHz t h a n t h e s p e c t r u m shown i n f i g u r e 3 - 3 4 . T h i s i s

p r o b a b l y due t o t h e h i g h i n p u t impedance ( l o 8 ohms) o f t h e

r e c e i v e r . T h i s e f f e c t h a s been found i n o t h e r mines .

3.7 I n t e r c o m p a r i s o n o f M a g n e t i c - F i e l d Noise i n D i f f e r e n t Mines

3 . 7 . 1 Summaryof 1 t o 3 kHz Data

F i g u r e 3 - 3 5 , l ower c u r v e , i s a summary o f magne t i c f i e l d

s t r e n g t h a t p o w e r - l i n e harmonic f r e q u e n c i e s o b s e r v e d w i t h i n

Grace . P l o t t e d a r e t h e l o g a r i t h m i c a v e r a g e s o f t h e s i x h i g h e s t

p o w e r l i n e h a r m o n i c s . Average f i e l d s a t E , F , G , H , and I a r e

p l o t t e d a s a f u n c t i o n o f d i s t a n c e from t h e c r u s h e r room.

P o i n t C i s c r u s h e r room s u b s t a t i o n d a t a t a k e n w i t h t h e a n t e n n a

a b o u t 3 m e t e r s from t h e c o n t r o l p a n e l s .

The s i x f r e q u e n c i e s chosen a r e between 1020 Hz and 2940

H z , b u t a r e n o t , i n a l l c a s e s , t h e t h i r d t h r o u g h e i g h t h a r -

monics o f 360 H z , which were t h e f r e q u e n c i e s o f maximum e n e r g y

i n Robena No. 4 Mine. The f r e q u e n c i e s chosen a r e c l o s e enough

t o make a v a l i d compar ison between n o i s e l e v e l s i n Robena and

Grace .

The Grace n o i s e (as shown by t h e lower approx ima te d a t a

t r e n d c u r v e ) i s 10 t o 20 dB lower t h a n t h e Robena n o i s e up

t o 100 m e t e r s . Beyond 100 m e t e r s , t h e Grace n o i s e f a l l s o f f

much f a s t e r t h a n t h e Robena n o i s e . Two f a c t o r s may c o n t r i b u t e

t o t h i s r a p i d f a l l o f f ;

(1) The Robena n o i s e comes p r i m a r i l y from a l i n e s o u r c e

( t h e t r o l l e y - r a i l t r a n s m i s s i o n - l i n e ) whereas t h e

Grace n o i s e comes p r i m a r i l y from a p o i n t s o u r c e i n

t h e c r u s h e r room.

(2) The g e o l o g i c a l geometry and r o c k t y p e s a r e d i f -

f e r e n t . I n Grace , p r o p a g a t i o n i s e n t i r e l y t h r o u g h

d r y d i a b a s e r o c k , 1 5 t o 45 m e t e r s below an o r e body

c o n t a i n i n g 40 p e r c e n t m a g n e t i t e and 60 p e r c e n t

c h l o r i t e . I n Robena, p r o p a g a t i o n i s t h r o u g h c o a l

s e v e r a l m e t e r s t h i c k sandwiched between s h a l e .

3 . 7 . 2 Magne t i c -F ie ld S p e c t r a 3 kHz t o 180 kHz

I n a d d i t i o n t o t h e low-frequency comparison g iven i n t h i s

s e c t i o n , s p e c t r a l p l o t s t o 180 kHz t a k e n from s e v e r a l mines

c a n g i v e some i d e a a s t o r e l a t i v e n o i s e l e v e l s i n t h e d i f -

f e r e n t mines . The s p e c t r a have 2 2 dB u n c e r t a i n t y from

3 t o 180 kHz, b u t a r e shown t o 200 kHz. S p e c t r a o f e l e c t r i c a l l y

n o i s y p i e c e s o f equipment i n f o u r d i f f e r e n t mines a r e shown

superimposed on f i g u r e 3 -36 . There may have been n o i s i e r

equipment , b u t t h o s e s e l e c t e d were : (1) a LHD i n Grace Mine,

(2) a s h u t t l e buggy and con t inuous miner combinat ion i n

McElroy Mine, (3) an u n i d e n t i f i e d machine i n a longwal l s e c t i o n

i n Itmann # 3 Mine, and ( 4 ) a c a r p u l l i n Robena Mine ( t h i s

c u r v e e x t e n d s o n l y t o 100 kHz). A s might be e x p e c t e d , machines

which depend on e l e c t r i c a l power f o r b a s i c work f o r c e do make

more e l e c t r i c a l n o i s e t h a n d i e s e l -powered equipment which

o n l y h a s a n c i l l a r y e l e c t r i c s y s t e m s . A l s o , a l t h o u g h t h e

s p a c i n g between measurement sys tem a n t e n n a and s o u r c e were - 3 a p p r o x i m a t e l y t h e same, t h e s p a c i n g makes a c r u c i a l (d )

d i f f e r e n c e ; t h e r e f o r e t h e s e c u r v e s a r e somewhat q u a l i t a t i v e ,

even though t h e measurement u n c e r t a i n t y i s l e s s t h a n 2 dB.

A s i m i l a r comparison o f n o i s e l e v e l s i n f o u r d i f f e r e n t

mines , away from n o i s e s o u r c e s , b u t n e a r t r a n s m i s s i o n l i n e s ,

a r e shown i n f i g u r e 3 - 3 7 . Measurement sys tem n o i s e i s

i n d i c a t e d by showing dashed c u r v e s o v e r t h e p o r t i o n o f t h e

spec t rum where sys tem n o i s e i s 1 dB o r c l o s e r t o measured

mine n o i s e .

The r e s u l t s show t h a t a l t h o u g h e l e c t r o m a g n e t i c n o i s e

l e v e l s i n Grace Mine a r e g e n e r a l l y somewhat lower t h a n i n

mines w i t h o t h e r t y p e s o f equipment , t h e l e v e l s a d j a c e n t t o

n o i s y s o u r c e s a r e comparable t o l e v e l s n e a r s o u r c e s i n o t h e r

mines i n some c a s e s . The n o i s e l e v e l s do n o t d e c r e a s e mono-

t o n i c a l l y w i t h f r equency i n t h i s mine.

Figure 2-2 System f o r f i e l d r e c o r d i n g d a t a t o o b t a i n ampl i tude p r o b a b i l i t y d i s t r i b u t i o n s .

C O L L A P S I B L E A N T E N N A

f = 1 0 k H z - 2 5 0 k H z F I E L D

S T R E N G T H M E T E R

L O O P B W = 1 . 4 k H z A N T E N N A

C H A N N E L 1

C H A N N E L 2

C H A N N E L 3

P O R T A B L E T A P E

R E C O R D E R D I R E C T

R E C O R D I N G 1 5 I P S

40kHzc ~~~~~~~5

d

f = l O O H ~ - 5 0 k H z

S C O P E ,

M I X E R

2 5 k H z O S C

F I E L D S T R E N G T H

H z 1 u f = 1 5 0 k H z - 3 2 M H z

, 4 5 5 k ~ ~ I M I X E R 4 0 k H z w

Let

ter

Des

ign

ati

on

D

escr

ipti

on

A

D

evel

opm

ent

fore

man

off

ice

B

60

1 i

nte

rse

cti

on

C

cr

ush

er s

ub

sta

tio

n

cru

sher

ac

ce

ss d

rif

t 60

3 in

ter

sec

tio

n

606E

en

try

, d

inn

er a

rea

j

do

-dr

illi

ng

fa

ce

608E

fa

nh

ole

dr

ill

No.

2

min

e tr

an

sfer

dr

ift

No.

6

cr

oss

dr

ift

sub

sta

tio

n

shop

off

ice

N

Ob

Fig

ure

3

-1

Sim

pli

fie

d m

ap

of Grace

Min

e w

her

e m

easu

rem

ents

wer

e m

ade.

FREQ

UENC

Y, kH

z -

.

Fig

ure

3

-4

Sp

ec

tru

m

of

ma

gn

eti

c

fie

ld s

tre

np

th

ob

tain

ed

on

a

lo

op

an

ten

na

1 k

Hz

* to

1

00

kH

z,

Gra

ce

Min

e,

un

de

rgro

un

d,

de

ve

lop

me

nt

fore

ma

n

of

fic

e,

an

ten

na

se

ns

itiv

e a

xis

v

er

tic

al,

1

1:3

5

a.m

.,

Ap

ril

24

, 1

97

3.

Are

a

no

ise

be

fore

e

xp

los

ion

. S

pe

ctr

al

res

olu

tio

n

is

7

8.1

Hz.

I2

0 0

2046

20

1

34-0

01 '

81.00:

::/34/'3

:8 1

: :$

13

1.45-003 2

94*0

01

0 OO

*OOO

0

OC.03:

0-

. C

20

43C3

6 43

006

+-

18

86

4 24 73Goin corr..

?e

c I

-!

L r

ot cons\.= 38.4

w

2 2~

60

-J c

4

uL

0

=o

f

56.

r .z&

sGg

40 .

?3

',< 5

,=z z

g

w 5 - -

- 30 5

s 5

s

3 2

;7j\

-.

w - 2

<;-;

1= 20

e

me c\

Q d

2:

- =

=- 2

2 1

0..

-- 5

;* e

cc

';s "e

ZL

sg 0"

W

~2 Ga

d *

:;j

2

ad

' LZ zs -10

2~

A

h?

&

2 -20

O -

I--

-*

w

A :

5 z

w

GS

Z-

30

-

1

k!i

CD

C'!

m

4 ;3

r

ZE

0

5

-40

C=28 RG=

50

0(-1

4dBI

CG=

: FG=

, A&

= 52

...

000

*006

.

0. 3386

! ,48

24 005.

.. .. Ri

NE G

EljEh

ATED

NOI

SE

.

"

.,

4

r

az

0 10

20

30

40

. jrj

EO

ii:

83

90

!03

12

o

o

204m

20

1

.94

-00

1

7 m

t400

1 10

/041

73 t

a:51

40

47

22

7 .

1.S

-00

3

2.9m

rOO

2 0.

00*0

00

0.00

*000

20

43

00a

4300

m

46 86 4 24 73Goin corr., rec.= -6 tot const.= 4

6.4

C=28 RG= 200

( -6dBl DG=

0 FG= 0 A

C= 52

90 t 0

0040

09

0. 7086

I. 444+CS0.

50 ..

40 ,.

30 #.

MINE

GEN

ERAT

ED N

OISE

20 *.

10 O., ~

SY

STEM

f

NOISE

- 10

. - :

-.1

- ---

- ' -

-.

. -

0 10

20

30

40

50 60

70

80

* 90

100

FREQ

UENC

Y, hH

z

Fig

ure

3

-5

Sp

ec

tru

m o

f m

ag

ne

tic

f

ield

str

en

gth

ob

tain

ed

on

a

loo

p

an

ten

na

1 k

Hz

to

10

0 k

Hz,

G

race

N

ine

, u

nd

erg

rou

nd

c

rus

he

r s

ub

sta

tio

n,

an

ten

na

s

en

sit

ive

a

xis

v

er

tic

al,

4

:30

p

.m,

Ap

ril

24

, 1

97

3.

Cru

she

r i

s n

ot

op

era

tin

g.

Sp

ec

tra

l re

so

luti

on

i

s 2

8.1

H

z.

12

0 0

2048

20

1

.Y-0

01

7

11*0

01 1

0104

171

11

51:

OO

46

22

2 I

I %

-lo

) -4

.244

08l

O.O

O*O

OO

0

00a0

00

20

4100

8 41

00fi-

E

4% 86

4 2

4 7

3G

ain

corr.. r

ec.= -26

10

1 c

on91.- 26.4

TLI 5 , 70

W

a

5g

-5

-

- =

"6

0.

g

;+ z.

