Digital Integrated Circuits© Prentice Hall 1995 Devices The MOS Transistor

Preview:

Citation preview

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

The MOS Transistor

n+n+

p-substrate

Field-Oxyde

(SiO2)

p+ stopper

Polysilicon

Gate Oxyde

DrainSource

Gate

Bulk Contact

CROSS-SECTION of NMOS Transistor

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Cross-Section of CMOS Technology

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

MOS transistors Types and Symbols

D

S

G

D

S

G

G

S

D D

S

G

NMOS Enhancement NMOS

PMOS

Depletion

Enhancement

B

NMOS withBulk Contact

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Threshold Voltage: Concept

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Current-Voltage Relations

n+n+

p-substrate

D

SG

B

VGS

xL

V(x) +–

VDS

ID

MOS transistor and its bias conditions

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Current-Voltage Relations

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Transistor in Saturation

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT+-

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

I-V Relation

0.0 1.0 2.0 3.0 4.0 5.0

VDS (V)

1

2

I D (

mA

)

0.0 1.0 2.0 3.0VGS (V)

0.010

0.020

÷ I

D

VT

SubthresholdCurrent

Triode Saturation

VGS = 5V

VGS = 3V

VGS = 4V

VGS = 2V

VGS = 1V

(a) ID as a function of VDS (b) ID as a function of VGS

(for VDS = 5V).

Sq

ua

re D

ep

end

en

ce

VDS = VGS-VT

NMOS Enhancement Transistor: W = 100 m, L = 20 m

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

A model for manual analysis

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

The Sub-Micron MOS Transistor

• Threshold Variations

• Parasitic Resistances

• Velocity Sauturation and Mobility Degradation

• Subthreshold Conduction

• Latchup

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Threshold Variations

VT

L

Long-channel threshold Low VDS threshold

Threshold as a function of the length (for low VDS)

Drain-induced barrier lowering (for low L)

VDS

VT

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Parasitic Resistances

W

LD

Drain

Draincontact

Polysilicon gate

DS

G

RS RD

VGS,eff

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Velocity Saturation (1)

EV/m)Esat

n (c

m/s

ec)

sat = 107

Constant mobility (slope = )

constant velocity

EtV/m)

n (c

m2 /V

s)

n0

(b) Mobility degradation(a) Velocity saturation

0

700

250

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Velocity Saturation (2)

VDS (V)

I D (

mA

)

Lin

ea

r D

ep

en

de

nc

e

VGS = 5

VGS = 4

VGS = 3

VGS = 2

VGS = 1

0.0 1.0 2.0 3.0 4.0 5.0

0.5

1.0

1.5

(a) ID as a function of VDS (b) ID as a function of VGS(for VDS = 5 V).

0.0 1.0 2.0 3.0VGS (V)

0

0.5

I D (

mA

)

Linear Dependence on VGS

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Sub-Threshold Conduction

0.0 1.0 2.0 3.0VGS (V)

10 12

10 10

10 8

10 6

10 4

10 2

ln(I

D)

(A)

Subthreshold exponential region

Linear region

VT

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Latchup

(a) Origin of latchup (b) Equivalent circuit

VDD

Rpsubs

Rnwell p-source

n-source

n+ n+p+ p+ p+ n+

p-substrateRpsubs

Rnwell

VDD

n-well

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

SPICE MODELS

Level 1: Long Channel Equations - Very Simple

Level 2: Physical Model - Includes VelocitySaturation and Threshold Variations

Level 3: Semi-Emperical - Based on curve fittingto measured devices

Level 4 (BSIM): Emperical - Simple and Popular

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

MAIN MOS SPICE PARAMETERS

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

SPICE Transistors Parameters

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

SPICE Parameters for Parasitics

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Technology Evolution

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

The CMOS Inverter: A First Glance

VDD

Vin Vout

CL

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

VTC of Real Inverter

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

1.0

2.0

3.0

4.0

5.0

Vo

ut (V

)

VMNMH

NML

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Dynamic Behavior of MOS Transistor

DS

G

B

CGDCGS

CSB CDBCGB

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Delay Definitions

tpHL

tpLH

t

t

Vin

Vout

50%

50%

tr

10%

90%

tf

VDD VDD

VinVout

M1

M2

M3

M4Cdb2

Cdb1

Cgd12

Cw

Cg4

Cg3

Vout2

Fanout

Interconnect

VoutVin

CL

SimplifiedModel

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 m=2

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Using Cascaded Buffers

C2C1

Ci

CL

1 u u2 uN-1

In Out

uopt = e

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

COMBINATIONAL LOGIC

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Static CMOS

VDD

VSS

PUN

PDN

In1

In2

In3

F = G

In1

In2

In3

PUN and PDN are Dual Networks

PMOS Only

NMOS Only

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Example Gate: NAND

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

4-input NAND Gate

Out

In1 In2 In3 In4

In3

In1

In2

In4

In1 In2 In3 In4

VDD

Out

GND

VDD

In1 In2 In3 In4

Vdd

GND

Out

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Where Does Power Go in CMOS?

• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

SEQUENTIAL LOGIC

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

Master-Slave Flip-Flop

S

R

Q

Q Q

QS

R

Q

Q

J

K

MASTER SLAVE

QJ

K Q

PRESET

CLEAR

SI

RI

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

The Ellmore Delay

Digital Integrated Circuits © Prentice Hall 1995DevicesDevices

The Clock Skew Problem

CL1 R1 CL2 R2 CL3 R3In Out

t’ t’’ t’’’

tl,min

tl,max

tr,min

tr,max

ti

Clock Edge Timing Depends upon Position

Clock Rates as High as 500 Mhz in CMOS!

Recommended