EigenmodeAnalysis for the PETRA III Cavity€¦ · that the fundamental mode oscillates at 499,65...

Preview:

Citation preview

Eigenmode AnalysisEigenmode Analysisfor the PETRA III Cavity

W. Ackermann, H. De Gersem, T. WeilandInstitut für Theorie Elektromagnetischer Felder Technische Universität DarmstadtInstitut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt

Status ReportJune 24 2016June 24, 2016TEMF, Darmstadt

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 1

Outline

▪ Motivation

C t ti l M d l▪ Computational Model- Drawings and geometry information

- Numerical problem formulation

▪ Cavity tuningy g- Cell radius variation for the “reliable” and “spark” models

Si l ti lt▪ Simulation results- Mode pattern and characteristic data

for the “reliable” and “spark” models

▪ Summary / OutlookSummary / OutlookJune 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 2

Outline

▪ Motivation

C t ti l M d l▪ Computational Model- Drawings and geometry information

- Numerical problem formulation

▪ Cavity tuningy g- Cell radius variation for the “reliable” and “spark” models

Si l ti lt▪ Simulation results- Mode pattern and characteristic data

for the “reliable” and “spark” models

▪ Summary / OutlookSummary / OutlookJune 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 3

Motivation

▪ PETRA CavitiesPh t h- Photographs

Pick-Up Loop

Waveguide-CoaxialTransition (Doorknob)

Tuning Plunger

PETRA III PETRA II

Tuning PlungerVacuum Pump

From time to time automatic switch-off of the power supply due http://mhf-e.desy.de/e519/e188812/e189242/to unexpected high fields in the cavity or waveguide system.

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 4

Motivation

▪ Investigation Strategy- Set up model “spark” with plunger positions 9 mm modify radii r to r such- Set up model spark with plunger positions 9 mm, modify radii r1 to r7 such,

that the fundamental mode oscillates at 499,65 MHz and the bead-pull measurement “Cavity Nr. 23” is reproduced.

- Set up model “reliable” with plunger positions 28 mm, modify radii r1 to r7 such, that the fundamental mode oscillates at 499,65 MHz and the bead-pull measurement “Cavity Nr. 48” is reproduced.y p

- Use a port boundary condition for the waveguide during the tuning procedure.

- Calculate R/Q and Q values for all modes up to 1,2 GHz.- Determine max. E and max. H in the plunger slits for all nodes. Keep the energy

per mode constantper mode constant.- Use either PEC or PMC boundary conditions instead of the port boundary

condition for the waveguide during the mode calculations.

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 5

Motivation

▪ PETRA CavitiesDesign cavity radiusr2 = r6 = 210,85 mm

9 mm 28 mm

Model spark“ Model reliable“Model „spark Model „reliable

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 6

Motivation

▪ Bead-pulling measurement for the model “spark”

PETRA SL_Cy1

499

499

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 7

S = 11.8 mm S = 8.4 mm

Motivation

▪ Bead-pulling measurement for the model “reliable”

PETRA SR_Cy1

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 8S = 30.0 mm S = 29.4 mm

Outline

▪ Motivation

C t ti l M d l▪ Computational Model- Drawings and geometry information

- Numerical problem formulation

▪ Cavity tuningy g- Cell radius variation for the “reliable” and “spark” models

Si l ti lt▪ Simulation results- Mode pattern and characteristic data

for the “reliable” and “spark” models

▪ Summary / OutlookSummary / OutlookJune 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 9

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityG t i f ti Input Waveguide- Geometry information Input Waveguide

Cavity

Pump Port Pump Port

Cavity

Tuning Plunger Tuning PlungerTuning Plunger Tuning Plunger

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 10

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityG t i f ti Input Waveguide- Geometry information Input Waveguide

Cavity

Pump Port Pump Port

Cavity

Tuning Plunger Tuning PlungerTuning Plunger Tuning Plunger

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 11

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityP t i f ti

Input WaveguidePort with finite number of modes

- Port information

Cavity Length ofthe waveguidethe waveguide

Length ofthe beam tube

I t C lInput CouplerWR-1800 to 6¼ inchWaveguide-CoaxialElectrically closed

Pump Port Tuning Plunger TransitionJune 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 12

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityB t b l th- Beam-tube length

k 39 55 1/ D i 10 5kz= 39.55 1/m Damping = 10-5

Length { 174 6 232 9 291 1 349 3 } mm10-3 10-4 10-5 10-6

Length 300 mm!Damping

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 13

Length = { 174.6, 232.9, 291.1, 349.3 } mm Length = 300 mm

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityW id l th- Waveguide length

D i 10 5

Number of port modes = 14!