=-g

50

5 '6 -;

E"

4

E

.,% 3d 44

=-

-> ;- -

<<

,= 12

--.

I/-

= yq '@

m

iL

- LZ z!:

-=

3s

-

- :+<

f.: G

20

-

L-

- -

-.

!+ r-

- .-z

c2 =

* 10

L i

L

- -

= 2

;=

&

5&

c.2 - g

-

0"

yz

LL

1

;z '+2

.k!

.., L

~

2 5

-ib

r-

.

,<

L.

2

>> .

- - -

-20 "

L,

+--

-=-

--:

- - W

--

r n

< :, t

!!

- - ::-

- L

-

. .

30

- -

C-26 R

G=

2000

1-26

dB1

DG=

C FG

= 3

AG= 52

.. 000

+00

7 .

0.30

86

1.4

71

+00

6.

.. ,, .. ..

MINE

GEN

ERAT

ED N

OISE

.. .'

, r L

10 20

30

40

50

60

70 00

90

IGO

FREQ

UENC

Y, k

Hz

Fig

ure

3

-6

Sp

ec

tru

m

of

ma

gn

eti

c

fie

ld s

tre

ng

th o

bta

ine

d o

n a

lo

op

a

nte

nn

a

10

k~

z

. to

1

00

kH

z,

Gra

ce

Vin

e,

un

de

rgro

un

d,

cru

sh

er

su

bs

tati

on

, a

nte

nn

a

se

ns

itiv

e

ax

is

ve

rti

ca

l,

4:3

0

p.m

, A

pri

l 2

4,

19

73

. C

rush

er

is

no

t o

pe

rati

ng

. S

pe

ctr

al

res

olu

tio

n

is

78

.1 Hz.

20 .. 10..

MINE

GEN

ERAT

ED N

OISE

.

6..

-10'.

-?O*.

FREQ

UENC

Y, hH

z

Fig

ure

3

-7

Sp

ectr

um

o

f m

ag

ne

tic

f

ield

str

en

gth

ob

tain

ed

on

a

lo

op

a

nte

nn

a

10

kH

z to

10

0 k

Hz,

G

race

M

ine,

u

nd

erg

rou

nd

, c

rus

he

r s

ub

sta

tio

n,

an

ten

na

s

en

sit

ive

a

xis

v

er

tic

al,

4

:35

p

.m.,

A

pri

l 2

4,

19

73

. C

rush

er

is

o

pe

rati

ng

. S

pe

ctr

al

res

olu

tio

n

is

78

.1 H

z.

,-=- w o o . . m y - w m

u 0 00 0" C - 0 ,

sz 0 ,j "'3 &m

O F (Y(Y

52 (D

(DO w .- 0 1

(Y

Fig

ure

3

-9

Sp

ectr

um

of

ma

gn

eti

c

fie

ld s

tre

ng

th o

bta

ine

d o

n a

lo

op

a

nte

nn

a 1 k

Hz

to

10

0 k

Hz,

G

race

M

ine,

u

nd

erg

rou

nd

, c

rush

er

ac

ce

ss

dr

ift,

a

nte

nn

a

se

ns

itiv

e

ax

is v

er

tic

al,

1

2:0

0 n

oo

n,

Ap

ril

24

, 1

97

3.

Cru

she

r is

no

t o

pe

rati

ng

. E

xp

losi

on

. S

pe

ctr

al

res

olu

tio

n

is

78

.1 H

z.

. .

2 c

0 2

2 I

0:

.

I.

/

/7

2:

2

21

37

0

I %

.001

2.

39.0

il

4. 04.000

r ::.LC;

20

Ut?

C

L3

l;d

+-

20

86

4 24

73G

a;n

c

or

r. ,

rec

. =

-20

:o-.

con~s.

=

32

.4

Y

Cz2

8 RG

= lO

OO[-

iOdP

J Cb=

S f6=

5 &

= 52

2

40~.

ooo+

oo4

. c.

3ae6

2

4-

2 e

g so

s %

z 30'

zs

:. !7

!-3

?.?

,

g =G

z g

.-

20,

m 2-

MINE

GEN

ERAT

ED N

OISE

,L

=o

-= 55 -

10.

=a =

x? z-

-0 w

=

g

%

-20

ZL

zg

z=

- z=

0

5 E

-3

0..

3%

EL

L

il

Y' 5

~5 oa

2 r -40

2-

Y4

,

L 0

L.25

F

Z-5

0

2

L.4

5 -

SYST

EM N

OISE

.

0 I

=

45

5-

60

,

- ...

-. .-

. -. . -.

- . .- -

. - . - - - - . .--.

.- - - . -. - .. - . .

----

-- d

m

zx

03

0 10

20

30

40

50 60

10

80

90

100

FREQ

UENC

Y, kHz

Fig

ure

3

-10

S

pe

ctr

um

o

f m

ag

ne

tic

f

ield

str

en

gth

ob

tain

ed

on

a

lo

op

a

nte

nn

a 1 k

Hz

to

10

0

kH

z.

Gra

ce

?

,lin

e,

un

de

rgro

un

d,

cru

sh

er

ac

ce

ss

d

ri

ft

, a

nte

nn

a

se

ns

itiv

e

ax

is

ve

rti

ca

l,

10

:27

a

.m.,

A

pri

l 2

6,

19

73

. C

rush

er

is

o

pe

rati

ng

. T

wo

da

ys

late

r.

Sp

ec

tra

l re

so

luti

on

i

s 7

8.1

H

z.

12

0 0

2018

20

1.

51-0

01

7 ~10001 10/0

1/75

I8

.$¶:

18

58

282

r

0

I--

1.95

-005

-2 07*

001

0. 00

0000

0

0010

00

20

1500

8 15

008

57 86

4 26 73Goin corr., rec

.= -20 t

ot const.= 32.4

W

W>

a=

-

301..

J

g

d

g ez

-,

20.

z z

-0C

'

WO

I&

=*- ,

-=

10 .

, c3 W

W

c- 7

%-

bz

ye

z %

-

0 5

El2

J C

T

<.'

>I-

LI LL ~

~1

s

ci ,

Lg

C

3 :,

-10

-0

-- -- -a- D

"

- s - g

-2

0..

-3

LL

)=

L

zz

%k

j 5 --

:iz

-30

r

I--

, &

2%

a

i2

-40..

1:- 52

-5

ne

-2 z

2

2 -5"

" W

Z

Z

09

LD

I--=

1

-60

'A

ZS

r

E0

CT

-7Uc

C=25 RG=

1000 (-2

0dBl

DG=

0 FG= 0 A

G= 52

000+003

, 0.3086

8.984+002.

MINE

GEN

ERAT

ED N

OISE

.

.. .. .. "

6

cZ

'C

22

313 40

5C 6C

70

80

90

\GO

FREQ

UENC

Y, hH

z

bC d

N .d LC 24

k 0 0 * 3

d cd c v) d 0.d d t' Q) d k was)

d 5 - c n c, 7

aw k 0 ad U 0 k rla cd W M

vr r-. d Urn 0 U r l

U acd - Q) b d k m

Q,

.; t' vr a s k O k a

0 ==c

k -. ,-I a w e o : rla . Q) d -M .d 7 rl 1H c d m - U .d U Q).d - d d c r d C1.d k O Q)T Q).d > cr % a 3

Fig

ure

3

-12

S

pe

ctr

um

of

ma

gn

eti

c

fie

ld s

tre

ng

th o

bta

ine

d

on

a

lo

op

a

nte

nn

a 1 k

Hz

to

10

0 k

Hz

, G

rac

e

Min

e,

un

de

rgro

un

d,

inte

rse

cti

on

6

03

, a

nte

nn

a

se

ns

i-

tiv

e

ax

is

ve

rti

ca

l,

12

:55

p.m

.,

Ap

ril

24

, 1

97

3.

Pro

du

cti

on

a

rea

. S

pe

ctr

al

res

olu

tio

n

is

78

.1

Hz

.

I2 0 0 2018

20

1.51-001 7 81

*001

10101175 18 56:55

27

:2-

*,

:28.

0

1-005 2

.550Ol

roo0

0 OO*OOO

20

15008

15008

+-

26

86

4 2

4 7b

iL1n

c

orr

.,

rcc

.= -

20

tot

co

ns

t.=

32

.4

W

w

C=2

8 RG

= 10

001-

20dB

l D

L=

0 F

G=

0 A

G=

52

2 y

, OO

Ot0

04

, 40

0.

3086

I.

264

4093

. a

=E

ds

5

=a

0

2E

%z

30-

W 25

2g

Z

, ;z

2OSP

MI

NE G

ENER

ATED

NOI

SE

0 *-

C3 0

SYST

EM N

OISE

'

-

I-- L

o

g

&Z

C3

4

Z =

-50

Z

5

"

9s

B

-6

0

1.

=E

0

cL

0 10

20

30

40

50 60

70

80

90

100

FREQ

UENC

Y, hH

z

I2

I

0 2

04

1

20

1.14

-001

7.

8l.O

Ot

I010

4173

II 2

2 $6

8

12

r

I.%

-011

-2

.17a

001

0.00

.000

0

00+0

00

20

4100

8 41

00#

7 86

4

24 7

3Goi

n c

or

r

. re

c.=

-3

4

tot

co

nst

.= 1

8.4

B

C

-26

RG=

5000

(-3

4dB

l DG

= 0

FG=

G A

t= 5

2

u F

igu

re

3-1

3

Sp

ec

tru

m

of

ma

gn

eti

c

fie

ld s

tre

ng

th o

bta

ine

d o

n a

lo

op

a

nte

nn

a

10

kHz

to

10

0 k

Hz,

G

race

M

ine,

u

nd

erg

rou

nd

, e

ntr

y a

nd

din

ing

are

a 6

06

E,

an

ten

na

s

en

sit

ive

ax

is v

er

tic

al,

1

0:4

5

a.m

.,

Ap

ril

24

, 1

97

3,

Em

pty

V-8

d

ies

el

. LH

D p

ass

ed

by

. S

pe

ctr

al

res

olu

tio

n is

7

8.1

Hz.

cna,*.d art o

a c-I.rl r l 7 c, 0 - 7

.rl - 4 4 r C I c u C d 0

c u m

cu 0 0 4 d U > d Mcd k a k m u E t7 .d u

X cu w 0 : * r 2

z 0 S X *

.,-I k o w h W O - d P u 4 m k a, C c d a0 a, a, mc,cnc

- - g ~ g ~ ~ ~ ~ ~ s O ~

ISION OkV0 @YO50 U'33 ' z H i 3 d Ull~~i-H311-3~3diiYOU9lt~ 3110 0 1 3h11Y13ll BP ' F ~ ' 131131 k l lSX30 I':llYl"J'IS ~Il?i!3YlS-'\113\j-3Il3N3Y'~ SHll

ti0 ' S 3 1 3 ~ 3 n 0 l k l 313Y3S13 104 ' Y31321 U3d ItlIdklVOH'Jlk 3N0 0 1 3h11V13Y FJP 'h 'H13NIllLS 01314 3113N'JVW SNY

b o a , C, a-d

5 cd2 a d

a k 0 rd 0 4 k r n

a , b cd C o l

F: d

gz d

a a m a, C r .d .+

h k

% z 4 a, -

5 -; m a - C C c d , cu 3 k O m N C, k W 3 3 v, M -.

k d d a a,4a 4 - d

.: 2 AM* w cdv, - U .d U 0-++ . d d C , d C,.d h 0 a,z cu-d F: > 4 J Ma, 3 cd U c n d E cd.4 0

k X v , w u a a 0 h

12

0 0

2041

20

1

.31

~0

01

7.8

1.00

' !O

J:IJ

'3

:B

33 4

0 23

10

7 1

,s-0

05

2

63.0

01

0.00

.000

0

0~

00

00

21

43

008

4300

) 22

86

4

24

73

Go

in

co

rr

.,

re

c.=

-3

4

to

t

co

ns

t.=

!8

.d

7

20

k2

5 ?<

g

5.?

