EE 511: Introduction to Fourier Optics and Image Understandingese511/lectures/visual/volume1.pdf ·...

Preview:

Citation preview

©2000, D. L. Jaggard 1EE 511EE 511

EE 511: Introduction to EE 511: Introduction to Fourier Optics and Fourier Optics and

Image UnderstandingImage UnderstandingVolume 1

I. History and BackgroundII. Fourier Transforms and Linear Systems

Dwight L. JaggardUniversity of Pennsylvania

308 Moore<jaggard@seas.upenn.edu>

215.898.4411

©2000, D. L. Jaggard 2EE 511EE 511

Course Goal

Understand the fundamentals of physical and ray optics and their application to

current science and technology

©2000, D. L. Jaggard 3EE 511EE 511

What good is optics?

©2000, D. L. Jaggard 4EE 511EE 511

Course Outline (I)I. History and Background

A. History

B. Types of Optics

C. Applications of Physical Optics

II. Fourier Transforms and Linear Systems

III. Scalar Diffraction Theory (Physical Optics)

IV. Fresnel and Fraunhofer Approximations

V. Vector Diffraction Theory

VI. Geometrical and Ray Optics

©2000, D. L. Jaggard 5EE 511EE 511

Course Outline (II)VII. Properties of Lenses

VIII. Coherent and Incoherent Imaging

IX. Partial Coherence Theory

X. Special Topics (topics selected according to time and interest of class)A. Image classification and understanding

B. Non-destructive evaluation and testing

C. Fractal antennas and arrays

D. “Electromagnetic bullets” or focused beams

E. Inverse problems

©2000, D. L. Jaggard 6EE 511EE 511

Administrative Information

l Contactsl Dwight Jaggard, instructor

<jaggard@seas. upenn.edu> or 215.898.4411

l Lois Clearfield, secretary (appointments and handouts)

<lois@ee.upenn.edu>or 215.898.8241

l Office Hours: 4:30 - 5:30 Wl Review Sessions: as needed

©2000, D. L. Jaggard 7EE 511EE 511

Course Information

l Gradesl Homework ~15 - 20%l Midterm ~35 - 40%l Final ~35 - 40%l Mini-Project ~10%

l Late homework not acceptedl Midterm Exam: Wednesday, March 7l Guidelines on collaboration

©2000, D. L. Jaggard 8EE 511EE 511

Mini-Project

l Idea:Take topic related to course and

present topic to class Work in small groupsTurn in presentation (Power Point)

plus paper on topicl Talks given last two weeks of

classl Paper due April 30

©2000, D. L. Jaggard 9EE 511EE 511

Potential Mini -Project Topics - Il Image and pattern classificationl Signal reconstruction (from limited data)l Non-uniform or 2-D samplingl Rough surface scatteringl Electromagnetic scattering (physical optics

with polarization or exact methods)l Knife edge diffraction for both polarizationsl Low frequency diffraction by apertures

l Optical computing/neural nets

©2000, D. L. Jaggard 10EE 511EE 511

Potential Mini -Project Topics - IIl Diffraction by fractalsl Zernike polynomials and opticsl Diffuse beam propagation/imagingl Higher-order Gaussian beam propagationl Focused beams/“diffractionless” propagationl Applications of partial coherence theoryl Ray optics and lens designl Multilayers: application & designl Spectroscopyl Antenna radiation

©2000, D. L. Jaggard 11EE 511EE 511

Potential Mini -Project Topics - IIIl Phase retrieval probleml Holographyl Inverse problemsl Tomography & radon transforml Ultrasound imagingl X-ray diffraction/crystallographyl MRIl Adaptive opticsl Wavelets

©2000, D. L. Jaggard 12EE 511EE 511

Linksl Course website:

http://www.seas. upenn.edu/~ee511(homework posted here)

l Photonics information & newswww.optics.org

l Some interesting sites for physical opticswww.opticalimaging.org/fourieroptics.htmlhttp://dukemil.egr.duke.edu/Ultrasound/k -

space/bme265.htmhttp://wyant.optics.arizona.edu/fresnelZones/fresnelZone

s.htmhttp://hyperphysics.phy -

astr.gsu.edu/hbase/phyopt/diffracon.html#c1

©2000, D. L. Jaggard 13EE 511EE 511

Related Journalsl Journal of the Optical Society of America – Al Optics Lettersl Optics Communicationsl Applied Opticsl Optical Engineeringl Journal of Lightwave Technologyl Journal of Optics A: Pure and Applied Opticsl Optikl Journal of Modern Opticsl Optica Actal Applied Physics Lettersl Applied Physics B: Lasers and Opticsl Optics Express (online journal)

©2000, D. L. Jaggard 14EE 511EE 511

I. History and Background

A. History

B. Types of Optics

C. Applications of Physical Optics

©2000, D. L. Jaggard 15EE 511EE 511

History (I)l Classical Times & Greek Philosophersl Empedocles (circa 490-430 B.C.)l Euclid (circa 300 B.C.)

