Effect of Triazine Impurity in NMI Capping Reagent on ... NMI Capping Reagent on Oligonucleotides...

Preview:

Citation preview

Effect of Triazine Impurity in NMI Capping Reagent on Oligonucleotides

Sandy Lorenz & Venkatraman Mohan

www.bandj.com

Honeywell.com

2

Contact Us for More Information

Background

• Automated DNA/RNA synthesis cycle • Impurity profile of desired n-mer oligos

– Failure mode: +85 oligo adduct • Origin of potential impurities

– Amidite monomers, reagents and solvents, reaction conditions • Capping reagents:

– 20/30/50 acetic anhydride/2,6-lutidine/acetonitrile – 20/80 N-Methylimidazole/acetonitrile

• Triazine impurity in NMI • LC/MS analysis of oligos • Summary

www.bandj.com

Honeywell.com

3

Contact Us for More Information

DNA/RNA synthesis cycle O

RO

DMTO B2

PO

NCN

O

RO

HO B1

O

O

RO

B1

O

O

RO

DMTO B2

PO

O

NC

O

RO

B1

O

O

RO

DMTO B2

PO

O

CN

O

RO

B1

O

O

RO

DMTO B2

PO

O

CN

Y

O

RO

B1

O

XO

O

RO

DMTO B1

ONH

O

S

O

OHO

HO B21

OP

YO

O

H/OHOH

O B1

PY

OO5' 3'

Oxidation

Deblock

Couple

Cap

Deblock D

epro

tect

, Pu

rify

X = Acetyl

O

O

O

Capping reagents

20/30/50 acetic anhydride/lutidine/ACN

20/80 N-Methylimidazole/ACN

www.bandj.com

Honeywell.com

4

Contact Us for More Information

Triazine impurity in N-methylimidazole

O

O O H2N

N

N+ + + NH4OH

glyoxal formaldehyde methyl amine amm.hydroxide N-Methylimidazole

O + H2N3 3 NN

N

A. A. Gridnev & I.M. Mihaltseva, Synthetic comm., 24, 1547,1994

1,3,5- trimethyl-hexahydrotriazine

Triazine by-product formation via side reaction

N-methylenemethanamine

Schiff-Base equilibrium

www.bandj.com

Honeywell.com

5

Contact Us for More Information

GCMS of NMI with Triazine Impurity

NM

I N

N

N-m

ethy

lene

met

hana

min

e

Data collected with Shimadzu GCMS 2010

NN

NN

1,3,

5- tr

imet

hyl-h

exah

ydro

tria

zine

Comparison of (A) observed MS & (B) NIST Library match

(A)

(B)

Triazine (ppm) Counts (TIC)

31.4 429,557

87.4 1,479,213

172.4 2,966,143

200.9 3,553,701

291.9 4,930,354

461.2 7,988,014

807.6 13,629,935

R2 = 0.9995

www.bandj.com

Honeywell.com

6

Contact Us for More Information

Experimental Design

N

OO

O+ Oligo

Oligo + 85

Oligo 1: A5C

6G

3T

6 5’- ATA CCG ATT CCG CGA ACT TT-3’

Oligo 2: A

10C

10 5’- ACA CAC ACA CAC ACA CAC AC-3’

Oligo 3: G

10T

10 5’- GTG TGT GTG TGT GTG TGT GT-3’

Oligo #

0 ppm 0.1% 2%

1 2 3

Triazine Levels

Hypothesis

Due to the inherent reactivity of secondary amine groups on G and T bases, the adduct predominantly adds to these. To test the hypothesis, oligos 2 and 3 have been designed.

_ _ _

N-methylenemethanamine Acetic anhydride

Oligos synthesized

NH

NH

O

O

N

NHN

NH

O

NH2

G T

www.bandj.com

Honeywell.com

7

Contact Us for More Information

Oligo Synthesis & Analysis Parameters

Honeywell Burdick & Jackson BioSyn® reagents

Synthesis Parameters Synthesizer: AKTATM OligopilotTM plus 100 Primer Support: GE Healthcare PS200 T80s (polystyrene beads, loading = 80µmole T/gram) (polystyrene beads, loading = 200µmole C/gram) Synthesis Scale: 100µmole, 240µmole Coupling Time: 3 minutes DNA Amidites: A, T, G, C (Prepared at 0.1M in acetonitrile), 1.6 eq.