5

4

sg

io

. 0 cz

z-

- a2 cr

--sq

0 Y

O -

0

- E

=A- 2-

g :

g

-lG

gu

- =

s g

s

g @

-20

Z

my

- ;:

2 -30

- -

z

g g

E

F-;

g a=

-40

00 m

p

ZL

- Fk2

g

5 g &

-59

+

La

Y

;L

I

.5 Y

5 :,"

W ,

g

-1. e -

60

0-

2; +

L CJ e

- U

&

~

<.'?

s?

- (0

L?

,.zz

d

2:

5

c >

Y

' 9

2

<-

- ,-

.. 000

+00

2 .

c 33

86

1.6

65

+0

01

.

.. MI

PIE G

FNER

FltD

NOlS

.,

.,

., .,

"

"

"

- ,n

10

20

30

40

50 60

70

80

90

I00

: .: -=

FREQ

UENC

Y, kH

z

Fig

ure

3

-16

S

pe

ctr

um

o

f m

ag

ne

tic

f

ield

str

en

gth

ob

tain

ed

on

a

loo

p

an

ten

na

1 k

Hz

to

10

0 k

Hz,

G

race

M

ine,

u

nd

erg

rou

nd

, 9

.2

m

fro

m

Jum

bo

dr

il

l w

ork

ing

fa

ce

, a

nte

nn

a

ien

sit

ive

a

xis

ve

rti

ca

l,

12

:25

p.m

.,

Ap

ril

24

, 1

97

3.

Dr

il

l o

pe

rati

ng

. (N

o ch

ang

e in

fig

ure

wh

eth

er

on

e d

ri

ll

bit

o

r t

wo

a

dr

ill

bit

s

are

be

ing

use

d.)

S

pe

ctr

al

res

olu

tio

n

is

78

.1

Hz.

Fig

ure

3

-17

S

pe

ctr

um

o

f m

ag

ne

tic

,fi

eld

str

en

gth

ob

tain

ed

on

a

lo

op

a

nte

nn

a 1

kH

z to

1

00

kH

z,

Gra

ce

Min

e,

un

de

rgro

un

d,

Num

ber

2 m

ine

tra

ns

fer

dr

ift,

a

nte

nn

a

se

ns

itiv

e a

xis

ve

rti

ca

l,

2:2

2

p.m

.,

Ap

ril

24

, 1

97

3.

Po

wer

- li

ne

ha

rmo

nic

s.

Sp

ec

tra

l re

so

luti

on

is

78

.1 H

z.

Fig

ure

3

-18

S

pec

tru

m

of

ma

gn

eti

c

fie

ld s

tre

ng

th o

bta

ine

d o

n a

lo

op

a

nte

nn

a 1 k

Hz

to

10

0 k

Hz,

G

race

M

ine,

u

nd

erg

rou

nd

, Y

umbe

r 2

min

e tr

an

sfe

r d

rif

t,

an

ten

na

se

ns

itiv

e a

xis

ve

rtic

al,

2

:22

p.m

:,

Ap

ril

24

, 1

97

3.

Hug

e V

-10

d

ies

el

LHD

ne

arb

y.

Sp

ec

tra

l re

so

luti

on

is

78

.1

Hz.

w

S

a

5

30

2s

da

=

52

zz

20-

=s

- g =?-?

g

,z

-

10.

ez - ?z g

5 -

8 -

0.

=&

F

U

52

51~

g(e

-10.

. C

1 -

--G zz

>

- -.

. 2 E

2

eL

-20.

0

L3 .=

> -.

0 -

-- , ,

g -3

0.

L'

Ed

- G

&

co

L.'

g

", 2

kz -4

0 W

C

I, =

5 2, ::

1? ..- 6 4

-50

- . .

Y-

:> .!

<

LC

2.;

--

4

=: - .. L

Z~..

-60

o L

L!

,n a---

- - - -=

.r.

-70

C:28

R

G=1

0000

(-40

dB:

DG=

2 iG

= :

:G: 52

..

000+

003

,

s.$c

e&

. k

. 9:9+i12.

-' .

''

"

, 2

C 20

.'D 4G

32 ;p

6c

li

j 80

90

lCli

FREQ

UEMS

Y, kH

z

n t-'

W c Y 0

r w rtcn z3 o w 36 0

0 PC,

3: . * r N N Z

o c o 3 @

'd @rt o m

RMS MAGNETIC FIELD STRENGTH, H, dE RELATIVE TO ONE b!!GROR\!PERE PER H E T E i l , FOR DISCRETE FREGUEhCIES; ill!

RMS MAGNETIC-FIELD-STRENTH SPECTRUM UENSITY L E V E L , Hd, dB FtEI.hTIYE TO GllE MICRGAI;PlRE-PER-tItETEF! P E R ~ ~ ~ Z , FOR BtlfihrJ OAiiD I!CISE

r 3 ' - r 3 ' , . , P C J l - - J ' = n o o o o o o o ~ '

C

12

0 0

2048

20

2.

69t0

00

3.91t

OO

O 0

4/18

/74

23:5

3:14

51

24

7 I

%-0

03

9 4+

001

0 OO

+OOO

0

OOtO

OO

20

4300

8 43

000-

5

0 1

09

4

24

73~aih co

rr

.,

roc.

= -

40

tot

co

nst

.-

12

.4

Fig

ure

3

-20

S

pe

ctr

um

o

f m

ag

ne

tic

f

ield

str

en

gth

ob

tain

ed

on

a

lo

op

a

nte

nn

a

40

H

z to

4

kH

z,

Gra

ce

Ilin

e,

un

de

rgro

un

d,

Num

ber

2 m

ine

tra

ns

fer

dr

if

t,

2 :22 p

.m.,

A

pri

l 2

4,

19

73

. V

-10

LH

I)

is

no

t i

n v

icin

ity

. S

pe

ctr

al

C

res

olu

tio

n

is

3.9

1 H

z.

Fig

ure

3

-21

S

pec

tru

m

of

ma

gn

eti

c

fie

ld s

tre

ng

th o

bta

ine

d

on

a

loo

p

an

ten

na

1 k

Hz

to

10

0 k

Hz,

G

race

M

ine,

u

nd

erg

rou

nd

, N

umbe

r 6

cro

ss

dri

ft

sub

s ta

tio

n,

an

ten

na

s

en

sit

ive

a

xis

v

er

tic

al,

3

: 10

p.m

.,

Ap

ril

24

, 1

97

3.

Sp

ec

tra

l re

so

luti

on

is

' 7

8.1

H

z.

I2

0 0

204)

20

1.54-001 7.#1+001 10104171 1#:43:29

19

18.

1,s-005 2.06b001

0.0~~00~

0 ~

~1

0~

~

20

45008

41008

Z

38 86 4 24 73Goin corr., rec.= -14 tot const.= 38.4

W

W7

C=28 R

G= 500 (

- 14dB) DL=

0 FG= 0 A

G= 52

a

,E 50

,. 000+005

, 0.3086

4.242+004.

2

4-

=S

=o

eg

40.1

Z

U;1

E,

29

<+

- 30

.p eg w

-2z

z z

7 g. --

- 20

.*

MINE

GEN

ERAT

ED N

OISE

-0

cJ

Fe

gs

0

0

z - z

cg

-10 ,.

Ee

- L

A

" *

5%

-20q

. 5

% E

d,

W

cr) ar

Ls

A2

2 5

-30,

. =

-B

z

00

e

r-

40

.

z S

W

m

zg

2z a

SYST

EM N

OISE

0

- 50

Z

* rT

0

10 20

30

40

50

60

70

80

90

100

FREQ

UENC

Y, hH

z

12 0

o 2048

20 1.34-001 7

e~.o

o~ 1olorl73 18:47.07

41

191

1 ma

1,s-003 2

.92*001

O.OO*OOO 0 001000

20

43008

43008

0

l--

40 86 4 24 73Gain corr., rec.= -26 t

or

co

nst

.= 26.4

C=28 R

G= 2000(-26dB) DG=

0 FG= 0 A

G= 52

we

5

2

50, 0004005

. 0.3086

7.752+004.

W

0-

2

s'" zz

40,.

0 "a

Z

25 si

z &- ; 3

0 S.

ow

LI1

l--z

5s

J--

20

,. z =

, zw" E

2

~e

m-

MI

NE G

ENER

ATED

NOI

SE

05

mW

"L

se

- e

0 ..

=z E

e

-0

Ee

-1

0,.

0 0

Z -

w

fEe

- 25

0

,L U

J

29

-

-20..

2

5 55%

W

'

W

- 5 9

% -3

0q,

oa w

4

= '7s

=z

I?

=

==

-40.

, I

Zw

0 I 25 -5

0

SYST

EM N

OISE

.

e

I

r/)

Z e

0 10

20

30

40 50

60

70

80

90

100

FREQ

UENC

Y, hH

z

Fig

ure

3

-22

S

pec

tru

m

of

ma

gn

eti

c

fie

ld s

tre

ng

th o

bta

ine

d o

n a

lo

op

a

nte

nn

a 1 k

Hz

to

10

0 k

Hz,

G

race

M

ine,

u

nd

erg

rou

nd

, sh

op

o

ffic

e,

an

ten

na

s

en

sit

ive

a

xis

v

er

tic

al,

3

30

p.m

.,

Ap

ril

24

, 1

97

3.

LH

D1

s b

ein

g

refu

ele

d

me

ters

d

ista

nt,

fl

uo

res

ce

nt

lig

ht

are

a.

Sp

ec

tra

l re

so

luti

on

i

s 7

8.1

Hz.

--. - - - -7 - 0

0 OD z o o o o c 3 < Q i r , * r o c \ J = O ? F

31i!6Y flEIVa GYntiU Ur3j ' ~ ~ " t i l d gll:ilLl ~Uld-:i~!r!~iYOY3lkl 323 O i 3bl!b i 3 8 O? "ti ' 131131 AllS;I!G NI'1iil3'~dl H19~~TiilS-fl14:-3113N"JYki Slld

110 ' ~ 1 1 3 N 3 n b 3 1 j 313X3Si0 VOj '11313?l ti3d 3b'3dr('YCYOll.1 3NO 0 1 3AllV131j 3P ' H ' WXE!dlS (I1314 3113N3VW SWd

N z 0 a, Tt >

.d c d t ' . c.ri vr c m t ' 0 c d t ' 0 m F: vr .rl cd 7 4

UF: 4J G 7 @ 7 0 0 d d k k d 0 4J Ma, v, W k W a )

a d k aa cd d 5 n c d

.d cd k '+I -a,+

a) k U U G d a , .rl .rl a 4Jz E m

;,& ' !2

I, " t . -' 9 -

"Cf 0

U w . - z ; * tt, II =- 2 !! 7- C I 2 I 1

s :2g - 0 0 9 0 - . * - . 0 - * ;?: " 0:s - =:c - . 0.- .5s $ -e 7 0 - * m- ?zg : =w 0 - m ,Yg -?a0

QD - -%m -- z.-

u0

I

0 10 20 30 40 50 60 70 80 90 100

FREQUENCY, kHz

F i g u r e 3 - 2 7 Contour map showing n o i s e g e n e r a t e d from a group o f d e n o n a t i o n s compr i s ing a "shot ," a s a f u n c t i o n of t i m e .

