Design of Modern Numerical Relay Equipment

Preview:

DESCRIPTION

Knowledge about designing of modern numerical relay equipments.

Citation preview

Richard Price

Hardware Design Team Leader

Design of Modern Numerical Protective Relay Equipment

Presentation title - 01/01/2010 - P 2

Lecture Outline

• What are protective relays and why do we need them?

• What technologies have been employed

• What are the additional benefits of modern protective relays

• What might the future hold

• Discussions

Design of Modern Protective Relaying Equipment

Presentation title - 01/01/2010 - P 3

What is a protection relay ?

A big expensive reusable fuse !

- - P 4

Protective Relays Why bother ?

Presentation title - 01/01/2010 - P 5

Source Load

V

I

Protective RelayPrinciples of Operation

Presentation title - 01/01/2010 - P 6

Presentation title - 01/01/2010 - P 7

Presentation title - 01/01/2010 - P 8

Presentation title - 01/01/2010 - P 9

Presentation title - 01/01/2010 - P 10

ELECTROMECHANICAL (1950)

• Attracted armature or induction disc type elements to implement the protection functions.

• An electromagnetic force causes the mechanical operation of the relay.

Protective RelaysTechnologies Employed (1)

Presentation title - 01/01/2010 - P 11

Presentation title - 01/01/2010 - P 12

Presentation title - 01/01/2010 - P 13

Presentation title - 01/01/2010 - P 14

Presentation title - 01/01/2010 - P 15

Presentation title - 01/01/2010 - P 16

Presentation title - 01/01/2010 - P 17

Presentation title - 01/01/2010 - P 18

Presentation title - 01/01/2010 - P 19

Presentation title - 01/01/2010 - P 20

Presentation title - 01/01/2010 - P 21

Presentation title - 01/01/2010 - P 22

Presentation title - 01/01/2010 - P 23

Presentation title - 01/01/2010 - P 24

Presentation title - 01/01/2010 - P 25

Presentation title - 01/01/2010 - P 26

Presentation title - 01/01/2010 - P 27

Presentation title - 01/01/2010 - P 28

Presentation title - 01/01/2010 - P 29

Presentation title - 01/01/2010 - P 30

Presentation title - 01/01/2010 - P 31

Presentation title - 01/01/2010 - P 32

Presentation title - 01/01/2010 - P 33

Presentation title - 01/01/2010 - P 34

Presentation title - 01/01/2010 - P 35

Presentation title - 01/01/2010 - P 36

Presentation title - 01/01/2010 - P 37

Presentation title - 01/01/2010 - P 38

Presentation title - 01/01/2010 - P 39

Presentation title - 01/01/2010 - P 40

Presentation title - 01/01/2010 - P 41

Presentation title - 01/01/2010 - P 42

Presentation title - 01/01/2010 - P 43

Presentation title - 01/01/2010 - P 44

Presentation title - 01/01/2010 - P 45

Presentation title - 01/01/2010 - P 46

Presentation title - 01/01/2010 - P 47

Presentation title - 01/01/2010 - P 48

Presentation title - 01/01/2010 - P 49

Presentation title - 01/01/2010 - P 50

Presentation title - 01/01/2010 - P 51

Presentation title - 01/01/2010 - P 52

Presentation title - 01/01/2010 - P 53

Presentation title - 01/01/2010 - P 54

Presentation title - 01/01/2010 - P 55

Presentation title - 01/01/2010 - P 56

Presentation title - 01/01/2010 - P 57

Presentation title - 01/01/2010 - P 58

Presentation title - 01/01/2010 - P 59

Presentation title - 01/01/2010 - P 60

Presentation title - 01/01/2010 - P 61

Presentation title - 01/01/2010 - P 62

Presentation title - 01/01/2010 - P 63

Presentation title - 01/01/2010 - P 64

Presentation title - 01/01/2010 - P 65

Presentation title - 01/01/2010 - P 66

Presentation title - 01/01/2010 - P 67

Presentation title - 01/01/2010 - P 68

Presentation title - 01/01/2010 - P 69

Presentation title - 01/01/2010 - P 70

Presentation title - 01/01/2010 - P 71