Damping = 10-5

kz= 28.89 1/m

Number of port modes 14

Length { 239 1 318 8 398 5 478 2 } mm10-3 10-4 10-5 10-6

L th 400!Damping

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 14

Length = { 239.1, 318.8, 398.5, 478.2 } mm Length = 400 mm

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityG t i f ti (D t il f th i t l )- Geometry information (Details of the input coupler)

Alumium Oxide

Outer Conductor

Alumium OxideWindowsPhotograph

Cone

http://mhf-e.desy.de/e5/e63/

Coupling Loop Inner ConductorCourtesy ofyKathrin Cottel

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 15

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityG t i f ti (D t il f th i t l )- Geometry information (Details of the input coupler)

Coupling LoopOuter Conductor Coupling LoopOuter ConductorPhotograph

CCone

http://mhf-e.desy.de/e5/e63/

Courtesy ofyKathrin Cottel

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 16

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityG t i f ti (D t il f th t i l )- Geometry information (Details of the tuning plungers)

Modeling ofGuide and Spring

Neglect Cooling Channels

Photograph

Tuning PlungersTuning Plungershttp://mhf-e.desy.de/e519/e187129/

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 17

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityG t i f ti (D t il f th t i l )- Geometry information (Details of the tuning plungers)

Modeling ofGuide and SpringGuide and Spring

C id GConsider Gapand Housing

Courtesy of Michael EbertJune 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 18

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityG t i f ti (D t il f th t i l )- Geometry information (Details of the tuning plungers)

Modeling ofGuide and SpringGuide and Spring

C id GConsider Gapand Housing

Courtesy of Michael EbertJune 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 19

Computational Model

▪ PETRA III, 500 MHz, 7-cell CavityG t i f ti (D t il f th t i l )- Geometry information (Details of the tuning plungers)

Spring is now fixed (only plunger movable)

Plunger position = -20 mm Plunger position = 50 mm

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 20

Outline

▪ Motivation

C t ti l M d l▪ Computational Model- Drawings and geometry information

- Numerical problem formulation

▪ Cavity tuningy g- Cell radius variation for the “reliable” and “spark” models

Si l ti lt▪ Simulation results- Mode pattern and characteristic data

for the “reliable” and “spark” models

▪ Summary / OutlookSummary / OutlookJune 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 21

Cavity Tuning

▪ Model “spark” Red: Bead-pulling measurement of the frequency shift

499 f = 499 779 MHz499 f = 499.779 MHz

499

Blue: Bead-pulling simulation of the frequency shift (scaled vs. position)

R = { 213.65, 210.85, 210.90, 209.85, 210.90, 210.85, 213.65 } mmdR { 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 22

dR = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 } mm

Cavity Tuning

▪ Model “spark”S iti it i f ti

Radius variation of each individual, sensitivity of:

Waveguide

- Sensitivity information, y

• frequency• field flatness

dR7dR4 dR5 dR6dR7dR6

Pump PortTuning PlungerTuning Plunger

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 23

Cavity Tuning

▪ Model “spark”

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 24

Cavity Tuning

▪ Model “spark” Red: Bead-pulling measurement of the frequency shift

499 f = 499 650 MHz499 f = 499.650 MHz

499

Blue: Bead-pulling simulation of the frequency shift (scaled vs. position)

R = { 213.65, 210.85, 210.90, 209.85, 210.90, 210.85, 213.65 } mmdR { 0 134 0 031 0 069 0 246 0 075 0 013 0 087 }

