EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

Preview:

Citation preview

EE143 – Ali Javey

Section 6: Ion Implantation

Jaeger Chapter 5

EE143 – Ali Javey

Ion Implantation - Overview• Wafer is Target in High Energy Accelerator• Impurities “Shot” into Wafer• Preferred Method of Adding Impurities to Wafers

– Wide Range of Impurity Species (Almost Anything)

– Tight Dose Control (A few % vs. 20-30% for high temperature pre-deposition processes)

– Low Temperature Process

• Expensive Systems• Vacuum System

EE143 – Ali Javey

Equipment

dttImqA

Q

qr

mV

T

0

2

1 Dose Implanted

2 Field Magnetic

x q particle chargedon Force

B

BvF

EE143 – Ali Javey

Ion Implantation

x

Blocking maskSi

+ C(x) as-implant depth profile

Depth xEqual-Concentrationcontours

Reminder: During implantation, temperature is ambient. However, post-implant annealing step (>900oC) is required to anneal out defects.

Reminder: During implantation, temperature is ambient. However, post-implant annealing step (>900oC) is required to anneal out defects.

y

EE143 – Ali Javey

Advantages of Ion Implantation• Precise control of dose and depth profile• Low-temp. process (can use photoresist as mask)• Wide selection of masking materials

e.g. photoresist, oxide, poly-Si, metal

• Less sensitive to surface cleaning procedures• Excellent lateral uniformity (< 1% variation across 12” wafer)

n+n+

Application example: self-aligned MOSFET source/drain regions

SiO2

p-Si

As+As+ As+

Poly Si Gate

EE143 – Ali Javey

Ion Implantation Energy Loss Mechanisms

Si+

+

Si

Si

e e

+ +Electronicstopping

Nuclearstopping

Crystalline Si substrate damaged by collision

Electronic excitation creates heat

EE143 – Ali Javey

Light ions/at higher energy more electronic stopping

Heavier ions/at lower energy more nuclear stopping

EXAMPLES Implanting into Si:

Ion Energy Loss Characteristics

H+

B+

As+

Electronic stoppingdominates

Electronic stoppingdominates

Nuclear stoppingdominates

EE143 – Ali Javey

Stopping Mechanisms

E1(keV) E2(keV)B into Si 3 17P into Si 17 140As into Si 73 800

EE143 – Ali Javey

Substrate

Less damageSe > Sn

More damage at end of range Sn > Se

Surface

x ~ Rp

A+

Eo = incidentkineticenergy

Se

E ~ 0

Sn

E=Eo

Se

Sn

Depth xSn dE/dx|nSe dE/dx|e

Electronic / Nuclear Stopping: Damage

EE143 – Ali Javey

Simulation of 50keV Boron implanted into Si

EE143 – Ali Javey

Model for blanket implantation

pp

p

p

pp

RNdxxNQ

R

R

RxNxN

0

p

2

2

2= Dose

StraggleR

Range Projected

2exp

ProfileGaussian

EE143 – Ali Javey

Rp and Rp values are given in tables or charts e.g. see pp. 113 of Jaeger

Note: this means 0.02 m.

Projected Range and Straggle

EE143 – Ali Javey

Selective Implantation

solution ldimensiona-one is xN

straggle transverse

222

1

,

R

R

ayerfc

R

ayerfcyF

yFxNyxN

EE143 – Ali Javey

Transverse (or Lateral) Straggle (Rt or R)

Rt

RtRp

>1

Rt

Rp

EE143 – Ali Javey

y

Mask

C(y) at x=Rp

x = Rp

Implanted specieshas lateral distribution,larger than mask opening

Implanted specieshas lateral distribution,larger than mask opening

x

y

Higher concentrationLowerconcentration

Feature Enlargement due to lateral straggle

EE143 – Ali Javey

(2) Projected Range:

(3) Longitudinal Straggle:

(1) Dose C x dx0

(4) Skewness:

(5) Kurtosis:

dxxCxRp

0

1

dxxCRxR pp

0

22 1

( ) ( ) 00,

30

3

<>-

orMdxxCRpxM

0

4 dxxCRx p

Rpx

C(x)

Kurtosis characterizes thecontributions of the “tail” regions

-describes asymmetry between left side and right side

Definitions of Profile Parameters

EE143 – Ali Javey

Selective Implantation – Mask thickness

• Desire Implanted Impurity Level to be Much Less Than Wafer Doping

N(X0) << NB

or

N(X0) < NB/10

EE143 – Ali Javey

What fraction of dose gets into Si substrate?

x=0 x=d

C(x)Mask material (e.g. photoresist)