l The Golden 1600’sl Descartes (1596-1650)

l Considered the nature of lightl Light was pressure transmitted through the aether

l Galileo (1564-1642)l Experimental methods

l Snell (1621)l Refraction of light at interface

©2000, D. L. Jaggard 16EE 511EE 511

History (II)l More 1600’sl Fermat (1601-1665)

l “Principle of Least Time”l Refraction laws verified

l Father Grimaldi (1618-1663)l First noticed “diffraction”l Note: diffraction is the bending of light not caused

by refractionl Newton (1642-1727)

l Discovered basic qualities of colorl White light could be split up into colorsl Experiments with prisms and light and

“refrangibility ” or bending of light at an interface

©2000, D. L. Jaggard 17EE 511EE 511

History (III)l Still More 1600’sl Huygens (1629-1695)

l Wave propagation of lightl Polarization of lightl Laws of reflection and refraction

l Progress in the 1700’sl Young (1773-1829)

l Wave theoryl Interference (colors of thin films)

l Fresnel (1788-1827)l Confirmed wave theory of propagation and diffractionl Influence of earth’s motion of light propagationl Interference of polarized rays of light (light no

longitudinal)l Reflection and polarizationl Cause of dispersion

©2000, D. L. Jaggard 18EE 511EE 511

History (IV)

l The Maxwell Eral Faraday (1791-1867)

l Experiments in electricity and magnetisml Work independent of optics experiments

l Maxwell (1831-1879)l Theoretically unified electricity and magnetisml Showed possibility of electromagnetic waves propagating

with velocity that could be calculatedl Electrostatics, magnetostatics , induction, EM waves and

optics unified under single theory

l Lord Rayleigh (scientific work 1899-1920)l Investigated waves propagation and scatteringl Examined scattering from small particlesl Studied wave interactions with periodic structures

©2000, D. L. Jaggard 19EE 511EE 511

History (V)l Atomic Nature of Light - The Beginningl Fraunhofer (1787-1826)

l Discovered absorption lines in the solar spectruml Kirchhoff (1824-1887)

l Experimentally measured absorption lines of solar spectrum

l Plank, Bohr and Einstein (early 1900’s)l Quantum theory makes inroadsl Applications of quantum mechanics to atomic structure and line

spectra (materials have quantized atomic systems)l Photons postulatedl Certain effects (e.g., photo -electric effect) explained only by

photons

l Dirac (1927)l Field quantization (electromagnetic fields are quantized)l Quantum optics

©2000, D. L. Jaggard 20EE 511EE 511

What are the “brands” of

optics?

©2000, D. L. Jaggard 21EE 511EE 511

Types of Opticsl Ray or geometrical opticsl Wave/physical/Fourier opticsl Scalar theory (no polarization)l Vector or EM theory (polarization)l Beam optics

l Statistical opticsl Optics of atomic systems/materialsl Quantum optics

©2000, D. L. Jaggard 22EE 511EE 511

Hierarchy of Optics

Quantum Optics

Electromagnetic (Vector) Optics

Scalar Wave Optics

Geometrical (Ray) Optics

©2000, D. L. Jaggard 23EE 511EE 511

Applications of Physical Opticsl Remote sensing & inverse scatteringl Imaging & image systemsl Image processing, pattern discrimination

and classificationl Holography and non-destructive evaluation

and testing (NDE & NDT)l Rough surface scatteringl Antenna and array designl Spectroscopyl Inteferometryl Optical computing

©2000, D. L. Jaggard 24EE 511EE 511

Course OutlineI. History and BackgroundII. Fourier Transforms and Linear Systems

III. Scalar Diffraction Theory (Physical Optics)

IV. Fresnel and Fraunhofer Approximations

V. Vector Diffraction TheoryVI. Geometrical and Ray Optics

VII. Properties of Lenses

VIII. Coherent and Incoherent Imaging

IX. Partial Coherence TheoryX. Special Topics

©2000, D. L. Jaggard 25EE 511EE 511

II. Fourier Transforms and Linear Systems

A. RequirementsB. “Inventing” the Fourier TransformC. Dirac Delta FunctionD. Use of the F.T. in OpticsE. F.T. PropertiesF. Some Useful TransformsG. Two-Dimensional F.T.H. More Useful TransformsI. Sampling

©2000, D. L. Jaggard 26EE 511EE 511

A. Requirements

l To use Fourier Transforms (F.T.)

there are requirements on:

l System

l Signal

©2000, D. L. Jaggard 27EE 511EE 511

System Requirementsl To use F.T. the system must be:l Linear

l Nonlinear systems often use specialized

methods unique to each system

l No general theory exists

l Time invariant

l Memoryless

©2000, D. L. Jaggard 28EE 511EE 511

Signal Requirementsl To use F.T. the signal g(t) must:l Satisfy

l Must have finite number of discontinuities

e.g., cannot be the function

l Have a finite number of max and mine.g., cannot be the function

g( t) =+1

−1

for

for

t

t

rational

irrational

g(t) dt−∞

∫ exists

g( t) = sin(t−1)

©2000, D. L. Jaggard 29EE 511EE 511

More on Signal Requirements

l Fourier transforms for signals notsatisfying three conditions can often be found:l For signals whose absolute value has

infinite area, one can use a damping function and take the limit

l For signals with discontinuities impose a Lipschitz condition

l Signals from real systems are most often well-behaved

©2000, D. L. Jaggard 30EE 511EE 511

How can we discover the

Fourier Transform?