F i g u r e 3 - 2 8 T h r e e - d i m e n s i o n a l v iew o f two d e t o n a t i o n s f rom a l a r g e r g roup c o m p r i s i n g a " s h o t . l 1

Q ) W k a u u a m cd cdd

- :2

:

: 2:48

2:

: 3

4.:

. -

S'v

:;'

:5/:'/-4

''

" '.

' %-..3

5,C2+:::

".

." "

..

d...

0:

2.

&

2

6 ;ji.+ ,.

.. .

....

..

2:

3 43::e-

a~

n

corr. ,

rec, =

-6

tot

co

ns

t. -

-6.0

W

Wa

C

L

z-m

O

W

2C

L

0 ,-E

-7

0 ..

a

!E z- Z<

-8

0 +

OF

o=

w =

u E

a

-90

Z

0

LU

0

LL

1L

a

0

u3

+

+

-J-I

OO

..

.A 0

u a

=-

2

4

+-

,-- w

3 g

5 -

110

2

,E =

m~

- CL

U

z-

-120

.,

-

u-

+

4"

3

5

&-13

0..

0

z-

m,

u3

5

cL

-140

i l 'i

2 *

30

110

53 €9

70

80

90

I00

Fig

ure

3

-34

V

olt

ag

e

spe

ctr

um

o

bta

ine

d w

ith

a

mo

no

po

le

att

ac

he

d

to

two

ro

of

bo

lts

, 10

m

ete

r s

ep

ara

tio

n,

10

k

Hz

to

10

0 k

Hz

, G

rac

e

Min

e,

un

de

rgro

un

d,

11

:35

a

.m.,

A

pri

l 2

6,

19

73

. S

pe

ctr

al

res

olu

tio

n is

78

.1

HZ

.

70 -

- v

,

MIN

ING

MA

CH

INE

- (R

OB

ENA

) A

PPR

OXI

MA

TE D

ATA

TREN

D A

WAY

FR

OM

50

- PR

IMA

RY

MIN

E S

UPP

LY C

ABLE

S (R

OBE

NA)

-

40

- P

c' -

30 -

LOAD

-HAU

L- D

UM

P -

(GRA

CE)

% --

20

- -

1

lo -

APP

RO

XIM

ATE

DAT

A TR

END

\

- (G

RA

CE)

\ oF

0-

-

-10 -

-20:

I 1

I 1

1 1

I I

I I

I

I 2

3

45

10

20

30

40

50

70

10

0 20

0

DIS

TAN

CE

TO N

EA

RE

ST

CU

RR

ENT

CA

RR

YIN

G C

ABLE

(R

OB

ENA

), M

ETER

S D

ISTA

NC

E TO

CR

USH

ER R

OO

M N

OIS

E SO

UR

CE

(GR

AC

E),

MET

ERS

Fig

ure

3-3

5 C

omp

aris

on o

f m

ag

net

ic

fie

ld s

tren

gth

s o

f G

race

and

R

oben

a H

ne

s a

s a

fun

ctio

n o

f d

ista

nce

fr

om n

ois

e s

ou

rce.

om

I-

W

W

WU

>

Z

WW

I-

=

au m

e

W

XI-

I-L

IJ

a=

Z

I W

e

em

I-

n

m

I

FRE

QU

EN

CY

, k

Hz

Fig

ure

3-3

6 C

omp

aris

on o

f E-M

no

ise

le

ve

ls n

ear

op

era

tin

g m

ach

iner

y fr

om

fou

r m

ines

. V

erti

cal

ma

gn

etic

-fie

ld

com

pon

ents

a

re

show

n.

Bro

ken

se

cti

on

s o

f th

e cu

rves

rep

rese

nt

syst

em n

ois

e.

3SION aN 8 at10118 1104 ' Z H ~ S L ~ 1136 tt313W-113d-3113dWWOt13IW 3N0 ' I 0 1 3AIlW13tt 8P H '13A31 AlISN3a WnI133dS H19N3111S-al3IJ-3113N9WW SWI

4 . AMPLITUDE PROBABILITY DISTRIBUTION MEASUREMENT RESULTS

4 . 1 I n t r o d u c t i o n and U n c e r t a i n t i e s

S t a t i s t i c a l r e p r e s e n t a t i o n s a r e r e q u i r e d s i n c e t h e

v a r i a t i o n s o f f i e l d s t r e n g t h a r e , i n g e n e r a l , random. The . a m p l i t u d e p r o b a b i l i t y d i s t r i b u t i o n (APD) o f t h e r e c e i v e d

n o i s e enve lope i s one o f t h e most u s e f u l s t a t i s t i c a l d e s c r i p -

t i o n s o f t h e n o i s e p r o c e s s f o r t h e d e s i g n and e v a l u a t i o n o f

a t e l ecommunica t ions sys tem o p e r a t i n g i n a n o i s y envi ronment

[ 3 , 4 , 6 1 By p l o t t i n g t h e c u m u l a t i v e APD on R a y l e i g h g raph p a p e r ,

one c a n show c l e a r l y t h e f r a c t i o n o f t ime t h a t a n o i s e enve lope

exceeds v a r i o u s l e v e l s . R a y l e i g h g raph pape r i s chosen w i t h

s c a l e s s u c h t h a t a R a y l e i g h d i s t r i b u t i o n ( i . e . , e n v e l o p e d i s -

t r i b u t i o n o f Gauss ian n o i s e ) p l o t s a s a s t r a i g h t l i n e w i t h

s l o p e o f - 1 / 2 . Noise w i t h r a p i d l a r g e changes i n a m p l i t u d e

( e . g . , i m p u l s i v e n o i s e ) t h e n h a s a much s t e e p e r s l o p e ,

t y p i c a l l y -4 o r - 5 , depending on t h e i m p u l s i v e n e s s o f t h e

n o i s e and t h e r e c e i v e r bandwidth .

With t h e e x c e p t i o n o f t h e r o o f - s u p p o r t b o l t measurements ,

a l l APD measurements a r e r e p o r t e d i n a b s o l u t e q u a n t i t i e s .

The e s t i m a t e d l i m i t s o f e r r o r f o r t h e APD n o i s e measure-

ments a r e + 5 dB. S e v e r a l s o u r c e s o f e r r o r t h a t a r e c r i t i c a l

t o t h e o v e r a l l a c c u r a c y o f o u r measurements a r e l i s t e d below:

1. Use o f a d i s c r e t e , d i g i t a l l e v e l c o u n t e r ( l e v e l s a r e

6 dB a p a r t ) c o n t r i b u t e s + 1-dB q u a n t i z a t i o n e r r o r l i m i t .

One-dec ibe l s t e p a t t e n u a t o r s a r e used t o a c h i e v e t h e

+ one d e c i b e l .

2 . The s y s t e m , i . e . , r e c o r d i n g , d a t a t r a n s c r i b i n g , and

d a t a p r o c e s s i n g , has a c a l i b r a t i o n u n c e r t a i n t y o f + 0 . 5

dB [ 3 ] .

3 . The e s t ima ted u n c e r t a i n t y involved i n u s ing t h e po r -

t a b l e and t h e l a b o r a t o r y t ape r e c o r d e r s f o r record and

playback i s + 0.5 dB due t o harmonic d i s t o r t i o n , f l u t t e r ,

d ropout , c r o s s - t a l k , e t c .

4. The ga in i n s t a b i l i t y du r ing measurements, ga in

changes between measurements and c a l i b r a t i o n , and t h e

n o n - l i n e a r i t y o f e l ec t romagne t i c i n t e r f e r e n c e and f i e l d

s t r e n g t h (EIFS) meters and mixers , a l l combined, con-

t r i b u t e + 0.5 dB u n c e r t a i n t y .

5. The ga in i n s t a b i l i t y and n o n - l i n e a r i t y of t h e d i g i t a l

l e v e l coun te r , t h e tuned frequency c o n v e r t e r , t h e ampli-

f i e r , and a t t e n u a t o r s , a l l combined, c o n t r i b u t e + 0 . 5 dB

u n c e r t a i n t y .

6 . Connector l o s s e s and BNC c a b l e l o s s e s , p a r t i c u l a r l y

a t h ighe r f r equenc i e s above 100 kHz, c o n t r i b u t e + 2 . 0 dB

u n c e r t a i n t y .

Some a d d i t i o n a l u n c e r t a i n t y beyond t h e s t a t e d measurement

system u n c e r t a i n t y i s caused by t h e in-mine environment. Care

was taken t o p rov ide a t l e a s t one meter s e p a r a t i o n from meta l -

l i c obj-ects wherever p o s s i b l e . However, c o a l , rock , o r e a r t h

was sometimes immediately ad j acen t t o a loop antenna. I n a l l

observed c a s e s , t h i s had no e f f e c t a t f r equenc i e s up t o 1 MHz.

Above 1 MHz, e a r t h and o t h e r r e f l e c t i o n s d i d i n some c a s e s

cause + 1 dB v a r i a t i o n s , even w i t h a s h i e l d e d , balanced loop

antenna. An e s t i m a t e i s t h a t an a d d i t i o n a l + 5 dB u n c e r t a i n t y

might be a d v i s a b l e . However, due t o t h e complexity o f t h e

s h i e l d e d loop i n t h e mine environment, t h i s u n c e r t a i n t y can-

n o t be r i g o r o u s l y bounded wi thout s u b s t a n t i a l a d d i t i o n a l

a n a l y s i s .

4 . 2 Measurement R e s u l t s

APD measurements were made on A p r i l 24, 1973, d u r i n g

o p e r a t i o n i n t h e Grace I r o n Mine l o c a t e d n e a r Morgantown,

s o u t h o f Reading, Pennsy lvan ia . D e s c r i p t i o n s o f Grace Mine

a r e g iven i n s e c t i o n 1 . 2 . APD measurements were made a t

t h r e e l o c a t i o n s . The f i r s t s e t o f APD measurements o f e l e v e n

d i f f e r e n t f r e q u e n c i e s was made a t t h e development foreman

o f f i c e , which i s i d e n t i f i e d a s A i n f i g u r e 3-2. The second

s e t o f APD measurements of e i g h t d i f f e r e n t f r e q u e n c i e s was

made a t t h e e l e c t r i c a l s u b s t a t i o n o f t h e c r u s h e r , which i s

i d e n t i f i e d a s C i n f i g u r e 3-2 . I n t h e s e two s e t s o f APD

measurements , o n l y t h e v e r t i c a l component o f magnet ic f i e l d

was measured. The t h i r d s e t o f APD measurements was made a t

t h e shop o f f i c e , which i s i d e n t i f i e d a s K i n f i g u r e 3 -3 .

Here two o r t h o g o n a l components o f magnet ic f i e l d were measured:

t h e v e r t i c a l component o f magnet ic f i e l d was measured a t

t h i r t e e n d i f f e r e n t f r e q u e n c i e s and t h e h o r i z o n t a l component

(E-W) was measured a t t e n d i f f e r e n t f r e q u e n c i e s .

P r e d e t e c t i o n bandwidth i s e i t h e r 1 kHz o r 1 . 2 kHz a s i n d i -

c a t e d on each APD.