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 25

dR = { 0.134, -0.031, 0.069, 0.246, 0.075, 0.013, 0.087 } mm

Cavity Tuning

▪ Model “reliable” Red: Bead-pulling measurement of the frequency shift

f = 500 119 MHzf = 500.119 MHz

Blue: Bead-pulling simulation of the frequency shift (scaled vs. position)

R = { 213.65, 210.85, 210.90, 209.85, 210.90, 210.85, 213.65 } mmdR { 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 26

dR = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 } mm

Cavity Tuning

▪ Model “reliable”

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 27

Cavity Tuning

▪ Model “reliable” Red: Bead-pulling measurement of the frequency shift

f = 499 650 MHzf = 499.650 MHz

Blue: Bead-pulling simulation of the frequency shift (scaled vs. position)

R = { 213.65, 210.85, 210.90, 209.85, 210.90, 210.85, 213.65 } mmdR { 0 295 0 147 0 320 0 462 0 322 0 152 0 292 }

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 28

dR = { 0.295, 0.147, 0.320, 0.462, 0.322, 0.152, 0.292 } mm

Cavity Tuning

▪ Model “spark”C it t i

Port

- Cavity cut view

- Input coupler cut view

- Waveguide cut viewAccelerating Mode

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 29

Cavity Tuning

▪ Model “spark”C it t t d

Port

- Cavity truncated

- Input coupler cut view

- Waveguide cut view

Accelerating Mode

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 30

Outline

▪ Motivation

C t ti l M d l▪ Computational Model- Drawings and geometry information

- Numerical problem formulation

▪ Cavity tuningy g- Cell radius variation for the “reliable” and “spark” models

Si l ti lt▪ Simulation results- Mode pattern and characteristic data

for the “reliable” and “spark” models

▪ Summary / OutlookSummary / OutlookJune 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 31

Simulation Results

▪ Probe Locations for Maximum Field Determination

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 32

3420 sample points per plunger Grid spacing ~ 5 mm

Simulation Results

▪ Probe Locations for Maximum Field Determination

Probes equally distributed on a cylinder jacket inside the plunger slitsplunger slits.

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 33

Grid spacing ~ 5 mm

Simulation Results

▪ Resonance Frequency (all calculated modes)

MH

zue

ncy

/ MFr

eq

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 34

Mode Index

Simulation Results

▪ Resonance Frequency (first forty modes)

MH

zue

ncy

/ MFr

eq

Significant frequency shift for the first two modes.

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 35

Mode Index

Simulation Results

▪ Quality Factor (all calculated modes)

oral

ity F

acto

Qu

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 36

Mode Index

Simulation Results

▪ On Axis R / Q (all calculated modes)

s)Q

(on

axis

R /

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 37

Mode Index

Simulation Results

▪ Off Axis R / Q (all calculated modes)

tion)

in x

-dire

ctsh

ift 5

mm

(o

ff ax

is, s

R /

Q

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 38

Mode Index

Simulation Results

▪ Off Axis R / Q (all calculated modes)

tion)

in y

-dire

ctsh

ift 5

mm

(o

ff ax

is, s

R /

Q

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 39

Mode Index

Simulation Results

▪ Maximum Field Values in the Plunger Slits (all modes)

Slit

/ V/m

n Pl

unge

r SSt

reng

th in

tric

Fiel

d S

Max

Ele

ct

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 40

Mode Index

Simulation Results

▪ Maximum Field Values in the Plunger Slits (all modes)

Slit

/ A/m

n Pl

unge

r SSt

reng

th in

neti

Fiel

d S

Max

Mag

n

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 41

Mode Index

M

Simulation Results

▪ Field Classification and Mode CorrelationE l ti Th li it- Evaluation oncircular lines

- Three lines per cavitydZ = ± 50 mm

- R = 100 mm

- 60 samples per line- 60 samples per line

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 42

Simulation Results

▪ Field Classification and Mode Correlation

Model “ReliableE” Model “SparkE”

Model “ReliableH” Model “SparkH”Model ReliableH Model SparkH

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 43

Simulation Results

▪ Mode CorrelationM d l “ li bl ”- Model “reliable”

Model “ReliableE”

Model “ReliableH”E

Inde

x E

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 44

Index H

Simulation Results

▪ Mode Correlation144 modes identified(56 modes rejected)

