Ecological aspects of large-scale bioenergy with CCS...

Preview:

Citation preview

Ecological aspects of large-scale bioenergy with CCS (BECCS)

Umakant Mishra�

February 8, 2017

Lydia Smith Jim WilliamsDaniel Sanchez

Margaret Torn�Berkeley Lab and UC Berkeley

Berkeley Lab�UC Berkeley

Stanford U Argonne National�Laboratory

Deep Decarbonization Pathways Project

U.S. energy system in 2014

Williams et al. 2014. Pathways to Deep Decarbonization in the United States. �http://unsdsn.org

deep decarbonization

US 2050 Report

pathways to

in the United States

Decarbonized energy system in 2050

, Mixed case results

Williams et al. 2014. Pathways to Deep Decarbonization in the United States. �http://unsdsn.org

deep decarbonization

US 2050 Report

pathways to

in the United States

3. Soil Sequestration •  Agriculture & grazing management

What are the ecological constraints to large scale BECCS? Land, Water, Nutrients

1.   Forestry-Based Sequestration •  Afforestation •  Reforestation •  Forest management

Estimates as high as 5 Gt C y-1 thru 2100 (Azar et al. 2006; Lenton &Vaughan 2009)

1 Gt C y-1 thru 2100 (Nilsson and Schopfhauser 1995)

1Gt C y-1 thru 2055 (Lal 2004)

www.mnn.com/local-reports/illinois/local-blog/miscnthus-poten5al-biofuel-sourceSmith and Torn, 2013

Cellulosic Biofuels with Carbon Capture and Storage (BECS)

h8p://www.kgs.ku.edu/Publica5ons/PIC/pic27.html

CO2

Power Generation

CO2

C

•  Land, Water, Nutrients

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

There is strong competition for terrestrial carbon and the land resource

Millennium Ecosystem Assessment

Competition for Land & Productivity

Land use and land cover change

Humans have preferentially converted the most fertile, accessible, and useful biomes

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Unappropriated 61% Croplands 11% Converted pastures 8% Cleared land 8% Lost to poor ecosystem management 2% Tree plantations 2% Consumed by domestic animals 2% Consumed by humans (wood) 2% Consumed by humans (non-wood) 1% Human-occupied lands <1%

Humans already appropriate 40% of Biomass Production (NPP)

Global Terrestrial NPP

Data from Vitousek 1994

• Consumption • Cooptation • Degradation

Competition for Land & Productivity

Total Human-appropriated NPP as a percentage of NPP0, excluding fires. Negative (blue) values: NPPanthro > NPP0

Positive values: low-high HANPP

Haberl et al. 2007 PNAS

Human-appropriated NPP

• Consumption• Cooptation• Degradation

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Afforestation can reduce: •  Runoff •  Surface Flows •  Groundwater Recharge

http://stepinplease.files.wordpress.com/2011/03/three-leaf-clover-in-rain.jpg

Plant carbon-capture takes water, and freshwater is already a scarce resource

Ecological Limits: Water

Increasing plant productivity requires more evapotranspiration*

Jobbagy and Jackson 2004, Global Change Biology

*absent gains in water use efficiency from elevated CO2 or modified plants

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Plant carbon-capture takes water, and freshwater is already a scarce resource

Ecological Limits: Water

At risk: •  Runoff •  Surface Flows •  Groundwater Recharge

Jobbagy and Jackson 2004, Global Change Biology

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Plant carbon-capture takes nutrients

• Productivity in most ecosystems is nutrient limited

• Global fertilizer use is increasing by >1% per year

C : N : P Foliage 200 : 5 : 0.17 Wood 200 : 1 : − Roots 200 : 4 : 0.25

Soil org matter 200 : 10 : 1 Example Biomolecule gamedia.org/faculty/rdcormia/NANO/nanostructures/biomolecules.htm

Ecological Limits: Nutrients

Stoichiometry

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Overcoming nitrogen limitation has environmental impacts

•  Human activities double the natural rate of nitrogen fixation.

•  Reactive nitrogen damages ecosystems, climate, and human health:

-  N2O (GHG) -  Air pollution: O3, aerosols -  Water pollution: NO3

-

-  Species composition

PamMatson

ContemporaryandPreindustrialLoadingsofMobileNitrogenontoLandFigure12.3andGeographyofRela5veIncreasesinRiverborneNitrogenFluxesResul5ngfromAnthropogenicAccelera5onofCycle.Contemporary5meisfromthemid-1990s.(MillenniumEcosystemAssessment)

Mill

enni

um E

cosy

stem

Ass

essm

ent

Ecological Limits: nutrients

PreindustrialContemporary

NitrogenLoadingonLand 0

40

80

120

160

Fertilizer

Legume crops

combustion Lightning N-fixers

Anthropogenic Natural

Global N Fixation (Tg N/y)

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Tropical plantations require phosphorus

•  Pfer5lizeruseincreased5-foldbetween1960and2000to30Tg/yandisprojectedtoincreaseto50Tg/yby2030

•  Inexpensiverockreservesdepletedin~60y(ThepriceofPmorethandoubledinthelastdecade)

•  Prunoffisprimarycauseofeutrophica5oninlakesandestuaries

Plant growth in tropics is P-limited

Phosphate prices are highly volatile

Ecological Limits: nutrients

h8p://www.indexmundi.com/commodi5es/?commodity=dap-fer5lizer&months=240

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

The land, water, and nutrient requirements for:

•  Temperate BECCS at 1 Gt C y-1

Could BECCS be implemented at the scale needed for �climate change mitigation?