F i g u r e s 4 - 1 th rough 4-11 show t h e APDts o f magnet ic

f i e l d n o i s e measured a t t h e development foreman o f f i c e ( l o c a -

t i o n A i n f i g u r e 3 -2 ) . Only t h e v e r t i c a l component of mag-

n e t i c f i e l d was measured a t e l e v e n f r e q u e n c i e s r a n g i n g from

10 kHz t o 32 MHz. These f r e q u e n c i e s a r e 10 kHz, 30 kHz, 70

kHz, 130 kHz, 160 kHz, 250 kHz, 1 MHz, 2 MHz, 6 MHz, 14 MHz,

and 32 MHz. F igure 4-12 th rough F igure 4-19 show t h e A P D ' s

o f magnet ic f i e l d n o i s e measured a t t h e c r u s h e r s u b s t a t i o n

( l o c a t i o n C i n f i g u r e 3 - 2 ) . Again o n l y t h e v e r t i c a l compo-

n e n t o f magnetic f i e l d was measured a t e i g h t f r e q u e n c i e s ,

10 kHz, 30 kHz, 70 kHz, 130 kHz, 500 kHz, 1 MHz, 2 MHz and

6 MHz. F igure 4-20 through 4-42 show t h e APD's of magnetic

f i e l d n o i s e measured a t t h e shop o f f i c e ( l o c a t i o n K i n

f i g u r e 3 -3) . Figures 4-20 through 4-32 show t h e APDts of

t h e v e r t i c a l component of magnetic f i e l d no i se measured a t

t h i r t e e n d i f f e r e n t f r e q u e n c i e s , 30 kHz, 7 0 kHz, 1 1 0 kHz, 130

kHz, 160 kHz, 205 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 6 MHz,

1 4 MHz, and 32 MHz. F igures 4-33 through 4-42 show t h e APD's

o f t h e h o r i z o n t a l E-W component o f magnetic f i e l d no i se

measured a t t e n d i f f e r e n t f r e q u e n c i e s , 10 kHz, 30 kHz, 70 kHz,

130 kHz, 160 kHz, 2 5 0 kHz, 500 kHz, 1 MHz, 2 MHz and 6 MHz.

Ai r -coo led , V-8 d iese l -powered , r u b b e r - t i r e d Load-Haul-

Dump (LHD) v e h i c l e s wi th f r o n t - l o a d i n g scoops of t y p i c a l l y

5 cub ic -yard c a p a c i t y (1 cub ic yard - % 0.75 m 3 ) a r e used t o

p i c k up and haul i r o n o r e t o t h e underground c r u s h e r , and

dump t h e o r e i n t o t h e c rushe r o r e b i n . Main sources of EM

n o i s e a r e cons idered t o be l o c a t e d i n t h e c rushe r room a r e a

( see Sec t ion 3 . 5 ) . As s t a t e d i n Sec t ion 3 .3 .3 , t h e c rushe r

s u b s t a t i o n c o n t a i n s two 500 KVA t rans formers f o r s t epp ing

th ree-phase vo l t age down t o 480 v o l t s . The c rushe r i t s e l f

i s run by a 150 horsepower, 4160 v o l t , 20.3 ampere, t h r e e -

phase , wound-rotor motor. Crusher f e e d e r s , conveyers and

o t h e r s i m i l a r equipments i n t h e a r e a of t h e c rushe r a r e run

from 480 v o l t s wi th t y p i c a l c u r r e n t s o f 400 amperes. Thus

t h e genera l n a t u r e o f no i se measured a t t h e e l e c t r i c a l s u b s t a -

t i o n of t h e c rushe r and a t t h e development foreman o f f i c e i s

e s s e n t i a l l y a t r a i n of power l i n e r e l a t e d p u l s e s a s mentioned

i n S e c t i o n 3 .3 .3 . The shoulder i n t h e APD curves taken a t

f r equenc i e s from 10 kHz t o 130 kHz r e s u l t s from t h i s t r a i n of

p u l s e s . I n o t h e r ca se s where t h e t r a i n o f p u l s e s was no t

p r e s e n t , t h i s shoulder i s no t p r e s e n t (see APD curves t aken

a t f r equenc i e s above 130 kHz).

4 . 3 RMS and Average Values

The A P D ' s a r e i n t e g r a t e d t o g i v e average and r m s v a l u e s

o f t h e f i e l d s t r e n g t h , a c c o r d i n g t o t h e e q u a t i o n s

H avg

= - 1 H dp (H) 0

and

where H r e p r e s e n t s t h e magnet ic f i e l d s t r e n g t h o f t h e n o i s e ,

and p i s t h e p r o b a b i l i t y t h a t t h e measured f i e l d s t r e n g t h

exceeds t h e v a l u e H . These q u a n t i t i e s a r e a l s o dependent upon

t h e measurement bandwidth, t h e l e n g t h o f t h e d a t a r u n , and

p o s s i b l y o t h e r p a r a m e t e r s . F i n i t e s e r i e s a r e a c t u a l l y used

f o r t h e numer ica l i n t e g r a t i o n . The rms and average v a l u e s so

a r r i v e d a t a r e i d e n t i f i e d on each graph and a r e t ime averages

(23 minu tes ) o f t h e s e t ime-dependent p a r a m e t e r s . I f t h e t a p e s

a r e p l a y e d i n t o o r d i n a r y rms- read ing m e t e r s , t h e meter r e a d -

i n g s w i l l v a r y 1 0 t o 2 0 dB o v e r f r a c t i o n s o f a second , s i n c e

t h e a v e r a g i n g t ime c o n s t a n t i s , of c o u r s e , much l e s s than 23

m i n u t e s . The rms v a l u e i s d i r e c t l y r e l a t a b l e t o n o i s e power.

With t h e s e wide v a r i a t i o n s o f f i e l d s t r e n g t h w i t h t i m e , t h e

most s u i t a b l e p r e s e n t a t i o n s a r e s t a t i s t i c a l ones .

4 .4 Summary Curves

Excurs ions o f f i e l d s t r e n g t h between 0 . 0 0 1 and 99 p e r c e n t ,

a s w e l l a s rms and average v a l u e s , a r e shown i n f i g u r e s 4-43

th rough 4-46 f o r magnet ic f i e l d n o i s e on A p r i l 24, 1973. The

p r e d e t e c t i o n bandwidth f o r t h e s e APD measurements e i t h e r i s

1 kHz o r i s normal ized t o 1 kHz. Some l o n g - t e r m f l u c t u a t i o n s

i n v a l u e s o c c u r because o f d i f f e r e n t o p e r a t i n g c o n d i t i o n s

d u r i n g d i f f e r e n t t imes o f t h e day .

Percent of Time Ordinate is Exceeded F i g u r e 4-1 APD, 1 0 kHz , v e r t i c a l component, 1.0 kHz p r e d e t e c t i o n bandwidth,

A p r i l 24, 1973, 10:OO a.m., development foreman o f f i c e , Grace Mine.

Percent of Time Ordinate is Exceeded Figure 4-2 APD, 30 kHz, v e r t i c a l component, 1.0 kHz prede tec t ion bandwidth,

A p r i l 24, 1973 , 10:36 a.m., development foreman o f f i c e , Grace Mi

-.

m

x-

O'd

0

uu

m

Ma

gn

eti

c F

ield

Str

en

gth

, H

(dB

re

lati

ve

to

1 m

icro

amp

ere

per

met

er

RM

S 1

Linear by -5 log,,(-In p )

30

Percent of Time Ordinate is Exceeded Figure 4-4 APD, 130 kHz, v e r t i c a l component, 1 .0 kHz p rede tec t ion bandwidth,

Apr i l 24 , 1973, 11:44 a.m., development foreman o f f i c e , Grace Mine.

Percent of Time Ordinate is Exceeded Figure 4-5 APD, 160 H z , v e r t i c a l component, 1.0 kHz p r e d e t e c t i o n bandwidth,

A p r i l 24, 1973, 12:lO p.m., development foreman o f f i c e , Grace Mine.

Percent of Time Ordinate is Exceeded F i g u r e 4-6 APD, 2 5 0 kHz, v e r t i c a l component, 1 .0 kHz p r e d e t e c t i o n bandwidth,

A p r i l 2 4 , 1973 , 1 2 : 4 0 p.m. , development foreman o f f i c e , Grace Mine.

Percent of Time Ordinate is Exceeded Lgure 4-7 APD, 1 MHz, v e r t i c a l component, 1.2 lcHz prede tec t ion bandwidth,

A p r i l 24, 1973, 10:36 a . m . , development foreman o f f i c e , Grace Mine.

Linear by - l o c ~ , ~ ( - I n p)

Percent of Time Ordinote is Exceeded Figure 4-8 APD, 2 MHz, v e r t i c a l component, 1.2 kHz p r e d e t e c t i o n bandwidth,

A p r i l 24, 1973, 11:05 a.m., development foreman o f f i c e , Grace Mine.

Percent of Time Ord inote is Exceeded gure 4-9 APD, 6 MHz, v e r t i c a l component, 1.2 kHz p r e d e t e c t i o n bandwidth,

A p r i l 24, 1973, 11:44 a.m., development foreman o f f i c e , Grace Mine.

Percent of Time Ordinote is Exceeded Figure 4-10 APD, 14 MHz, v e r t i c a l component, 1 . 2 kHz prede tec t ion bandwidth,

Apr i l 24, 1973, 12:10 p.m., development foreman o f f i c e , Grace X n e .

Percent of Time Ordinate is Exceeded Figure 4-11 APD, 32 MHz, v e r t i c a l component, 1.2 kHz p r e d e t e c t i o n bandwidth,

A p r i l 24, 1973, 12:40 p.m., development foreman o f f i c e , Grace Mine.

Linear by -+ loglo(-In p)

.0001.001.01 .I .5 1 5 10 20 30 40 50 60 70 80 85 90 95 98 99

Percent of Time Ordinate is Exceeded Figure 4-12 APD, 10 kHz, v e r t i c a l component, 1.0 kHz p r e d e t e c t i o n bandwi

Apr i l 24, 1973, 3 :00 p.m., c rushe r s u b s t a t i o n , Grace Mine.

Linear by - l ~ g , ~ ( - i n p) 60

50

40

30

20

I0

0

-10

-20

-30

-40 D001.001.01 .I 5 1 5 10 20 30 40 50 60 70 80 85 90 95 98 99

Percent of Time Ordinate is Exceeded

.gure 4-13 APD, 30 kHz, v e r t i c a l component, 1 . 0 kIIz prede tec t ion bandwidth, A p r i l 24 , 1973 , 3:30 p.m., crusher s u b s t a t i o n , Grace MLne.

Linear by -+ loglo(-lnp)

Percent of Time Ordinate is Exceeded F i g u r e 4-14 APD, 70 kHz, v e r t i c a l component, 1 .0 kHz p r e d e t e c t i o n bandwic

A p r i l 24, 1973, 4:05 p.m., c r u s h e r s u b s t a t i o n , Grace Mine.

Linear by - loglo(-~n p) 40

30

h

V)

E 20 L Q, C

i! L

g lo L 9, e 0

g 0 .- E I

0 C

0, > .- -10 C

0 - 0, L

rn '0 V

= -20 . f rn c ? fi

-30 0 Q4 .-

LL C) .- C Q,

& -40 0 z

-50

-60 ,0001 D01.01 .I 5 1 5 10 20 30 40 50 60 70 80 85 90 95 98 99

. Percent of Time Ordinate is Exceeded Figure 4-15 APD, 130 Mlz, v e r t i c a l component, 1 . 0 kHz predetection bandwidth,

April 24, 1973, 4 :35 p.m. , crusher substat ion, Grace Mine.

Percent of Time Ordinate is Exceeded Figure 4-16 APD, 0.5 MHz, v e r t i c a l component, 1 .2 kHz p r e d e t e c t i o n bandwidth,

A p r i l 2 4 , 1973, 3 :00 p.m., c rushe r s u b s t a t i o n , Grace Mine.