©2000, D. L. Jaggard 31EE 511EE 511

One Method

Joseph Fourier (1768-1839)

©2000, D. L. Jaggard 32EE 511EE 511

B. “Inventing” the F.T.

l The spectrum of g(t) is the amount of each frequency f contained in g(t)

l Mathematically the F.T. is the graph of the spectrum of g(t)

l Need a way to find out how much of each frequency f is in g(t)

©2000, D. L. Jaggard 33EE 511EE 511

Inner Product and F.T.l The inner product is a measure of

how much a signal is like another signal

l Define the inner product of g(t) and h(t) as

l Clearly this is max when g(t) = h(t)l If inner product is zero, g(t) and h(t)

are orthogonal (just like vector dot product)

< g(t)h(t) > =∆

g(t )h* (t)dt−∞

©2000, D. L. Jaggard 34EE 511EE 511

Phasors and Signal of “Pure Frequency”

l An example of a signal of “pure frequency” is exp(j2πft)

l This is a rotating “phasor” of unit amplitude and angle 2πft and so rotates counterclockwise for f > 0

l Real and imaginary parts of this phasor are cos(2πft) and sin(2πft)

l A phasor exp(-j2πft) simply rotates clockwise for f > 0 [gives meaning to “negative frequency’]

©2000, D. L. Jaggard 35EE 511EE 511

Signal of “Pure Frequency” and g(t)

l Let h(t) = exp(j2πft) to find how much of frequency “f” is in signal “g(t)” through the inner product

l Define the F.T. as:

F g(t ){ }=< g(t)ej 2π ft >= g(t)e− j 2π ftdt

−∞

©2000, D. L. Jaggard 36EE 511EE 511

More on F.T. of g(t)l Fourier transform of g(t) gives

frequency-domain function G(f) which provides the graph of the spectrum of g(t)

l Note: the “spectrum” may also refer to |G(f)| 2 - so beware!

l Sometimes all we have is |G(f)|2 which does not give unique g(t) [“phase retrievelproblem”]

F g(t ){ }= G( f ) =< g(t)ej 2πft >= g(t)e− j2πft dt

−∞

©2000, D. L. Jaggard 37EE 511EE 511

F.T. and Its Inversel Fourier transform is not uniquel Only combined pair of the Fourier

transform F{g(t)} = G(f) and its associated inverse transform F–1{G(f)} = g(t) are unique where

l Many minor variations in notation (e.g., factors of 2 π, changes in sign of exponent)

F−1F g(t){ } = g(t)

©2000, D. L. Jaggard 38EE 511EE 511

Celebrated F.T. Pairl The Fourier transform pair used

here is:

F g(t ){ }= G( f ) = g(t)e− j 2πft dt

−∞

F −1 G( f ){ }= g(t) = G( f )e + j 2 πftdf

−∞

l Note: we have only defined the first equation and postulated the second

l Here f and t are conjugate variables

©2000, D. L. Jaggard 39EE 511EE 511

Notes on F.T. Pairl We use the shorthand

to indicate a function g(t) and its transform G(f)

l There are many other F.T. conventions that change signs in the exponent and/or change the position of the factor (2π)

l If g(t) is discontinuous, F.T. construction will not give discontinuity but will converge to average value at discontinuity

g(t ) ⇔ G( f )

©2000, D. L. Jaggard 40EE 511EE 511

F.T. Inversion Formulag(t ) = G( f )e+ j2 πft df

−∞

= [g(t' )e− j 2 πft' dt'−∞

∫ ]e+ j 2πftdf−∞

= [g(t' )−∞

∫ e+ j2 πf (t − t ' )dt' df−∞

=f →∞lim g(t' )

e+ j2 πf (t −t ' ) − e− j2π f (t − t ' )

j2π (t − t' )

dt'−∞

= g(t' )f →∞lim

sin[2πf (t − t' )]π (t − t' )

dt'

−∞

= g(t' ) t ' = tf → ∞lim

sin[2πf (t − t' )]π (t − t' )

dt'

−∞

∫= g(t )

[sin(t)/t] function issharply peaked and

“pulls out” or “sifts” g(t’) at t=t’

Integral has a value of unity

Assume inversionformula is correct,

now check

©2000, D. L. Jaggard 41EE 511EE 511

Sine and Cosine Integrals

Si(t) = sin(t' )t '0

t

∫ dt'

lim

t → ∞Si(t) = π

2

sin(2πft' )t '−∞

∫ dt' = sin(t' )t '−∞

∫ dt' = π

Ci(t) = γ + ln(t) +cos(t ' ) − 1

t '0

t

∫ dt'

where γ ≈ 0.5772156649...is Euler's constant

lim

t → ∞Ci(t) = 0

©2000, D. L. Jaggard 42EE 511EE 511

C. Dirac Delta Function

l Definition

l Candidates

l Some useful relations

©2000, D. L. Jaggard 43EE 511EE 511

Delta Function Definition

l Note:l Dirac delta function δ(t) is highly peaked where

its argument is zerol Its “weight” or “strength” is defined by its

integral (unity)l This is a “generalized function” or “distribution”

δ (t)dt = 1−∞

∫and

δ (t) = 0 for t ≠ 0

This is not your usual function

©2000, D. L. Jaggard 44EE 511EE 511

Candidates for δ(t)l Functions that are sharply peaked

and have an area of unityl Example: define the rectangle

function or “rect function” of width T as rect(t/T):

rect(t / T ) =1 for t / T < 1

20 for t / T > 1

2

©2000, D. L. Jaggard 45EE 511EE 511

Delta Function andT–1 rect(t/T)

l Normalize rect function to give unit area and take limit:

δ(t) =lim

T → 0

1T

rect(t / T ) =1

T for t / T < 12

0 for t / T > 12

1/T

T

t

T–1rect(t/T)

Take limit T–> 0

©2000, D. L. Jaggard 46EE 511EE 511

Candidates for δ(t)l Candidates can

be continuous or discontinuous; monotonic or oscillatory; have finite support or infinite support

l All are peaked at the origin and are normalized to have unity area

δ (t) =lim

T → 0

1T

rect(t / T )

δ (t) =lim

α → ∞

sin(αt)πt

δ (t) =lim

α → ∞

απ

exp(−αt 2 )

δ (t) =lim

α → ∞

α2

exp(−α t )

δ (t) =lim

α → 0

απ(α 2 + t 2 )

©2000, D. L. Jaggard 47EE 511EE 511

Properties of Dirac Deltal Sifting Property

l Scaling Property

l Derivative

l Parity

f(t)δ(t − a)dt−∞

∫ = f (a)

δ (at) = 1a

δ (t)

f ( t)δ ' (t − a)dt−∞

∫ = − f ' (a )

δ(t) = δ(−t)

δ ' (t) = −δ ' (− t)

©2000, D. L. Jaggard 48EE 511EE 511

Additional Propertiesl Shift &

Scale

l Powers

l Roots

δ (at + b) =1a

δ (t +ba

) (a ≠ 0)

t nδ (n)(t) = (−1)n n!δ(t)

δ [ f ( t)] =δ ( t − t0 )

f ' (tn)n∑

where f (t) = 0 has roots tn

and f' (tn ) is non -zero and

and exists

©2000, D. L. Jaggard 49EE 511EE 511

Some Useful Relations

l Prove by using Euler identities and property of the Sine integral

l This implies F.T. and F.T. –1 of unity yields a delta function

exp(+ j2πft)−∞

∫ df = δ (t)

exp(− j2πft)−∞

∫ dt = δ ( f )

F δ(t){ }= 1

F 1{ } = δ( f )

©2000, D. L. Jaggard 50EE 511EE 511

Example: Show

exp(+ j2πft)−∞

∫ df = [cos(2πft ) + j sin(2πft )]−∞

∫ df

= 2 [cos( 2πft)]0

∫ df

=lim

f → ∞2

sin(2πft )2πt

= δ(t)

exp(+ j2πft)−∞

∫ df = δ(t)

sine function is odd and its

integral vanishes

©2000, D. L. Jaggard 51EE 511EE 511

II. Fourier Transforms and Linear Systems

A. RequirementsB. “Inventing” the Fourier TransformC. Dirac Delta FunctionD. Use of F.T. in OpticsE. F.T. PropertiesF. Some Useful TransformsG. Two-Dimensional F.T.H. More Useful TransformsI. Sampling

©2000, D. L. Jaggard 52EE 511EE 511

D. Use of the Fourier Transforms in Optics

l Spatial frequency

l Analogy between electrical and

optical quantities

l Essence of Fourier Optics

©2000, D. L. Jaggard 53EE 511EE 511

Spatial Frequency

l Conjugate variables for g(t)t (seconds) f (seconds–1)

l In space we have conjugate variables for g(x)

x(meters) fx (meters–1)

l fx is denoted spatial frequencyalong coordinate x

©2000, D. L. Jaggard 54EE 511EE 511

More Spatial Frequencyl For two-dimensional surfaces fx is the

spatial frequency along the x-axis while fyis the spatial frequency along the y-axis

l Note: l fx is the number of cycles per meter of

variation of a spatial signall fx = k x/2π (normalized wavenumber)l fy = k y/2π (normalized wavenumber)

©2000, D. L. Jaggard 55EE 511EE 511

Examples:Surface Height h(x,y)

h(x,y) = surface height

x

y

h(x,y) = surface height

x

y

Which fractal surface has more higher spatial frequencies?

©2000, D. L. Jaggard 56EE 511EE 511

Summary

l Signals in Timel g(t) signal

l t variablel f cyclic

frequencyl ω=2π f radian

frequency

l Signals in Spacel g(x) signal

l x variablel fx spatial

frequency

l kx=2π fx wavenumber

Note: Spatial frequency (=1/λ) is the normalized wavenumber k (=2π/λ)

©2000, D. L. Jaggard 57EE 511EE 511

Electrical/Optical Analog

l Electricall Fourier transforml Quadratic phase filterl Linear FM generatorl Filteringl Pulse shapingl Autocorrelationl Narrow band filter

l Opticall Fraunhofer diffractionl Fresnel diffractionl Lensl Contrast improvementl Apodizationl Coherencel Fabry-Perot cavity

Interferometer

©2000, D. L. Jaggard 58EE 511EE 511

Essence ofFourier Optics

l Far-zone field U(fx,fy) is the two-dimensional Fourier transform of the aperture field U0(x,y)

x’ fx~x

y’

z

fy~y

U(fx,fy)U0(x’,y’)