ReliableEReliableH

MH

z 116 modes skipped

eque

ncy

/

E3 H3

Fre

E4 H4

Example: Modes 3 – 5 rejectedE5 H5

Example: Modes 3 5 rejected

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 45Mode Index

Simulation Results

▪ Mode CorrelationMode E99 Mode H99

Mode E100Mode E100

No corresponding mode available

Mode E101 Mode H100

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 46

Simulation Results

▪ Field Classification

Mode 6

agni

tude

Monopole

Ma

Azimuthal Order

Mode 7

nitu

de

Monopole

Mag

n

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 47Azimuthal Order

Simulation Results

▪ Field Classification

agni

tude

Mode 1

Dipole

Ma

Azimuthal Order

weighted mean = 1 65

nitu

de

Mode 78weighted mean 1.65

Dipole?Quadruople?

Mag

n

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 48

Quadruople?

Azimuthal Order

Simulation Results

▪ Field Classification

upper:

ency Azimuthal Order

Quadrupole

upper:Model “ReliableE”

Freq

ue

Dipole

Quadrupole

lower:

Monopole

lower:Model “ReliableH”

• Small white dot if0.01< fractional part <0.99

• Artificial vertical offset to separate the marks

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 49

Modal Index

Simulation Results

▪ Mode Correlation (“reliable E, reliable H”)

Vertical shift if EM field at the port present

First monopole passband: modes 6 - 12

mm

) in

Ohm

mm

, y=5

mR

/Q (x

=0

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 50

Index

Simulation Results

▪ Mode Correlation (“reliable E, reliable H”)Mode E6 Mode H6

Mode E7 Mode H7Mode E7 Mode H7

Mode E8 Mode H8Mode E8 Mode H8

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 51

Simulation Results

▪ Mode Correlation (“spark E, spark H”)First monopole passband: modes 6 - 12

Vertical shift if EM field at the port present

mm

) in

Ohm

mm

, y=5

mR

/Q (x

=0

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 52

Index

Simulation Results

▪ Mode Correlation (“spark E, spark H”)Mode E6 Mode H6

M d E7 M d H7Mode E7 Mode H7

Mode E8 Mode H8Mode E8 Mode H8

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 53

Simulation Results

▪ Mode Correlation (“reliable H, spark H”)First monopole passband: modes 6 - 12

mm

) in

Ohm

mm

, y=5

mR

/Q (x

=0

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 54

Index

Simulation Results

▪ Eigenmodes in the Frequency Range from 3.8 to 3.9 GHz

Reliable ESpark E

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 55

Simulation Results

▪ Eigenmodes in the Frequency Range from 3.8 to 3.9 GHz

Reliable E, 821 modesSpark E, 874 modes

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 56

Simulation Results

▪ Eigenmodes in the Frequency Range from 3.8 to 3.9 GHz

Reliable E, 821 modesSpark E, 874 modes

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 57

Simulation Results

▪ Eigenmodes in the Frequency Range from 3.8 to 3.9 GHz

Reliable E, 821 modesSpark E, 874 modes

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 58

Outline

▪ Motivation

C t ti l M d l▪ Computational Model- Drawings and geometry information

- Numerical problem formulation

▪ Cavity tuningy g- Cell radius variation for the “reliable” and “spark” models

Si l ti lt▪ Simulation results- Mode pattern and characteristic data

for the “reliable” and “spark” models

▪ Summary / OutlookSummary / OutlookJune 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 59

Summary / Outlook

▪ Summary:Precise modeling of the PETRA III cavity including pump- Precise modeling of the PETRA III cavity including pump ports, tuning plunger and input coupler

- Eigenmode analysis performed up to 1.2 GHz(mode pattern, frequency, R/Q, Q via power loss, slit field)( p , q y, , p , )

- Mode classification w.r.t. the azimuthal orderR/Q of the fundamental monopole passband- R/Q of the fundamental monopole passbandsensitive to model change from “spark” to “reliable”

▪ Outlook:Calculation of monopole passband with port BC?- Calculation of monopole passband with port BC?

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 60

Recommended