Fig Percent of Time Ordinate is Exceeded

;ure 4-17 APD, 1 MHz, v e r t i c a l component, 1.2 kHz prede tec t ion bandwi A p r i l 24, 1973, 3:30 p.m., crusher s u b s t a t i o n , Grace Mine.

d t h ,

Linear by - loglo(-In p)

20

10

CI

V)

E cr 0 L Q, C

E" L

g -10

I Q,

E" 0

2 ', -20 .- E CI

0 C

Q, > .- -30 C 0 - 2' m -0 V

-40

f tl, c f! C

V)

- 50 2 Q, .- LL

0 .- C

u c p -60

r"

-70

- 80 .0001.001.01 .I .5 1 5 10 20 30 40 50 60 70 80 85 90 95 98 '- 99

Percent of Ti me Ordinate is Exceeded Figure 4-18 APD, 2 MIz, v e r t i c a l component, 1 .2 kHz p r e d e t e c t i o n bandwi

A p r i l 24, 1973, 4:05 p.m., c rushe r s u b s t a t i o n , Grace Mine.

Percent of Ti me Ordinate is Exceeded Figure 4-19 APD, 6 MHz, v e r t i c a l component, 1.2 kHz p rede tec t ion bandwidth,

A p r i l 24, 1973, 4:35 p.m., crusher s u b s t a t i o n , Grace Mine.

Linear by - l ~ g , ~ ( - l n p )

Percent of Time Ordinate is Exceeded

Figure 4-20 APD, 30 kHz; v e r t i c a l component, 1 . 0 kHz predetection bandwidth, April 24, 1973 , ll:Oj'a.m., shop o f f i c e , Grace Mine.

Percent of Time Ordinate is Exceeded

-gure 4-21 APD, 70 kHz, v e r t i c a l component, 1 .0 kHz p rede tec t ion bandw Apri l 24, 1973, 1:00 p.m., shop o f f i c e , Grace Mine.

i d t h,

Percent of Ti me Ordi note is Exceeded

Figure 4-22 APD, 110 mz, v e r t i c a l component, 1.0 kHz p r e d e t e c t i o n bandwidth, Apr i l 24, 1973, 5:15 p.m., shop o f f i c e , Grace Mine.

9 1

Figu Percent of Time Ordinate is Exceeded

. r e 4-23 APD, 130 kHz, v e r t i c a l component, 1.0 kHz p r e d e t e c t i o n bandwidt A p r i l 24, 1973, 2:15' p.m., shop o f f i c e , Grace Mine.

Percent of Time Ordinnte is Exceeded Figure 4-24 APD, 160 kHz, v e r t i c a l component, 1.0 kHz p r e d e t e c t i o n bandwidth,

A p r i l 24, lQ73, 4:45 p.m. , shop o f f i c e , Grace Mine.

Percent of Time Ordinate is Exceeded Figure 4-25 APD, 205 kHz, v e r t i c a l component, 1 . 0 kHz p r e d e t e c t i o n bandwidth,

A p r i l 24, 1973, 5:33 p.m. , shop o f f i c e , Grace Mine.

Percent of Time Ordinate is Exceeded F i g u r e 4-26 APD, 250 kHz, v e r t i c a l component, 1.2 kHz p r e d e t e c t i o n band"'

A p r i l 24, 1973, 10:27a.m., shop o f f i c e , Grace Mine-

Percent of Time Ordinate is Exceeded

Fig ;ure 4-27 APD, 500 kHz, v e r t i c a l component, 1 . 2 kHz p r e d e t e c t i o n bandwi April 24 , 1973, l l :07a .m. , shop o f f i c e , Grace Mine.

Percent of Time Ordinate is Exceeded

Figure 4-28 APD, 1 MHz, vertical component, 1 . 2 kHz prede tec t ion bandwi Apr i l 24, 1973, 1:00 p.m., shop o f f i c e , Grace Mine.

Linear by - log,,(-ln p )

.0001.001.01 .I .5 1 5 10 20 30 40 50 60 70 80 85 90 95 98 99

Percent of Time Ordinate is Exceeded F i g u r e 4-29 APD, 2 MHz, v e r t i c a l component, 1.2 kHz p r e d e t e c t i o n bandwidth,

A p r i l 24, 1973, 2:15 p.m., shop o f f i c e , Grace Mine.

Percent of Ti me Ord i no te is Exceeded Figure 4-30 APD, 6 MHz, v e r t i c a l component, 1 .2 kHz predetection bandwi

April 24, 1973, 4:45 p .m. , shop o f f i c e , Grace Mine.

Linear by - l ~ g , ~ ( - l n p) - 10

-20

-30

- 40 ine Generated Noise

- 50

-60

-70

-80

- 90

- 100

-110 .0001.001 .01 .I .5 1 5 10 20 30 40 50 60 70 80 85 90 95 98 99

Percent of Time Ordinate is Exceeded pigure 4-31 APD, 14 MHz, v e r t i c a l component, 1.2 kHz p r e d e t e c t i o n bandwidth,

A p r i l 24, 1973, 5:15 p.m., shop o f f i c e , Grace Mine.

Linear by -+ log,,(-lnp)

.0001.001 .01 .I .5 1 5 10 20 30 40 50 60 70 80 85 90 95 98 99

Percent of Time Ordinate is Exceeded Figure 4-32 APD, 32 MHz, v e r t i c a l component, 1 . 2 kHz predetect ion bandwidth,

April 24, 1973, 5:33 p.m., shop o f f i c e , Grace Mine.

Linear by - log,,,(-in p)

Percent of Time Ordinate is Exceeded Figure 4-33 APD, 10 kHz, h o r i z o n t a l component E-W, 1.0 kHz

p r e d e t e c t i o n bandwidth, A p r i l 2 4 , 1973, 3 : 35 p.m. , shop o f f i c e , Grace Mine.

Percent of Time Ordinote is Exceeded Figure 4-34 APD, 30 kHz, h o r i z o n t a l component E-W, 1 . 0 kHz - p r e d e t e c t i o n bandwidth, A p r i l 24 , 1973, 12:18 p.m.,

shop o f f i c e , Grace Mine.

1WUH* IH I

Percent of Time Ordinate is Exceeded F i g u r e 4-35 APD, 70 kHz, h o r i z o n t a l component E-W, 1.0 kHz

p r e d e t e c t i o n bandwidth, A p r i l 24, 1973, 1:36 P.m. shop o f f i c e , Grace Mine.

Linear by - 3 log,,(-ln p)

20

Percent of Time Ordinate is Exceeded Figure 4-36 APD, 130 kHz, horizontal component E-W, 1 . 0 kHz

predetect ion bandwidth, April 24, 1973, 3:00 P.m. shop o f f i c e , Grace Mine.

Lineor by - logl0(-In p)

20

10

0

-10

-20

-30

-40

- 50

-60

- . - .+.. - - , . t - , . . + . . + + 4 . * # I ; , , 1 8 , : . i 1 + ..;. - .- +

I , - . . ,.- . . . : ..+' . , - , , : - . - . ...; ;: i ; / 1 . . . . . / ; I

. . . . 4 r - , . , . -. I I - : j * ' " 1 " i t ! I I L. ' . . '1. . . - - C . .... 2 ' . . , I , .. : ; L i . : : * 1 - i j - t - -

8 . !

- ? - , - ,~.+ 2

, I I : : - - i ' !

~ , , . , ~ . . , . , ,!I 1 I ? 1 1 4. . I . . . - . ,

. , . . , I 1 , . . . , , t-. > , - 4 . - , 1 : . . : ' ; I ! I ! 1 I

, , ! , I I c ; / ; ' , i : , : I , , . , -80 I

,0001.001.01 .I .5 1 5 10 20 30 40 50 60 70 80 85 90 95 98 99

Percent of Time Ordinate is Exceeded F i g u r e 4-37 APD, 160 kHz, h o r i z o n t a l component E-W, 1 . 0 kHz

p r e d e t e c t i o n bandwidth, A p r i l 2 4 , 1973, 4 : 1 5 p.m., shop o f f i c e , Grace Mine.

Linear by -* loglo(-In p)

Percent of Time Ordinate is Exceeded Figure 4-38 APD, 250 kHz, h o r i z o n t a l component E-W, 1.2 kHz

prede tec t ion bandwidth, Apr i l 2 4 , 1973, 3:35 p.m., shop o f f i c e , Grace Mine.

Percent of Time Ordinate is Exceeded Figure 4-39 APD, 500 kHz, h o r i z o n t a l component E-W, 1.2 kHz

p r e d e t e c t i o n bandwidth, Apr i l 24 , 1 9 7 3 , 12:18 p.m., shop o f f i c e , Grace Mine.

Linear by - l ~ g , ~ ( - I n p)

20

Percent of Time Ordinate is Exceeded Figure 4-40 APD, 1 MHz, h o r i z o n t d component E-W, 1.2 kHz

p r e d e t e c t i o n bandwidth, A p r i l 24, 1973, 1:36 p.m., shop o f f i c e , Grace Mine.

.- Linear by -$ loglo(-~n p)

Percent of Time Ordinate is Exceeded F i g u r e 4-41 APD, 2 MHz, h o r i z o n t a l component E-W, 1.2 kHz

p r e d e t e c t i o n bandwidth, A p r i l 24, 1973, 3:00 p.m., shop o f f i c e , Grace Mine.

Magnetic Field Strength, H(d8 relative to 1 microampere per meter RMS )

X , ,

0 0

N I I -

0

-

N

I 3

0 0 cO I

- - - - - 7 - - - - -

n

-- 8 h -

8 8 - Q,

0 -

w Q, V

= m = - E o E - 0 - -; CA ; .E - - o z > . - - z a a z

- - x a o a -

-

- -

- - -

- -

- -

-

- -

-

- -

- - 0

- -

- -

- - - - - -

- -

I I 'xX L 0 CD

0 0 0 0 0 d CU CU d W

I I I

1 - I

5. HOIST-PHONE MEASUREMENT RESULTS

There a r e two h o i s t - p h o n e sys tems i n u s e . The phone on

t h e p e r s o n n e l s k i p i n t h e s h a f t u s e s a t r a n s m i s s i o n l i n e (a

s i n g l e w i r e t e r m i n a t e d i n 25 ohms w i t h e a r t h r e t u r n ) i n s t a l l e d

s p e c i f i c a l l y f o r t h e h o i s t phone. I t o p e r a t e s a t 100 kHz.

A t t h e s u r f a c e , it i s d i r e c t l y c o u p l e d . On t h e s k i p , a 1 6 -

t u r n , s h i e l d e d l o o p o f a r e a 0.24 s q u a r e m e t e r , c o u p l e s t o t h e

magne t i c f i e l d from t h e t r a n s m i s s i o n l i n e . One edge o f t h i s

l o o p i s abou t 0 .2 m e t e r s from t h e s i n g l e w i r e o f t h e t r a n s -

m i s s i o n l i n e . T h i s sys t em works v e r y w e l l .

Dur ing normal o p e r a t i o n ( o r e h a u l i n g ) , t h e r e i s no phone

on t h e o r e s k i p a t t h e A s h a f t . One i s added d u r i n g main-

t e n a n c e s h i f t (once a week) . I t o p e r a t e s a t 65 kHz. A

f o l d i n g , wooden, r e c t a n g u l a r c o r e w i t h 30 t u r n s on each s i d e

forms a t o r o i d t h a t c o u p l e s ene rgy i n and o u t o f t h e h o i s t

"rope" ( 2 1 / 4 - i n c h (5.72 cm) d i a m e t e r , s t r a n d e d , s t e e l c a b l e ) .