Diffracted field is the F.T. of the aperture field

©2000, D. L. Jaggard 59EE 511EE 511

E. Fourier Transform Properties

1. Linearity2. Oddness & Evenness

3. Scaling4. Shifting

5. Modulation6. Convolution7. Correlation

8. Rayleigh , Parseval and Power Theorems9. Differentiation

10. Moments11. Periodic Functions

©2000, D. L. Jaggard 60EE 511EE 511

Fourier Transform Properties - Linearity

Fourier transforms add and scale in amplitude as do the original functions

Ag(t ) + Bh(t) ⇔ AG( f ) + BH ( f )

Proof: Follows from definition

©2000, D. L. Jaggard 61EE 511EE 511

Example: rect function

F rect(t){ } = e− j2 πftdt−1 /2

1/ 2

=e − jπ f − e+ jπf

− j2πf

=sin(πf )

πf

≡ sinc( f )or

rect( t) ⇔ sinc( f )

©2000, D. L. Jaggard 62EE 511EE 511

Fourier Transform Properties - Oddness

and EvennessSymmetry of function gives rise to symmetry of its transform

Note: g(t) = g*(–t)indicates Hermitianfunction

g(t) G(f)Real & even Real & even

Real & odd Imaginary & oddImaginary & even Imaginary & evenComp lex & even Complex & even

Comp lex & odd Complex & oddReal & asymmetrical Complex & hermitianImaginary and asymmet. Complex and antiherm.Real even plusimaginary odd

Real

Real odd plus imaginaryeven

Imaginary

Even EvenOdd Odd

©2000, D. L. Jaggard 63EE 511EE 511

©2000, D. L. Jaggard 64EE 511EE 511

Fourier Transform Properties - Scaling

There is an inverse scaling relation between functions and their

transforms

g(at)⇔1a

G( f / a)

Proof:

F g( at){ }= g( at)e −j 2πft dt let y = at−∞

= 1a

g( y)e− j2πfy / ady−∞

∫ for a > 0

=1a

G( f / a)

similar proof for a < 0

©2000, D. L. Jaggard 65EE 511EE 511

Example: rect function

If rect function is stretched by factor “T” then its transform is

compressed by same factor “T” and its amplitude is also scaled (to

conserve power)

F rect(t / T){ } = [1]e− j2 π ftdt−T/ 2

T/ 2

=e− j2 π ft

− j2πf −T /2

T/ 2

= Tsin(πTf )

(πTf )

= T sinc(Tf )

©2000, D. L. Jaggard 66EE 511EE 511

Fourier Transform Properties - Shifting

Shifting in the time -domain leads to phase delay in the frequency -domain (no shift in frequency -domain) so F.T.

amplitude is unaltered

g( t − a) ⇔ G( f )exp(− j2πfa)

{ } 2

2 ( )

2 2

2

Proof:

( ) ( )

( )

( )

( )

j ft

j y a f

j fa j f y

j fa

g t a g t a e dt let y t a

g y e dy

e g y e dy

e G f

π

π

π π

π

∞−

−∞

∞− +

−∞

∞− −

−∞

− = − = −

=

=

=

F

©2000, D. L. Jaggard 67EE 511EE 511

Two Time Shifts -Makes Difference

In Fourier optics this represents the interference for two-slit diffraction

{ } 2

2 2

Example:

( ) ( ) [ ( ) ( )]

( )[ ]

2 ( )cos(2 )

j ft

j fa j fa

g t a g t a g t a g t a e dt

G f e e

G f fa

π

π π

π

∞−

−∞

− +

− + + = − + +

=

= +

=

∫F

L

What does this mean for two -slit

diffraction?

©2000, D. L. Jaggard 68EE 511EE 511

Fourier Transform Properties - Modulation

Modulation in the time -domain leads to frequency shifting in the

frequency-domainUseful for modulated pulses

g(t)exp(+ j2πf0t)⇔ G( f − f0)

Proof :

F g(t )e+ j2πf0 t{ }= g(t )e+ j 2πf 0te− j2πft dt−∞

= g(t )e− j 2π ( f − f0 )t dt−∞

∫= G( f − f0 )

©2000, D. L. Jaggard 69EE 511EE 511

Example: Modulated Pulsel Consider F. T. of rect(t/T) cos(2πf0t)

F rect(t / T)cos(2πf0t{ }=e+ j 2πf0t + e− j 2πf0t

2

e− j 2πftdt

−T / 2

T /2

= e+ j 2π ( f0 − f ) t + e− j2π ( f0 + f )t

2

dt−T / 2

T /2

=e+ j 2π ( f0 − f )t

j4π( f0 − f )

− T /2

T / 2

+e− j2π ( f0 + f )t

− j4π( f0 + f )

− T /2

T /2

=L

=T2

sinc[T( f − f0 )] +T2

sinc[T( f + f 0)]

How many cycles need to be in the pulse so that the relative bandwidth

of the transform is ~10%?