Presentation title - 01/01/2010 - P 72

Presentation title - 01/01/2010 - P 73

Presentation title - 01/01/2010 - P 74

Presentation title - 01/01/2010 - P 75

Presentation title - 01/01/2010 - P 76

Presentation title - 01/01/2010 - P 77

Presentation title - 01/01/2010 - P 78

Presentation title - 01/01/2010 - P 79

Presentation title - 01/01/2010 - P 80

Presentation title - 01/01/2010 - P 81

Presentation title - 01/01/2010 - P 82

Presentation title - 01/01/2010 - P 83

Presentation title - 01/01/2010 - P 84

Presentation title - 01/01/2010 - P 85

Presentation title - 01/01/2010 - P 86

Presentation title - 01/01/2010 - P 87

Presentation title - 01/01/2010 - P 88

Presentation title - 01/01/2010 - P 89

Presentation title - 01/01/2010 - P 90

Presentation title - 01/01/2010 - P 91

Presentation title - 01/01/2010 - P 92

Presentation title - 01/01/2010 - P 93

Presentation title - 01/01/2010 - P 94

Presentation title - 01/01/2010 - P 95

Presentation title - 01/01/2010 - P 96

Presentation title - 01/01/2010 - P 97

Presentation title - 01/01/2010 - P 98

Presentation title - 01/01/2010 - P 99

Presentation title - 01/01/2010 - P 100

Presentation title - 01/01/2010 - P 101

Presentation title - 01/01/2010 - P 102

Presentation title - 01/01/2010 - P 103

Presentation title - 01/01/2010 - P 104

Presentation title - 01/01/2010 - P 105

Presentation title - 01/01/2010 - P 106

Presentation title - 01/01/2010 - P 107

Presentation title - 01/01/2010 - P 108

Presentation title - 01/01/2010 - P 109

Presentation title - 01/01/2010 - P 110

Presentation title - 01/01/2010 - P 111

Presentation title - 01/01/2010 - P 112

Presentation title - 01/01/2010 - P 113

Presentation title - 01/01/2010 - P 114

Presentation title - 01/01/2010 - P 115

Presentation title - 01/01/2010 - P 116

Presentation title - 01/01/2010 - P 117

Presentation title - 01/01/2010 - P 118

Presentation title - 01/01/2010 - P 119

Presentation title - 01/01/2010 - P 120

Presentation title - 01/01/2010 - P 121

Presentation title - 01/01/2010 - P 122

Presentation title - 01/01/2010 - P 123

Presentation title - 01/01/2010 - P 124

Presentation title - 01/01/2010 - P 125

Presentation title - 01/01/2010 - P 126

Presentation title - 01/01/2010 - P 127

Presentation title - 01/01/2010 - P 128

Presentation title - 01/01/2010 - P 129

Presentation title - 01/01/2010 - P 130

Presentation title - 01/01/2010 - P 131

Presentation title - 01/01/2010 - P 132

Presentation title - 01/01/2010 - P 133

Presentation title - 01/01/2010 - P 134

Presentation title - 01/01/2010 - P 135

Presentation title - 01/01/2010 - P 136

Presentation title - 01/01/2010 - P 137

Presentation title - 01/01/2010 - P 138

Presentation title - 01/01/2010 - P 139

Presentation title - 01/01/2010 - P 140

Presentation title - 01/01/2010 - P 141

Presentation title - 01/01/2010 - P 142

Presentation title - 01/01/2010 - P 143

Presentation title - 01/01/2010 - P 144

Presentation title - 01/01/2010 - P 145

Presentation title - 01/01/2010 - P 146

Presentation title - 01/01/2010 - P 147

Presentation title - 01/01/2010 - P 148

Presentation title - 01/01/2010 - P 149

Presentation title - 01/01/2010 - P 150

Presentation title - 01/01/2010 - P 151

Presentation title - 01/01/2010 - P 152

Presentation title - 01/01/2010 - P 153

Presentation title - 01/01/2010 - P 154

Presentation title - 01/01/2010 - P 155

Presentation title - 01/01/2010 - P 156

Presentation title - 01/01/2010 - P 157

Presentation title - 01/01/2010 - P 158

Presentation title - 01/01/2010 - P 159

Presentation title - 01/01/2010 - P 160

Presentation title - 01/01/2010 - P 161

Presentation title - 01/01/2010 - P 162