BMI activator reagent cat. # BR731 (0.3M 5-benzylthio-1H-tetrazole, 0,5% NMI, 99.5% ACN) Deblock reagent cat. # SR674 (3% dichloroacetic acid in toluene (v/v)) Capping reagent, Cap A cat. # BR644 (20% acetic anhydride , 30% 2,6-lutidine, 50% acetonitrile (v/v)) Capping reagent, Cap B cat. # BR654 (20% N-methylimidazole, 80% acetonitrile (v/v)) Oxidation reagent cat. # BR664 (0.05M iodine, 10% water, 90% pyridine (v/v)) Acetonitrile cat. # BB017

LC/MS Parameters Agilent 6120 TOF Column: Agilent Eclipse plus C18, 3.5µm, 2.1 X 150 mm ESI Negative Mode Buffer A: HFIP and Diisopropylamine in water Buffer B: Methanol

www.bandj.com

Honeywell.com

8

Contact Us for More Information

LCMS Analysis of Oligo A5C6G3T6

0 ppm triazine in capping reagent

0.1% triazine in capping reagent

2% triazine in capping reagent

UV (260nm) Absorbance Chromatograms

Higher amounts of Triazine result in multiple additions of the + 85 adduct

n+85

www.bandj.com

Honeywell.com

9

Contact Us for More Information

LCMS Analysis of Oligo A5C6G3T6

Extracted Ion Chromatogram (M-3H)3-

UV at 260nm

n n +

85

n +

(2 x

85)

n +

(3 x

85)

n +

(4 x

85)

RT (min) % Area

MW (Daltons) from MS

Deconvolution

Expected MW (Daltons) ID

13.74 18.55 6052.18 6052.07 n

14.10 23.68 6137.22 6137.12 n + 85

14.44 14.05 6222.28 6222.17 n + (2 x 85)

14.71 5.97 6307.34 6307.23 n + (3 x 85)

15.16 3.95 6392.53 6392.28 n + (4 x 85)

Peak ID (M-3H)3- Ions Extracted (m/z)

1 n 2015.9 - 2016.1 2 n + 85 2044.6 - 2044.8 3 n + (2 x 85) 2072.9 - 2073.1 4 n + (3 x 85) 2100.9 - 2101.1

5 n + (4 x 85) 2129.6 - 2129.8

Analysis shows adducts overwhelm the desired oligo product

1 2 3

4 5

2% triazine in capping reagent

www.bandj.com

Honeywell.com

10

Contact Us for More Information

LCMS Analysis of Oligo G10T10

Total Ion Chromatogram Base Peak Chromatogram

Extracted Ion Chromatogram (M-3H)3-

1 2

Peak ID (M-3H)3- Ions Extracted (m/z)

1 n 2089.5 - 2089.7 2 n + 85 2117.9 - 2118.1 3 n + (2 x 85) 2146.3 - 2146.5 4 n + (3 x 85) 2174.6 - 2174.8 5 n + (4 x 85) 2202.9 - 2203.1 6 n + (5 x 85) 2259.7 - 2259.9 7 n + (6 x 85) 2288.0 - 2288.2 8 n + (7 x 85) 2316.4 - 2316.6 9 n + (8 x 85) 2344.7 - 2344.9

3 4 5 6 7 8 9

2% triazine in capping reagent

+ 85 adducts are distributed over G and T bases

www.bandj.com

Honeywell.com

11

Contact Us for More Information

LCMS Analysis of Oligo A10C10

Total Ion Chromatogram

UV at 260nm

RT (min) MW (Daltons)

from MS Deconvolution

ID Ion Abundance %

13.28 - 13.40 5728.14 n - 234 100

5611.16 n - 351 65.5

5845.22 n - 117 27.1

13.55-13.74 5845.17 n - 117 100

5728.19 n - 234 55.9

5962.19 n 50

14.01-14.19 5845.21 n - 117 100

5962.21 n 98.3

5930.22 n-32 71

No + 85 adduct observed on oligo sequence without G or T bases

2% triazine in capping reagent

www.bandj.com

Honeywell.com

12

Contact Us for More Information

Summary

• LCMS analysis of the failure mode (oligos with n+85 adduct)

• +85 adduct impurity affects oligo API quality

• GCMS analysis of NMI: identification and validation of triazine impurity

• Triazine and acetic anhydride adds to oligo, resulting in +85 adduct

• Higher spiked amounts of triazine in capping reagent correspond to higher Oligo-adducts

• Evidence for adduct formation limited to sequences containing either G or T

• No +85 adduct formed in sequence containing only A and C

• Additional experiments to investigate mechanistic details are in progress