Half the transform is shifted to

positive frequency and half to

negative frequency

©2000, D. L. Jaggard 70EE 511EE 511

Fourier Transform Properties - Convolution

Convolution in the time -domain leads to multiplication in the frequency -domain

g(t) ⊗ h(t) ≡ g(τ )h(t −−∞

∫ τ )dτ

g( t)⊗ h(t ) ⇔ G( f )H ( f )

Proof:

F g(t )⊗ h(t ){ }= g(τ )h(t − τ)e− j2 πf tdτdt−∞

∫−∞

∫integrate over t

= g(τ )H( f )e− j2 πfτdτ−∞

∫= G( f )H( f )

This is an inner

product of a function and a shifted &

reversed function

©2000, D. L. Jaggard 71EE 511EE 511

Sufficient Conditions for Convolution

l For g(t) = f(t) V h(t) to exist (assuming f and h are reasonably well-behaved and single valued):l Both f(t) and h(t) are absolutely integrable

on (–8,0); orl Both f(t) and h(t) are absolutely integrable

on (0, 8 ); orl Either f(t) or h(t) are absolutely integrable

on (–8, 8 )

©2000, D. L. Jaggard 72EE 511EE 511

Properties of Convolutionl Delta Function

l g(t) V d(n)(t) = g(n)(t) = nth derivative of g(t)

l Commutative Propertyl f(t) V h(t) = h(t) V f(t)

l Distributive Propertyl [av(t) + bw(t)] Vh(t) = a[v(t) V h(t)]

+ b[w(t) V h(t)]

l Shift Invariancel If f(t) V h(t) = g(t)

then f(t–t0) V h(t) = g(t–t0)

l Associative Propertyl [v(t) Vw(t)] Vh(t) = v(t) V [w(t) Vh(t)]

©2000, D. L. Jaggard 73EE 511EE 511

Physical Interpretation of Convolution

h(t)

H(f)

i(t)

I(f)

o(t)

O(f)

Input OutputLinear System

lO(f) = H(f) I(f) [system transfer function]l If we want O(f) = I(f) –> H(f) = 1lOr h(t) = δ(t) since F–1{1} = δ(t) l o(t) = i(t) V h(t) so h(t) = δ(t) = F–1{H(f)} l Therefore, h(t) is called the “impulse

response”

©2000, D. L. Jaggard 74EE 511EE 511

More on Convolution

l What happens if the linear system distorts input?

l Convolution is the natural operation to find the time -domain response o(t) to the system for arbitrary input i(t)

©2000, D. L. Jaggard 75EE 511EE 511

Convolution ExampleLet

E(t )=e− t t > 00 t < 0

aE(αt )⊗ bE(βt) = ab E(ατ)−∞

∫ E(βt − βτ)dτ

= abE(βt ) E (ατ − βτ)0

t

∫ dτ

= abE(βt )E (αt − βt)− 1

β −α

= abE(αt) − E(βt)

β −αConvolution calculation

t

τ

bE(βt − βτ)

aE(ατ )

aE(αt)⊗ bE(βt)

“Flip and Shift”

©2000, D. L. Jaggard 76EE 511EE 511

Result of Multiple Convolutions

l Convolution usually smoothes function (running average)

l Width of convolution is sum of widths of individual functions

l Central Limit Theorem yields Gaussian for manyconvolutions

Multiple convolutions of rect(t) and its F.T.

f

f

f

ft

t

t

t

rect(t) sinc(f)

©2000, D. L. Jaggard 77EE 511EE 511

Fourier Transform Properties - Correlation

Correlation in the time -domain leads to multiplication in the frequency -domain

Rgh(t) ≡ g( t)Ηh( t)≡ g(τ )h∗(−∞

∫ τ − t)dτ

g(t)Η h(t) ⇔ G( f )H∗( f)This is an

inner product of a function and a shifted & conjugate function

• Proof is similar to convolutionrelation proof

• Definitions vary with authors• Autocorrelation is Rgg = g(t) é g(t)

é

é

©2000, D. L. Jaggard 78EE 511EE 511

Properties of Correlationl Cross-correlation does not commute

l g(t) é h(t) ? h(t) é g(t)

l Autocorrelation is Hermitianl Rgg (t) = Rgg*(–t)

l Maximum modulus of autocorrelation occurs at the origin

l |Rgg(t)| < Rgg (0)

l Autocorrelation decay provides “correlation time” or “correlation length” or characteristic scale of signals and surfaces

©2000, D. L. Jaggard 79EE 511EE 511

Fourier Transform Properties - Rayleigh/Parseval Relation

Area under the absolute value squared of a function is equal to area under the absolute

value squared of its transform

P roof:

g(t) g∗(t)dt−∞

∫ = g(t)g∗(t)e −j2πf ' tdt−∞

∫ for f ' = 0

= G( f ' ) ⊗ G∗(− f ' ) for f ' = 0

= G( f )G∗( f − f ' )df−∞

∫ for f ' = 0

= G( f )G∗( f )df−∞

g(t) 2 dt−∞

∫ = G( f ) 2 df−∞

©2000, D. L. Jaggard 80EE 511EE 511

Rayleigh Theorem Example

l Equal areas under |g(t)|2 and |G(f)|2 imply conservation of power for optical (and other wave) signals

g(t) G(f)

|g(t) |2 |G(f)|2

t

t f

f

©2000, D. L. Jaggard 81EE 511EE 511

Fourier Transform Properties - Differentiation

l Prove by usual meansl Differentiation in the time -domain

leads to multiplication by frequency in the frequency -domain

l Useful for solving D.E.sl Useful for finding F.T. of piecewise

continuous functions:l Take second derivativel Find inverse transform as sum of delta

functions

d n g(t)dtn = g ( n )(t) ⇔ ( j2πf )n G( f )

