Dharma R. Kodali, Ph.D., FAOCS · Presentation -Outline I Introduction: - Research Chronology K.U....

Preview:

Citation preview

Transformation of a Synthetic Chemist into an Oil Chemist

Dharma R. Kodali, Ph.D., FAOCSBioproducts and Biosystems Engineering

University of Minnesota

AOCS Annual MeetingA.E. Bailey Award Lecture

MinneapolisMay 07, 2018

Presentation - Outline

I Introduction: - Research Chronology

K.U. PINY B.U. Industry (Cargill/GM) U.M.

II Learnings: - at P.I.N.Y. and Boston UniversityA. Molecular Probes to study the micro-environmentB. Synthesis and molecular packing of Glycerol derivativesC. Single crystal structures of mixed chain TAGD. Influence of TAG structure on glycerol conformation

III Industrial Applications: -at Cargill, GM and U of MA. Low VOC Paints and CoatingsB. Synthetic LubricantsC. Cholesterol free animal fatsD. Bio-plasticizers

IV Summary

Research Chronology

1976-80 Ph.D. Kurukshetra University1980-81 New York Poly, New York1981-91 Boston University, Boston1991-03 Cargill, MPLS2003-04 General Mills, MPLS2005- Univ. of Minnesota, MPLS

Andhra

Kurukshetra

New Delhi

New York

Boston

Minneapolis

Potential Anti-inflammatory AgentsPh.D. Thesis: >140 new compounds synthesized

Kurukshetra University1976-1980

Fluorescent Molecular Probes

J.C.S. Chem. Comm. 759-760, 1981.J.C.S. Chem. Comm. 758-759, 1981.

Ar = Aromatic

P.I.N.Y.1980-81

ExcimerMonomerCyclodextrins

Micelle

Lipids – Synthesis, Molecular Packing and Properties

1-acetyl-3-palmitoyl-sn-glycerol

1-palmitoyl-3-acetyl-sn-glycerol

Stereospecific Glycerol Derivatives

Boston University 1981 -91

J. Am. Oil Chem. Soc., 61, 1078-1084, (1984).

2 2 n 3

3 2 14

2 2 14 3

n = 2, 4, 6, 8, 10, 12, 14,16

1,2-dipalmitoyl-3-acyl-sn-glycerols (PPX)

Stereospecific sn-Glycerol Derivatives

sn- Tri- , Di-, and Mono-acylglycerols: TAG, DAG and MAGOOX, OXO, SXS and other homologues

Polymorphism – Molecular PackingAbility to crystallize into more than one crystal state

Subcell

β β' α

Characterization: XRD, IR, and Raman

Properties: melting temperature, enthalpy, stability, volume, bloom, hardness, texture, mouth feel, graininess,lubricity, air-entrapment

Polymorphism – PP10

42.5 °C

Liquid

47 °C

37 °C

β 56Å β2’ 37Åβ3’ 37Å

β1’ 111Å

39 °C

α 40.4Å

21 °C

Ref: Larsson K.(1963)

Single Crystal structures of TAG (C10, C12)

Glycerol //

End Methyl Plane

Trilauroyl (C12) Glycerol

β

Crystal Structures – PP2

Proc. Natl. Acad. Sci. 89, 8083, 1992.

β

12

3

1

3

2

Glycerol ┴

Crystal Structure – PP14 (myrsitoyl)

J Lipid Res. 42, 338-345, 2001

β'2

PP

P

P M M

P PP

Hybrid O ┴

P M M

30?

OOPOOS

OPOOSO

Glycerol //Glycerol ┴

Influence of Glycerol Conformation

TAG Enthalpy(Kcal/mol) Melting Temp (°C)OPO 30 22OOP 21 18OSO 32 25OOS 22.5 23

End Methyl Plane

β

SymmetricAsymmetric

β

Industrial Applications – Market DriversValue creation - Alchemy

CostPerformanceAvailability (Supply / Demand)

Regulations (Availability/Pollution)

EHS (Environment, Health and Safety)

Green Image (Renewable, biodegradable)

Understanding application functionality, market value and opportunity

New Product DevelopmentStructure / Properties / Functionality

Chemical Structureand Composition

Physical Structure and Properties

ApplicationsFunctionality

Leverage the connection

Create the desired functionality through Modification of Structure and or Composition.

Molecular PropertyReactivityUnsaturation (Mono/Poly)Chain lengthSap. ValueAcid ValuePeroxide Value PolaritySolvencyHydrophobicityMol. WeightMol. PackingHeterogeneity

Derived FunctionalityAppearance/ColorViscosity Volatility (VOC)Low Temp. (m.p./f.p., Flow)Drying (film formation)AdhesionTack/Rub-offLubricityOxidative Stability(shelf-life)CompatibilityBiodegradability

Properties VS. Functionality

New Product Development – Fats & Oils

COMMERCIALIZED PRODUCTS & TECHNOLOGIES Dilulin – Reactive diluent – Paints Coatings Agripure – A family of synthetic lubricants Moldlube NS – Steel mold lubricant Odyssey 500 – High stability oils CTO – 300 – Formulated lubricant AS-900 – Metal Working Fluid Stabilization of bottled oils

NON-COMMERCIALIZED TECHNOLOGIES Cholesterol free animal fats Cyclopropanated Oils Fertilizer coatings Asphalt release agents Biotechnology – designer TAG EOE, CBE Trans free fats – Maltodextrin encapsulation, oleogels, longer FA TAG Bioplasticizers

Cargill Inc. GM and U of M 1991 - present

New Product Development

Industrial Applications:

A) Paints and CoatingsB) Lubricants C) Cholesterol free animal fatsD) Bio-plasticizers

Cargill Inc. GM and U of M 1991 - present

A) Conventional Solvent Based Coatings

VOLATILES(HYDROCARBON SOLVENTS)

40 - 65%NON VOLATILES

(RESIN + PIGMENTS + DRIERS)

35 - 60%

LIQUID SOLID3 MIL 1 MILDrying

VOC

Resin

Reactive Diluent - Dilulin(Reduction of VOC)

OO

O OO

O

OO

O OO

O

Linseed Oil DILULINUS 5,693,715 US 5,288,805

B) Lubricants – Fats and Oils

Advantages

Excellent boundary lubricationGood viscosity and viscosity indexHigh flash pointBiodegradable, nontoxic Environmentally friendly, renewable

Limitations

Poor oxidative stabilityPoor low temperature flow properties

Low Temp. VS. Oxidative Stability

Property C18:0 TAG

Saturated

C18:1 TAG

Mono-Unsat

C18:2 TAG

Di-Unsat

C18:3 TAG

Tri-Unsat

Melt Temp (° C) 74 5 -11 -24

Oxidation Rate Low1

Moderate10

High100

Very High200

Cyclopropanated Oils

Carbene :CH2

Simmons-Smith Rx

CH2I2, Zn(Cu)

US 6,051,539

Saturated Oil, liquid -40 °CHigh Oxidative stability

O OOO O

O

Vegetable Oil

Transesterification of High Oleic Oils

+

-OH

Bio‐based Synthetic Polyol Esters

TMPPE

NPG

High Oleic Oil

US 6,278,006 US 6,943,262

Heterogeneous Oils - Cont’d

+

+

O

O

O

O

O

O

Salient Features of Bio-Synthetic Esters

Excellent Low Temperature Fluidity (-25°C) Excellent Oxidative Stability Very High VI (180 - 210) Range of Viscosities (18 - 46 cSt @ 40°C) Low volatility ( < 7%) Good Boundary Lubrication Readily Biodegradable Cost Effective

is a Family of Bio-based synthetic estersAP – 512, 560,570

Industrial Lubrication and Tribology, 54, 165-170, 2002.

C) Cholesterol-free Animal FatsConcept

Polar Hydrophilic head group

NonpolarOleophilic body

U.S. 5,880,300 and 6,303,803

PHOSPHOLIPIDS(Lecithin)

CHOLESTEROL

Concept

Water Animal Fat/Oil

Cholesterol

PHOSPHOLIPIDS

(Lecithin, a biproduct of SBO processing)

PHOSPHOLIPIDBILAYERS

Cholesterol Removal

Bilayers withcholesterol

Centrifuge Cholesterolremoved oil

Phospholipidswith cholesterol

Results

Number of Treatments

% Ch

oles

tero

l Rem

oved

Lecithin : Tallow =1:5

0102030405060708090

100

0 1 3 5

D) Bioplasticizers – Commercial Opportunity

• Plasticizers market size - $20 Billion/yr

• >90% of Plasticizers used in flexible PVC

• Currently used Petroleum derived “Phthalate” plasticizers have EHS concerns. With time they leach out and cause hormonal disruption and reproductive damage.

• Cost effective bioplasticizrs have a great opportunity

Glycerol Epoxy Estolide Fatty Acid Esters

Glycerol Fatty AcidEsters Ac2O

Glycerol Epoxy Estolide FattyAcid Esters

R = glycerol derivativen = 0-6 m = 0-3

AcOH

H2O2+ Cat.

Glycerol EpoxyFatty AcidEsters

AcOH

Summary of Plastisol Evaluation

Gelation

PlastisolViscosity

Plastisol Aging

EfficiencyCold Flex

Volatility

Compatibility

DINPBioplasticizer

Cost of the bioplasticizer is about $0.75/lb similar to commercial phthalates

Summary

Skills to modify structure – Synthesis, Characterization

Structure - Properties - Functionality relationship to create new products

Functional properties that are lacking can be brought in through chemical modification to make value added products useful in coatings, lubricants and plasticizers

Cost, Performance, Environmental factors and Regulations are major driving forces for using oils and their derivatives in industrial applications

Acknowledgements

SP Singh SN Sawhney O. Prakash J. Emert D. Small

T. Redgrave D. Atkinson D. Fahey M. Badr J. Hamilton

K. Li F. Kaneko M.Kobayashi J. Evans P. Addis

L. DeBonte M. Grass B. Woldt M. Nathan S. Nivens

Z. Fan R. Duclos J. Powell K. Krishnan M. Goto

K. Sato J. Yano L. Lei H.T. Davis L. Dassanayake

S. Ueno S. Kandula L. Stolp S. Bhamidipati R. Catena

W. Byrdwell R. Tomer P. Phalon I. Prakash G. Dhindsa

Metabolism – OOS and OSO

TAG

2-MAG +FA

lipase

Absorp. Enterocytes

TAGpackage into

Chylomicrons

Lipoproteins

% in

ject

ed (

CPM

)

Time (min)J. Biol. Chem. 263, 5118, 1988.

[VLDL to LDL to HDL]

Low Temp. VS. Oxidative Stability

Property C18:0 TAG

C18:1 TAG

C18:2 TAG

C18:3 TAG

Melt Temp (° C) 74 5 -11 -24Oxidation Rate Low

1Moderate

10High100

Very High200

Poor

Excellent

Perf

orm

ance

Sats Monos Polys

Recommended