I n t h i s c a s e , t h e h o i s t rope i s one w i r e o f t h e t r a n s m i s s i o n

l i n e ; e a r t h i s t h e r e t u r n , b u t s i n c e t h e s k i p i s guided w i t h

non-conduc t ing r u b b e r t i r e s on me ta l g u i d e s , ground r e t u r n i s

s o poor t h a t a b ronze shoe i s s p e c i a l l y i n s t a l l e d f o r b e t t e r

grounding d u r i n g ma in tenance . Without t h e ground p a t h t h r o u g h

t h e m e t a l s h o e , communication i s v e r y poor and i s n o t p o s s i b l e

o v e r a l a r g e p o r t i o n o f t h e 2200 f o o t p a t h . Some h a s t y e x p e r i -

ments per formed i n a shop a t t h e mine i n d i c a t e d a 50 dB

i n c r e a s e i n s i g n a l w i t h a r e s o n a n t c a p a c i t i v e r e t u r n p a t h o r

40 dB i n c r e a s e w i t h a l o w - r e s i s t a n c e r e t u r n p a t h . With t h e

m e t a l shoe making good c o n n e c t i o n w h i l e t h e s k i p i s s t o p p e d ,

communication was r e p o r t e d t o be good - - we d i d n o t have t h e

chance t o o b s e r v e t h i s f i r s t hand. For any c o n d i t i o n s n o t

p r o v i d i n g a l o w - r e s i s t a n c e g round , communication was n o t s o

good. S t a n d i n g waves would c e r t a i n l y be p r o b a b l e . T h i s

i n d i c a t e s t h e r e may be d i f f i c u l t y i n u s i n g s i n g l e - w i r e ( h o i s t

rope) t r a n s m i s s i o n l i n e s w i t h ground r e t u r n u n l e s s s p e c i a l

a t t e n t i o n i s g iven t o p r o v i d i n g l o w - r e s i s t a n c e ground r e t u r n s .

A s i d e n o t e i s t h a t t h e s e clamp-on, wooden frame t o r o i d k a r e

tuned ( f a i r l y broadband) f o r a somewhat h i g h e r f requency t h a n

65 kHz, and some s l i g h t improvement might be o b t a i n e d w i t h

d i f f e r e n t t u n i n g .

Measurements o f m a g n e t i c - f i e l d n o i s e and o f a t t e n u a t i o n

. o f s i g n a l l e v e l were made on t h e h o i s t - p h o n e sys tem on t h e A s h a f t . A s e p a r a t e - w i r e , t e r m i n a t e d t r a n s m i s s i o n 1 i n e was

used ; t h e n o i s e and s i g n a l l e v e l s were r e l a t i v e l y uni form,

i n d i c a t i n g no s t a n d i n g waves and l i t t l e a t t e n u a t i o n . The

s i g n a l - t o - n o i s e r a t i o was o v e r 70 dB.

M a g n e t i c - f i e l d n o i s e and m a g n e t i c - f i e l d s i g n a l s were

b o t h measured every 200 f e e t w h i l e t h e h o i s t r a n from 0 t o

2200 f o o t d e p t h s . Measurements were made nex t t o t h e c a r r i e r

phone p i c k - u p loop and n e x t t o t h e h o i s t r o p e . Antennas were

p o s i t i o n e d a s shown i n f i g u r e 5 - 1 . The r e s u l t s f o r t h e t r a n s -

miss ion l i n e a r e shown i n f i g u r e 5-2 and t h e r e s u l t s f o r t h e

h o i s t r o p e a r e shown i n f i g u r e 5 - 3 . Noise and s i g n a l a r e

shown i n dB r e l a t i v e one microampere p e r m e t e r , w h i l e s i g n a l -

t o - n o i s e (S/N) r a t i o i s i n dB; a l l t h e measured magnet ic-

f i e l d s t r e n g t h s a r e p r i m a r i l y a measure o f t h e c u r r e n t s i n

each w i r e , a s t h e s e c u r r e n t s a r e t h e n e a r e s t and hence

dominant s o u r c e s o f magnetic f i e l d energy .

There a r e two key o b s e r v a t i o n s . One i s t h a t w i t h a low-

l o s s , t e r m i n a t e d t r a n s m i s s i o n l i n e , t h e r e a r e no s t a n d i n g

wave p a t t e r n s , and l e v e l s v a r y o n l y s l i g h t l y w i t h i n r e a s o n a b l e

bounds i n d i c a t i n g v e r y low a t t e n u a t i o n . The second i s t h a t

t h e n o i s e a l s o i s n e a r l y uniform w i t h d e p t h . Some v a r i a t i o n s

were n o t e d n e a r working l e v e l s , b u t n o t more t h a n 10 t o 15 dB,

and w i t h t h e ve ry h i g h s i g n a l - t o - n o i s e r a t i o t h a t p r e v a i l s ,

t h a t s i z e o f v a r i a t i o n would c r e a t e no problem.

Magnetic- field pickup loop Transmission line for I00 kHz

for hoist phone

hoist phone \ 1 0 -

Collapsible loop 1 -- 1 3/4 inch (4.45 antennas used for hoist rope

NBS measurements

/ Escape hatch

Cable from NBS antennas into skip ' I

through escape hatch

cm) steel

Figure 5-1 Top view of pe r sonne l h o i s t "A" sk ip .

MAGNETIC FIELD STRENGTH, dB pA/m, OR RELATIVE S/N RATIO IN dB

Figure 5-2 Magnetic f i e l d s t rength , d ~ p ~ / r n , o r r e l a t i v e S/N r a t i o as measured along the t,ransmission l i n e fo r the personnel ho is t located i n "A" shaf t .

MAGNETIC FIELD STRENGTH, dB pA/m OR RELATIVE S/N RATIO IN dB

Figure 5-3 ?fag-tic f i e l d s t r e n g t h , d ~ ~ ~ / r n , o r r e l a t i v e S/N r a t i o a s measured a long t h e h o i s t rope f o r t h e personn,el h o i s t l oca ted i n "A" s h a f t .

6 . CONCLUSIONS

The s p e c t r a l p l o t s show a wide r ange o f m a g n e t i c - f i e l d

n o i s e l e v e l s a t d i f f e r e n t l o c a t i o n s . I n g e n e r a l , t h e n o i s e

l e v e l s d e c r e a s e w i t h f r e q u e n c y , a l t h o u g h i f t h e r e i s a nea rby

dominant n o i s e s o u r c e , t h e r e a r e many v a r i a t i o n s t h a t a r e

c h a r a c t e r i s t i c o n l y o f t h a t s o u r c e .

The most i m p o r t a n t o b s e r v a t i o n i s t h a t t h e m a g n e t i c - f i e l d

n o i s e l e v e l s i n t h i s mine a r e a b o u t 10 t o 50 dB lower t h a n i n

most c o a l mines . There a r e two e x c e p t i o n s . F i r s t , n e a r t h e

c r u s h e r - r o o m s u b s t a t i o n , where heavy c u r r e n t i s f l o w i n g , t h e r e

a r e h i g h p o w e r - l i n e ha rmonics . Noise a t h i g h e r f r e q u e n c i e s

i s a l s o r e l a t i v e l y h i g h . Second, t h e L H D 1 s g e n e r a t e h i g h

f i e l d s anywhere i n t h e mine t h e y happen t o be . Even n e a r

t h e s e "ho t s p o t " a r e a s , e l e c t r o m a g n e t i c n o i s e l e v e l s a r e

s i g n i f i c a n t l y lower t h a n n e a r s i m i l a r "hot spo t1 ' a r e a s i n c o a l

mines .

Noise c o n t o u r maps a t 2 kHz, 1 0 kHz, 20 kHz and 60 kHz

show a d e f i n i t e c o n t i n u o u s s o u r c e i n o r n e a r t h e c r u s h e r

room. Some t y p e o f f a s t - r i s e - t i m e , f u l l -wave, t h r e e - p h a s e

c u r r e n t p u l s e i s p r e s e n t . S p e c t r a l l i n e s produced by t h i s

s o u r c e a r e s e p a r a t e d by a p p r o x i m a t e l y 360 Hz. S i n c e t h e

s e p a r a t i o n i s a p p r o x i m a t e , t h e s o u r c e may be an a r c .

There a r e e l e c t r o m a g n e t i c impu l ses g e n e r a t e d by chemica l

e x p l o s i o n s . These c r e a t e s h o r t - d u r a t i o n peaks h i g h e r ( a t

f r e q u e n c i e s above 5 kHz) t h a n l e v e l s g e n e r a t e d by o t h e r

equipment i n t h e mine.

The APD1s a l s o i n d i c a t e r e l a t i v e l y lower n o i s e l e v e l s

f o r h o r i z o n t a l and v e r t i c a l f i e l d s a t l o c a t i o n s away from t h e

c r u s h e r s u b s t a t i o n . However, n o i s e v a r i a t i o n s w i t h f r equency

a r e n o t m o n o t o n i c a l l y d e c r e a s i n g a s had been o b s e r v e d e i t h e r

i n c o a l mines o r f o r s u r f a c e l o c a t i o n s . The t ime v a r i a t i o n s

a r e random; i m p u l s i v e n o i s e i s p r e s e n t a lower p e r c e n t a g e

o f t ime i n Grace Mine t h a n i n c o a l mines , p a r t i c u l a r l y a t

lower f r e q u e n c i e s .

The h o i s t - p h o n e measurements showed a h i g h s i g n a l - t o -

n o i s e r a t i o , p r a c t i c a l l y no s t a n d i n g waves, and no measurable

l o s s o v e r t h e 670 me te r (2200 f e e t ) d e p t h a t t h e 100 kHz

o p e r a t i n g f r e q u e n c y , f o r t h e sys tem w i t h a s e p a r a t e , t e r m i -

n a t e d c a b l e t h a t r u n s down t h e h o i s t s h a f t . The "ground"

r e t u r n p a t h i s m o s t l y th rough m e t a l l i c c a b l e s , p i p e s , e t c . ,

and t h e r e f o r e i s n o t s i g n i f i c a n t l y a f f e c t e d by e a r t h param-

e t e r s . This i s a common s i t u a t i o n .

Although d i r e c t o b s e r v a t i o n s o r measurenlents were n o t

made on a n o t h e r h o i s t u s i n g o n l y t h e h o i s t c a b l e and e i t h e r

(1) no t e r m i n a t i o n (open c i r c u i t c o n d i t i o n ) , o r (2) a b r a s s

s h o r t i n g p l a t e ( s h o r t - c i r c u i t c o n d i t i o n ) , r e p o r t e d o p e r a t i o n

was n o t s a t i s f a c t o r y f o r c a s e ( I ) , o p e n , and o n l y modera te ly

s a t i s f a c t o r y f o r c a s e ( Z ) , s h o r t .

7 . RECOMMENDATIONS

The measured e l e c t r o m a g n e t i c d a t a i n t h i s r e p o r t shou ld

be compared w i t h s i m i l a r d a t a from c o a l mines . A d i f f e r e n t

t y p e of hau lage locomotion ( d i e s e l r a t h e r t h a n dc e l e c t r i c a l )

power i s used i n t h i s mine; t h e r e a r e s i g n i f i c a n t d i f f e r e n c e s

i n t h e e l e c t r o m a g n e t i c environment produced.

I f a mobile ( t o LHD v e h i c l e ) communication system i s t o

be d e s i g n e d , some s h i e l d i n g of e l e c t r i c a l components on t h e

L H D ' s may g i v e h i g h improvements r e l a t i v e t o c o s t s .

Where a s e p a r a t e pe r sonne l h o i s t i s o p e r a t e d , e . g . , t h e

o r e s k i p and t h e p e r s o n n e l s k i p a r e n o t t h e same, and hence

where f a l l i n g o r e i s n o t going t o damage a s p e c i a l t r a n s -

miss ion l i n e t h a t can be run down t h e s h a f t , u s e o f a s e p a r a t e

t r a n s m i s s i o n l i n e a p p e a r s v e r y a t t r a c t i v e . Where t h e o r e and

p e r s o n n e l s k i p a r e t h e same, p r a c t i c a l c o n s i d e r a t i o n s r e q u i r e

t h e s k i p r o p e ( c a b l e ) t o be one p a t h o f a t r a n s m i s s i o n l i n e ,

whi le e a r t h and /o r m e t a l l i c p i p e s and c a b l e s can p rov ide t h e

o t h e r p a t h . I n t h i s c a s e , s t a n d i n g waves w i l l be a problem

o f unknown s e v e r i t y , s i n c e t h e r e i s no r e l i a b l e t e r m i n a t i o n .