Update: 44% higher CCS efficiency Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Land, Fertilizer, and Water Intensity

Switchgrass productivity

N fertilizer addition

Water consumption

(ET) Miscanthus productivity

10 t biomass /ha/y

80 kg N/ha/y 750 L/m2/y (1400 L/kg C)

20 t biomass /ha/y

Heaton et al 2004b Kszos et al 2000 Arundale et al. 2013

Dominguez-Faus 2009 Hickman et al. 2010

Heaton et al 2004b Mishra et al. 2013

Global Resources Switchgrass Miscanthus Land 3 Mha 1.5 Mha

N Fertilizer 25 Tg N y-1 12 Tg N y-1

Calculations for 1 Gt C/y BECCS with Switchgrass

(1.3 Gt C y-1) / [10 Mt biomass Mha-1 y-1 × .43 g C/g biomass] = 3.3 Mha

(3 Mha Land) × (80 kg N/ha/y) (0.1 unit conv.) = 25 Tg N y-1 Fertilizer

Bioenergy with CCS

Water Switchgrass 160 gallons water per kg switchgrass grown

Afforesta5on ET increase from 50% of mean annualprecipitation to 75% of mean annualprecipitation

Switchgrass

Land 10 t biomass/ha/y

Heaton et al 2004

Nitrogen Fertilizer 80 kg N/ha/y Kszos et al 2000

Arundale et al. 2013

Water 1400 L / kg C

Dominguez-Faus 2009 Hickman et al. 2010

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Resources consumed for 1 Gt C y-1 sequestration by Temperate Bioenergy-CCS

Land Switchgrass 3.3 Mha 8 × area of US maize 19 × area of US bioethanol 2010

Nitrogen Fertilizer

Switchgrass 25 Tg N y-1 24% of global N fertilizer in 2009

Water Switchgrass 1831 km3 y-1

Smith and Torn, Climatic Change, 2013 updated

Land 1.6 Mha 4 × area of US maize 10 × area of US bioethanol 2010

Miscanthus 12 Tg N y-1 11% of global N fertilizer in 2009

Land 3.3 Mha 8 × area of US maize 19 × area of US bioethanol 2010

Nitrogen Fertilizer

25 Tg N y-1 24% of global N fertilizer in 2009

Water 1,831 km3 y-1 8 × Calif irrigation use

Switchgrass

Miscanthus

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Per 3.3. Gt C sequestered 720 km3 Smith et al. 2015 Change

Total

Smithetal.2015Per 3.3. Gt C sequestered 720 km3 Smith et al. 2015 6,000 km3 Smith & Torn 2013

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Growing biomass plus soil carbon sequestration can significant co-benefits

Restore soil carbon to native levels Fertility, soil water, arable land—food, erosion

Expand carbon-neutral biomass Decarbonized energy supply

Maintain ecosystem resilience Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

17

Suitable Cropland

12.86 Mha in corn ethanol in 2013 (USDA-NAS, AgMRC).

Modeled average miscanthus productivity on corn-ethanol lands = 14.5 Mg biomass/ha/y

Planting all US corn-ethanol land with Miscanthus

Results:

Miscanthus production = 80 Tg C /y

SOC sequestration = 8.8 Tg C/y

Soil C sequestration is 10% bonus on BECCS

BECCS example w/soil C sequestration

Mishra et al. 2013. GCB-Bioenergy

Miscanthus biomass productivity within U.S. croplands and its potential impact on soil organic carbon.

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Photosynthesis

Microbial function

Allocation

Systemcontrolpoints

Structure Scale

Soil organic matter Presenta5on:Tornetal.Ecologicalaspectsoflarge-

scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Conclusions 1.  There are real ecological constraints to terrestrial CDR

at the local project level and at large scale.

2. At large scale, terrestrial CDR could consume a significant fraction of world fertilizer supply

3.  Land and water use would have opportunity costs and displace food/fuel/fiber and biodiversity.

The metric of success should be avoiding damage and increasing wellbeing, rather than reducing climate change or atmospheric CO2 per se.

Presenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Thank you

This work was supported in part by aU.S. DOE and Presidential Early Career

Award for Scientist and EngineersPresenta5on:Tornetal.Ecologicalaspectsoflarge-scalebioenergywithCCS(BECCS),CarbonDioxideRemoval/Nega5veEmissionsTechnologiesWorkshop,BerkeleyCA,Feb8,2017,

Recommended