Presentation title - 01/01/2010 - P 163

Presentation title - 01/01/2010 - P 164

Presentation title - 01/01/2010 - P 165

Presentation title - 01/01/2010 - P 166

Presentation title - 01/01/2010 - P 167

Presentation title - 01/01/2010 - P 168

Presentation title - 01/01/2010 - P 169

Presentation title - 01/01/2010 - P 170

Presentation title - 01/01/2010 - P 171

Presentation title - 01/01/2010 - P 172

Presentation title - 01/01/2010 - P 173

Presentation title - 01/01/2010 - P 174

Presentation title - 01/01/2010 - P 175

Presentation title - 01/01/2010 - P 176

Presentation title - 01/01/2010 - P 177

Presentation title - 01/01/2010 - P 178

Presentation title - 01/01/2010 - P 179

Presentation title - 01/01/2010 - P 180

Presentation title - 01/01/2010 - P 181

Presentation title - 01/01/2010 - P 182

Presentation title - 01/01/2010 - P 183

Presentation title - 01/01/2010 - P 184

Presentation title - 01/01/2010 - P 185

Presentation title - 01/01/2010 - P 186

Presentation title - 01/01/2010 - P 187

Presentation title - 01/01/2010 - P 188

Presentation title - 01/01/2010 - P 189

Presentation title - 01/01/2010 - P 190

Presentation title - 01/01/2010 - P 191

Presentation title - 01/01/2010 - P 192

Presentation title - 01/01/2010 - P 193

Presentation title - 01/01/2010 - P 194

Presentation title - 01/01/2010 - P 195

STATIC (1970)

• Maturing of transistor technology

• Static implies that the relay does not have moving parts

• Discrete electronic components (generally analogue devices) used for creation of the operating characteristics.

• Trip output contacts would generally be of attracted armature type.

Protective RelaysTechnologies Employed (2)

Presentation title - 01/01/2010 - P 196

DIGITAL (1980)

• Used the then new microprocessor technologies

• Generally an analogue front end

• Protection function logic is implemented in the microprocessor.

• The only numerical states within the relay are high/low logic (logic one or zero) rather than mathematical algorithms

Protective RelaysTechnologies Employed (3)

Presentation title - 01/01/2010 - P 197

NUMERICAL (Today)

• Used exclusively in today’s protection relays

• Inputs sampled and converted into digital numerical data

• Complex mathematical algorithms generate the relay operating characteristics.

• The distinction from digital relays is that numerical relays use digital signal processing (DSP).

• Also characterised by the sophisticated communications facilities they offer.

Protective RelaysTechnologies Employed (4)

Presentation title - 01/01/2010 - P 198

Protective Relay TechnologiesExamples

Presentation title - 01/01/2010 - P 199

Protective RelayPrincipal Input/Output Interfaces

Presentation title - 01/01/2010 - P 200

Analogue Inputs

Analogue to

Digital Conversio

n

Power Supply

DigitalOutputs

(Relays)

DigitalInputs

(Optos)

Signal Processing CommunicationsUser

Interface (HMI)

Additional I/O

Interconnection Bus

Protective Relay DesignKey Elements - implementation

Presentation title - 01/01/2010 - P 201

Protective Relay Design- Analogue Inputs

Analogue Inputs

Analogue to

Digital Conversio

n

Power Supply

DigitalOutputs

(Relays)

DigitalInputs

(Optos)

Signal Processing CommunicationsUser

Interface (HMI)

Additional I/O

Interconnection Bus

Presentation title - 01/01/2010 - P 202

V

I

10110111...

Analogue Inputs – Traditional ApproachSequential Sampling

Presentation title - 01/01/2010 - P 203

Sequential Sampling Advantages / Disadvantages

• Advantages− Low cost solution

• Disadvantages− Single data stream, sampling frequency− Relatively slow− Signal Skew

Presentation title - 01/01/2010 - P 204

V

I

10110111...