E l i m i n a t i o n o f t h e n o i s e s o u r c e i n t h e c r u s h e r room

would lower con t inuous in-mine background n o i s e s i g n i f i c a n t l y .

Hardwire, d i a l t e l e p h o n e s a r e used i n t h i s mine f o r

p o i n t - t o - p o i n t communication; t h i s sys tem works w e l l f o r a l l

l o c a t i o n s where phones a r e a v a i l a b l e . I n l e s s s t a t i c s i t u a -

t i o n s such a s e x i s t i n working a r e a s o f c o a l mines , such a

sys tem might n o t always be p r a c t i c a l .

8 . ACKNOWLEDGMENTS

Those making s i g n i f i c a n t c o n t r i b u t i o n s t o t h i s program

a r e a s fo l lows : Laboratory development and f i e l d use of meas-

urement equipment, Ed Neisen, Doug Schulze , and Tom Bremer;

d a t a p roces s ing , Ann Rumfelt, Nancy Tomoeda, Winston S c o t t ,

Frank Cowley, and David S t e a r n s . Those making va luab l e bu t

l e s s time -consuming c o n t r i b u t i o n s a r e Gerry Reeve, Bob

Matheson, Don Spaulding, John Chukoski, Lorne Matheson,

Dave Lewis, and Sharon Foote.

Winston S c o t t provided much a s s i s t a n c e i n p roof read ing ,

while Sharon Foote and J a n e t Becker typed t i r e l e s s l y through

many v e r s i o n s . Jocelyn Spencer and Barbara Bolton provided

d r a f t i n g a s s i s t a n c e .

F i n a l l y , none of t h i s would have been p o s s i b l e wi thout t h e

e x c e l l e n t coopera t ion of Paul Vancura, Ray Shucavage, Fred

Eben, Harold Kaley and o t h e r s a t Grace Mine of Bethlehem S t e e l

Corporat ion.

I 9 . REFERENCES

[ I ] Bensema, W . D . , Kanda, M . , Adams, J . W . , E l e c t r o m a g n e t i c

Noise i n Robena No. 4 Coal Mine, NBS Tech. Note 654,

A p r i l 1974.

[ 2 ] The I n s t i t u t e o f E l e c t r i c a l and E l e c t r o n i c E n g i n e e r s , I n c . ,

IEEE D i c t i o n a r y of E l e c t r i c a l and E l e c t r o n i c Terms,

S t d . 1 0 0 , 1972.

[ 3 ] Cr i ch low, W . Q . , e t a l . , A m p l i t u d e - P r o b a b i l i t y D i s t r i b u t i o n s

f o r Atmospheric Radio Noi se , NBS Monograph 23, 1960b.

[4 ] Thompson, W.I., 111, B i b l i o g r a p h y o f Ground V e h i c l e Com-

m u n i c a t i o n s and C o n t r o l , AKWIC i n d e x , Repor t No. DOT-

TSC -UMTA- 71 - 3 , J u l y 1971.

[ 5 ] T a g g a r t , H . E . and Workman, J . L . , C a l i b r a t i o n P r i n c i p l e s

and P r o c e d u r e s f o r F i e l d S t r e n g t h Meters (30 Hz t o 1 G H z ) ,

NBS Tech. Note 370, March 1969.

[ 6 ] S p a u l d i n g , A.D. and Disney , R . T . , Man-Made Radio Noise - - P a r t 1: E s t i m a t e s f o r B u s i n e s s , R e s i d e n t i a l , and R u r a l

A r e a s , OT Repor t 74-38 , June 1974.

1 0 . APPENDIX

Decoding o f Spec t rum C a p t i o n s

Spec t rum c a p t i o n s a r e g e n e r a l l y o r g a n i z e d i n t o t h e f o l -

l o w i n g fo rma t :

F i r s t l i n e : MP NDT NZS NDA NPO RC DF d a t e , t i m e , f r a m e , s e r i a l ,

where

NDT = D e t r e n d i n g o p t i o n , example , 0 ( d c removed)

NZS = R e s t a r t s p e c t r a l a v e r a g e a f t e r o u t p u t , example , 0

( r e s t a r t e d )

NDA = Data segment advance i n c r e m e n t , example , 2048

NPO = Number o f s p e c t r a a v e r a g e d be tween o u t p u t c a l l s ,

example , 20

RC = I n t e g r a t i o n t i m e i n s e c o n d s p e r s p e c t r a , e x a m p l e , 0 . 1 6 8

DF = R e s o l u t i o n b a n d w i d t h , s p e c t r a l e s t i m a t e s p a c i n g i n

h e r t z , example , 6 2 . 5

Date = Date o f computer p r o c e s s i n g , example , 03 /21 /73

Time = Time o f computer p r o c e s s i n g , example , 1 5 : 0 6 : 34

Frame= Frame s e t number , example , 10

S e r i a l = F i l m f rame s e r i a l number , example , 42 .

Second l i n e : DTA DA(1) DA(2) DA(3) NSA NRP NPP, where

DTA = D e t r e n d i n g f i l t e r p a r a m e t e r a , example , 0 .00195

DA(1) = D e t r e n d i n g f i l t e r a v e r a g e , K = l , e xample , 59 .4

DA(2) = D e t r e n d i n g f i l t e r a v e r a g e , K=2, example , 0

DA(3) = D e t r e n d i n g f i l t e r a v e r a g e , K=3, e x a m p l e , O

NSA = Number o f pe r iodog rams a v e r a g e d , example , 20

NRP = Number o f d a t a p o i n t s p r o c e s s e d s i n c e s p e c t r u m

i n i t i a l i z a t i o n , example , 43008

NPP = Number o f d a t a p o i n t s p r o c e s s e d s i n c e d a t a i n i t i a l -

i z a t i o n , example , 43008.

T h i r d l i n e : RUN, SESSION, MONTH, DAY, YEAR Gain c o r r . , r e c . =

t o t . c o n s t r . = , where

Run and S e s s i o n = t h e t i t l e o f t h e p o r t r a y e d frame i d e n t i f y i n g

t h e d i g i t i z i n g s e s s i o n and run number,

example, 2 1 83

Month, Day, Year = d a t e d a t a were r e c o r d e d i n t h e mine,

example, 8 25 73

Gain c o r r . r e c . = r e c e i v e r g a i n c o r r e c t i o n , example, - 6

t o t . c o n s t . = c o n s t a n t g a i n c o r r e c t i o n o f e n t i r e s y s t e m ,

example, -46 .4

Four th l i n e : C = , RG =, DG =, FG =, AG =, where

C = c o r r e c t i o n c u r v e used w i t h d a t a , example , 2 5

RG = r e c e i v e r g a i n and accompanying c o r r e c t i o n i n dB added t o

t h e d a t a , example , 200 ( - 6 dB)

DG = d i g i t i z e r g a i n , example, 0

FG = f i l t e r g a i n i n dB, o f t e n rounded t o n e a r e s t s i n g l e d i g i t ,

example , 0 I

AG = a b s o l u t e g a i n c o r r e c t i o n added t o d a t a , example , 5 2

F i f t h l i n e : Top o f S c a l e , S t a n d a r d E r r o r , S p e c t r a l Peak , where

Top o f S c a l e = l a r g e s t s c a l e marking f o r computer drawn

g raph , example , 1 .000+004 ( 1 . 0 x l o 4 )

S t a n d a r d E r r o r = s t a n d a r d e r r o r o f c u r v e , example, 0.3162

S p e c t r a l Peak = l a r g e s t s p e c t r a l peak o b s e r v e d , example,

4 .108+003 (4 .108 x l o 3 )

- - 1 I I

4. TITl.l< ANI) SlII37'1Tl~Ii 15. Pub l i ca t ion 1)'itc 3 I

i ELECTROMAGNETIC NOISE I N GRACE MINE

3. Kcc ip icn t ' s Accrsbiors Nr.. 1 I

j U.S. DEPT. O F COMM.

BIBLIOGRAPHIC DATA SHEET

- 7. AU'I'ljOK(S) 8. Performing Organ. Rclrort No.

John W. Adams, William D. Bensema, and Motohisa Kanda , 9. 13EKI:ORMIN(; ORGANIZATION NAME AND ADIIRESS 10. Project /Task/Brork LJl~it No. /

NATIONAL BUREAU O F STANDARDS DEPARTMENT O F COMMERCE

Washington, D. C. 20234

1. I'lll~I.I(:AT1ON O K REI'OKT NO.

NBSIR 7 4 - 3 8 8

2. C;ov't Accession No.

I P i t t s b u r g h Mining and Safety Research Center 4800 Forbes Avenue

12. Sponsor ing Organization Name and C:omplete Address (Street, C i t y , State, ZIP)

U. S. Bureau of Mines

P i t t sburgh , Pennsylvania 15213 IS. SIJPPI.I<MI<NTARY NOTES I

13. Type of Rcpclrt & Period C o v e r r J

I

bibliography or literature survey , mention i t here.)

----I 16. AHSTKAC;T (A 200-word or l e s s factual summary o f mos t s i@i f i can t information. I f document includes a s ignif icant I Tuo d i f f e r e n t techniques were used t o make measurements of the a b s o l u t e value of I

elect romagnet ic n o i s e i n an opera t ing hardrock mine, Grace Mine, loca ted n e a r Morgan- ; town, Pennsylvania. Diesel-powered haulage equipment i s used i n this mine, and t h e e lect romagnet ic no i se environment it c r e a t e s was measured t o see how i t d i f f e r s from t h e environment c rea ted by electric-powered haulage equipment. One technique measures no i se over t h e e n t i r e electromagnetic spectrum of i n t e r e s t f o r b r i e f time periods. It is recorded us ing broadband analog magnetic tape and t h e noise d a t a i s l a t e r t rans- formed t o give s p e c t r a l p l o t s . The o t h e r technique records no i se amplitudes at severa l d i s c r e t e f requencies f o r a s u f f i c i e n t amount of t i m e t o provide amplitude p r o b a b i l i t y d i s t r i b u t i o n s .

The s p e c i f i c measured r e s u l t s a r e given i n a number of s p e c t r a l p l o t s and amplitude p r o b a b i l i t y d i s t r i b u t i o n p l o t s .

i I

17. K E Y WOKIIS ( s i x to twe lve entr ies; alphabetical order; cap i ta l i ze only the first le t ter o f the rlanle; separated by semico lons ) Amplitude p r o b a b i l i t y d i s t r i b u t i o n ; coal mine no i se ; d i g i t a l

d a t a ; e lect romagnet ic i n t e r f e r e n c e ; e lect romagnet ic no i se ; e lect romagnet ic pulse (chemical); emergency communications; Fas t Four ier Transform; Gaussian d i s t r i b u t i o n ;

( T H I S R E P O K T )

-: Order From Sup. of Doc.. U.S. Ciovernment P r in t ing Off ice Washington, D.C. 20402, SI) ('at. No. (113

[-: : Order 1:rom Nat ional T e c h n i c a l Information Se rv icc (NTIS) Spr ingl iv ld , Virginia 22151

20. SF.<:UKITY (:I.ASS (?lit s PAGE)

22. P r i c e

UOCOMM-DC U 5 4 2 - P 7 4

~JNCI.ASSII ; I I - I~ I

Recommended