©2000, D. L. Jaggard 82EE 511EE 511

Fourier Transform Properties - Moments

l The moment of a function is related to the behavior of its transform near

the originl Therefore low frequency regime of

transform may be valuable in classification & identification

mn = tn

−∞

∫ g( t)dt = m th moment of g(t)

mn =G(n) (0)

(− j2π )n

©2000, D. L. Jaggard 83EE 511EE 511

Properties of Moments

Moments can be used for signal or image classification

m0 = G(0 ) zeroth moment or area

m1 = G(1) (0)− j2π

first moment or centroid

m2 =G(2 ) (0)−4π 2 second moment or moment of inertia

m2

m0

=G( 2)(0)

−4π 2G(0)radius of gyration

©2000, D. L. Jaggard 84EE 511EE 511

Second Moment Examples

l Moments of g(t) affect G(f) at the origin

l Infinite moment of g(t) gives cusp at origin for G(f)

g(t) G(f)

t f

t

t

f

f

g(t) G(f)

©2000, D. L. Jaggard 85EE 511EE 511

Fourier Transform Properties -Periodic Functions

To find the F.T. of a periodic function, find the F.T. of its Fourier

series

If g(t) is periodic with period T = 1/ f0

g(t ) = Gn−∞

∑ exp( j2nπf0t ) where Gn = g(t)− T /2

T / 2

∫ exp(− j2nπf0t )dt

F g(t ){ }= F Gn−∞

∑ exp( j 2nπf0t )

= Gn−∞

∑ F exp( j2nπf0 t){ }

= Gn−∞

∑ δ ( f − nf0)

The spectrum of a periodic

function is a “line

spectrum”

This is the complex Fourier series

©2000, D. L. Jaggard 86EE 511EE 511

Some Notes

l F{F{g(t)}} = g(–t)l If we know a F.T. pair, we can invert this

pair by inverting the coordinatel If one lens in optics gives a F.T., then a

second lens can be used to provide an inverted image

l If g(t) and its first (n–1) derivatives are continuous, its F.T. decays as least as rapidly as |f|–(n+1)

©2000, D. L. Jaggard 87EE 511EE 511

II. Fourier Transforms and Linear Systems

A. RequirementsB. “Inventing” the Fourier TransformC. Dirac Delta FunctionD. Use of the F.T. in OpticsE. F.T. PropertiesF. Some Useful TransformsG. Two-Dimensional F.T.H. More Useful TransformsI. Sampling

©2000, D. L. Jaggard 88EE 511EE 511

F. Some Useful Transforms

l Unity and Delta Functionl Rectl Trianglel Gaussianl Signum and Stepl Combl Sine and Cosine

©2000, D. L. Jaggard 89EE 511EE 511

Some Useful Functionsrect(t / T ) =

1 t / T < 1 / 20 t / T > 1 / 2

Λ(t / T ) =1 − t / T t / T < 1

0 t / T > 1

Gaus(t / T ) = exp[−π (t / T )2 ]

comb(t / T ) = δ (t / T − n )−∞

∑ = T δ (t − n / T )−∞

sgn( t) =1 t > 1−1 t < 1

u(t) =1 t > 10 t < 1

= 12

+ 12

sgn(t)

©2000, D. L. Jaggard 90EE 511EE 511

Some Useful F.T. Pairs1 ⇔ δ ( f )

δ (t) ⇔ 1

rect(t / T) ⇔ T sinc(Tf )

Λ(t / T) ⇔ T sinc 2 (Tf )

comb(t / T) ⇔ T comb(Tf )

Gaus(t / T) ⇔ T Gaus(Tf )

exp(−t ) ⇔2

4π 2 f 2 +1

t−1 ⇔ − jπ sgn(−πf 2 )

sgn( t) ⇔ ( jπf )−1

u(t) ⇔ 2−1δ (t) + ( j2πf )−1

cos(2πf0t) ⇔ 2−1[δ( f − f0) + δ( f + f0)]

sin(2πf0t) ⇔ (2 j)−1[δ ( f − f0 )− δ( f + f0)]

©2000, D. L. Jaggard 91EE 511EE 511

G. Two-Dimensional F.T.

l Separable Function

l Circular Symmetry

l Hankel transforms

l Fourier-Bessel transforms

l Some Two -Dimensional F.T. Pairs

©2000, D. L. Jaggard 92EE 511EE 511

Separable Functions -- Easy Fourier Transforms

l If the two -dimensional function is separable, its F.T. is the product of two one-dimensional F.T.s:

lLet g(x,y) = j(x) h(y)

lThenF{g(x,y) = F{j(x)} F{ h(y)} = J(f) H(f)

©2000, D. L. Jaggard 93EE 511EE 511

Polar Separable Casel Let g(r,θ) be separable in polar

coordinates:l Let

g(r,θ) = gR(r)ejmθ

l Then I.C.B.S.T.F {g(r,θ)} = (–j)m ejmθ Hm{gR(r)}

whereHm{gR (r)} = 2π r gR(r) Jm(2πρr)dr

is the Hankel transform of order m and Jm is the Bessel function of order m

0

©2000, D. L. Jaggard 94EE 511EE 511

Case of Circular Symmetryl Let g(r,θ) = gR(r) = g(r) [circular

symmetry]:l Then I.C.B.S.T.