Si substrate

C(x) Mask material with d=

x=0 x=d

-

Transmission Factor of Implantation Mask

EE143 – Ali Javey

T C x dx C x dx

erfcd R

R

erfc x e dy

C x d

C x R

d

p

p

yx

p

00

0

4

1

2 2

12

10

2

Rule of thumb Good masking thickness:

d R Rp p 4 3. ~

are values of for ions intothe masking material

RpRp ,

Transmitted Fraction

EE143 – Ali Javey

Junction Depth

B

pppj

Bp

pjp

Bj

N

NRRx

NR

RxN

NxN

ln2

2exp

2

2

The junction depth is calculated from the point at which the implant profile concentration = bulk concentration:

EE143 – Ali Javey

Sheet Resistance RS of Implanted Layers

x

C(x) log scale

xj

CB

n

Total doping conc

p

p-sub (CB)

n

jx

0 B

S

dxCxCxq

1R

Example:n-type dopants implantedinto p-type substrate

x =0

x =xj

x

EE143 – Ali Javey

Approximate Value for RS

R

q C x dx q

Rq

R ohm

s x

s

s

j

1 1

10

If C(x) >>CB for most depth x of interest and use approximation: (x) ~ constant

use the for the highestdoping region which carriesmost of the current

This expression assumes ALLimplanted dopants are 100%electrically activated

or ohm/square

EE143 – Ali Javey

200 keV Phosphorus is implanted into a p-Si ( CB= 1016/cm3) with a dose of 1013/cm2 .

From graphs or tables , Rp =0.254 m , Rp=0.0775m

(a) Find peak concentration

Cp = (0.4 x 1013)/(0.0775 x10-4) = 5.2 x1017/cm3

(b) Find junction depths

(c) Find sheet resistance

(b) Cp exp[ -( xj-0.254)2/ 2 Rp2]= NB with xj in m

( xj - 0.254)2 = 2 (0.0775)2 ln [ 5.2 1017/1016]

or xj = 0.254 ± 0.22 m ; xj1 = 0.032 m and xj2 = 0.474 m

From the mobility curve for electrons (using peak conc as impurity conc), n= 350 cm2 /V-sec

Rs = 1

qn =

11.610-19 350 1013 1780 /square.

PhosphorusImplant

p-substrate (1E16 /cm3)

x

x

j1

j2

R p

CB

Example Calculations

EE143 – Ali Javey

Channeling

EE143 – Ali Javey

Use of tilt to reduce channeling

To minimize channeling, we tilt wafer by 7o with respect to ion beam.To minimize channeling, we tilt wafer by 7o with respect to ion beam.

Random component

channeled component

C(x)

x

Axial ChannelingPlanar ChannelingRandom

Lucky ions fall into channel despite tilt

EE143 – Ali Javey

Si+

1 E15/cm2

Si crystal

Disadvantage : Needs an additional high-dose implantation stepDisadvantage : Needs an additional high-dose implantation step

B+

Si crystal

Amorphous Si

Step 1High dose Si+implantation to covertsurface layer intoamorphous Si

Step 2Implantation ofdesired dopantinto amorphous surface layer

Prevention of Channeling by Pre-amorphization

EE143 – Ali Javey

With Accelerating Voltage = x kV

B+

P+

As+

Kinetic Energy = x · keV

B+++

B++ Kinetic Energy = 2x · keV

Kinetic Energy = 3x · keV

Singlycharged

Doublycharged

Triplycharged

Note: Kinetic energy is expressed in eV . An electronic charge q experiencing a voltage drop of 1 Volt will gain a kinetic energy of 1 eV

Kinetic Energy of Multiply Charged Ions

EE143 – Ali Javey

BF2+

Kinetic Energy = x keV

BFF

B has 11 amuF has 19 amu

accelerating voltage= x kV+ -

%20191911

11

BFof.E.K

Bof.E.K

vm2

1Fof.E.K

vm2

1Bof.E.K

vvvVelocity

2

2BF

2BB

FFB

Molecular ion will dissociate immediatelyinto atomic components after entering a solid.All atomic componentswill have same velocityafter dissociation.

SolidSurface

Molecular Ion Implantation

EE143 – Ali Javey

Implantation Damage

EE143 – Ali Javey

Amount and type of Crystalline Damage

EE143 – Ali Javey

(1) Restore Si crystallinity.

(2) Place dopants into Si substitutional sites for electrical activation

After implantation, we need an annealing step.A typical anneal will:

Post-Implantation Annealing Summary

EE143 – Ali Javey

Deviation from Gaussian Theory

• Curves deviate from Gaussian for deeper implants (> 200 keV)• Curves Pearson Type-IV Distribution Functions (~sum of 4 Gaussians)

EE143 – Ali Javey

Shallow Implantation

EE143 – Ali Javey

Rapid Thermal Annealing

•Rapid Heating•950-1050o C•>50o C/sec•Very Low Dt

(b)

EE143 – Ali Javey

Dose-Energy Application Space

Recommended