F {g(r)} = 2π r gR(r) J0(2πρr)dris the Fourier-Bessel transform of g (r) where J0 is the Bessel function of order 0

l This gives the Fourier-Bessel pair

0

G( ρ) = 2π rg(r)J00

∫ (2πrρ)dr

g(r) = 2π ρG( ρ)J 00

∫ (2πrρ)dρ

g( r) ⇔ G (ρ)

Also known as Hankel transform of order

zero

©2000, D. L. Jaggard 95EE 511EE 511

Fourier-Bessel Proof

G( fx , fy ) =−∞

∫ g(x,y)e− j2π ( fx x+ fy y)

dxdy−∞

r = x 2 + y 2 ρ = fx2 + f y

2

θ = tan−1(y / x) φ = tan− 1( fy / fx)

yy

= rcosθsinθ

fx

f y

= ρcosφsinφ

F g(r){ } = G(ρ)

= g(r)0

∫0

∫ e− j2π rρ (cosθ cos φ +sin θ sin φ )rdrdθ

= g(r)0

∫0

∫ e− j2π rρ cos(θ −φ ) rdrdθ

Note: e− ja cos(θ −φ )dθ = 2πJ0 (a)0

F g(r){ } = G(ρ) = 2π rg(r )J 0(2πrρ)dr0

©2000, D. L. Jaggard 96EE 511EE 511

Some Useful RelationsyJ0 (y)dy = x

0

x

∫ J1 (x)

xν +1 exp(−αx2 )Jν (βx)dx =βν

2α ( ν +1)0

∫ exp(−β 2 / 4α)

Jν (x) x→0 → (1 / 2)xν

Γ(ν +1)(v ≠ −1,−2, −3,...)

Jν (x) x→∞ → 2πx

cos[ x − (1 / 2)νπ − (1 / 4)π

where Γ (ν + 1) = ν! for ν = integer

Γ(ν + 1) =ν Γ (ν )

©2000, D. L. Jaggard 97EE 511EE 511

Bessel Functions J 0 & J1

l All Bessel functions except J0 are zero at the originl J0 is unity at the originl Bessel functions have significant value in the regime

where their order equals their argument

©2000, D. L. Jaggard 98EE 511EE 511

Two-Dimensional Functions

circ(r / a) ≡1 r / a <10 r / a >1

jinc(ρ) ≡ 2J1(2πρ)

2πρ

Gaus(ax,by) ≡ exp[−π (a2 x2 + b2y2 )]

Gaus(ar) ≡ exp[−πa2r2] = exp[−πa2 (x2 + y2)]

δ ( x, y) ≡ δ (x)δ( y) =δ (r)πr

comb( ax)comb(by) ≡ δ (ax − n,by − m)m= −∞

∑n= −∞

©2000, D. L. Jaggard 99EE 511EE 511

“sinc” and “ jinc” Functionsjinc(r/2)

jinc2(r/2)sinc2(x)

sinc(x)

What are the differences between sinc and jinc functions?

©2000, D. L. Jaggard 100EE 511EE 511

Two-Dimensional F.T. Pairs

rect (x / a)rect (y / b) ⇔ absinc(afx )sinc(bfy )

circ(r / a) ⇔ π a 2 jinc(aρ)

δ (r)πr

⇔1

δ (ax,by ) ⇔1ab

1r

⇔1ρ

1 ⇔δ ( fx, fy )

cos(πr2 ) ⇔ sin(πρ2 )

exp(± jπr2 ) ⇔ ± j exp(mjπρ 2 )

Gaus(ax,by ) ⇔1ab

Gaus( fx / a, f y / b )

Gaus(ar) ⇔ 1a 2 Gaus( fρ / a)

comb(x / a)comb(y / b) ⇔ abcomb( afx )comb(bfy)

©2000, D. L. Jaggard 101EE 511EE 511

How Often Does a Signal Need to be

Sampled in Order to be Exactly Replicated?

©2000, D. L. Jaggard 102EE 511EE 511

Sampling of Signals

l Whittaker-Shannon Sampling TheoremA signal which is bandlimited (i.e., all

frequencies less than fmax) can be exactly reconstructed by accurate samples at times

l The frequency 2 fmax (number of samples per second) is known as the Nyquist frequency

l Requirement on sampling frequency is fs > 2 fmax

1max )2( −< fT

©2000, D. L. Jaggard 103EE 511EE 511

Miracle of Sampling

l Exact reconstruction if overlap avoided by T <1

2 fm

sinc functionis “interpolating

function” for exactreconstruction

©2000, D. L. Jaggard 104EE 511EE 511

Imperfect Samplingl What if samples of finite width are used

so that each sample is an average of a part of the signal?

l What if the signal is only sampled for a finite length of time?

l What if unequally spaced samples are used?

l What if the samples are descretized?

©2000, D. L. Jaggard 105EE 511EE 511

Two-Dimensional Sampling

l Various geometries can be usedl Space-bandwidth product:

l If g(x,y) has significant value in the region |x|<LX and |y|<LY, and if g(x,y) is sampled on a rectangular lattice (Nyquist rate) with spacing (2B X)–1 and (2BY)–1 in the x and y directions, then the total number of (possibly complex) samples needed to represent g(x,y) is

lM = 16 LX LY BXBY

Recommended