Analogue Inputs – New TechnologiesSimultaneous Sampling

Buffering

Re-sampling

Re-sampling

Data

Tra

nsm

issio

n

Buffering

Re-sampling

Re-sampling

Presentation title - 01/01/2010 - P 205

Simultaneous Sampling Advantages / Disadvantages

• Advantages− Multiple sampling rates− Higher sampling frequencies− Signal Pre-conditioning

• Disadvantages− Higher hardware costs

Presentation title - 01/01/2010 - P 206

Actual signal

Apparent signal

Sample points

Sampling element

Sampling Issues problems - Aliasing effects

Presentation title - 01/01/2010 - P 207

10110111...

Dynamic Range, Quantisation Effects

Input signal distortion problems - Conversion errors

12 bit ADC equivalent to 4096 numbers

• For dynamic range of 64 In

• In = count 32

• Resolution - 30mA (In = 1A)

For 16 bit, resolution - 2mA

Presentation title - 01/01/2010 - P 208

Analogue todigital

conversion

n samplesper cycle

I

V

Antialiasing

Digital filter

Antialiasing

I1 Mag, Ø

I2 Mag, Ø

Ix Mag, Ø

V1 Mag, Ø

Vy Mag, Ø

Processed Data

Signal filtering

Presentation title - 01/01/2010 - P 209

Gain

1

0f0 2f0 3f0 4f0 5f0 6f0 7f0 8f0 9f0

Frequency

Alias of Fundamental

H/W Low Pass Filter

Fourier Filter

Frequency Response of 1 Cycle Fourier Filter (8 Sample/Cycle)

Presentation title - 01/01/2010 - P 210

Protective Relay DesignDigital Inputs

Analogue Inputs

Analogue to

Digital Conversio

n

Power Supply

DigitalOutputs

(Relays)

DigitalInputs

(Optos)

Signal Processing CommunicationsUser

Interface (HMI)

Additional I/O

Interconnection Bus

Presentation title - 01/01/2010 - P 211

• Wetting currents

• Burden

• Isolation

• How many ?

• How fast ?

• Thermal dissipation

• Safety

Digital InputsConsiderations

Presentation title - 01/01/2010 - P 212

− Multiple variants− Single voltage I/P− Simple / low cost− OK for Trip circuit

supervision applications

Digital InputsCircuit Designs

− Single variant− Wide Range I/P− Single threshold − Power ∝ Voltage

− Single variant− Wide Range I/P− Low Power− Multiple

thresholds− Measurements− Settable− Complex / higher

cost

LPF0,1

LPF0,1

Signal ProcessingVoltage

MeasurementOrStatus + Settings

AUXPSU

PWM Measurement

Circuit

Active Measurement Opto Circuit

Constant Current Opto Circuit

Passive Opto Circuit

Presentation title - 01/01/2010 - P 213

Protective Relay DesignDigital Outputs

Analogue Inputs

Analogue to

Digital Conversio

n

Power Supply

DigitalOutputs

(Relays)

DigitalInputs

(Optos)

Signal Processing CommunicationsUser

Interface (HMI)

Additional I/O

Interconnection Bus

Presentation title - 01/01/2010 - P 214

• Contact rating

• Isolation

• How many ?

• How fast ?

• Thermal dissipation

• Safety

Digital OutputsConsiderations

Presentation title - 01/01/2010 - P 215

− Op time ~10ms

Digital OutputsCircuit Designs

− Op time ~4ms

− Op time <0.5ms− High break

capability

Static Assisted Output Circuit

Accelerated Relay Circuit

Standard Relay Circuit

Data

Data

20V8V

12V

Data

20V 8V

12V

Presentation title - 01/01/2010 - P 216

Protective Relay DesignAdditional I/O

Analogue Inputs

Analogue to

Digital Conversio

n

Power Supply

DigitalOutputs

(Relays)

DigitalInputs

(Optos)

Signal Processing CommunicationsUser

Interface (HMI)

Additional I/O

Interconnection Bus

Presentation title - 01/01/2010 - P 217

• Current Loop I/O

• Temperature Measurement (RTDs)

• Time Synchronisation (IRIG-B)

• Protection Communications− Current Differential− Inter-tripping

Additional I/O

Presentation title - 01/01/2010 - P 218

Protective Relay DesignUser Interface

Analogue Inputs

Analogue to

Digital Conversio

n

Power Supply

DigitalOutputs

(Relays)

DigitalInputs

(Optos)

Signal Processing CommunicationsUser

Interface (HMI)

Additional I/O

Interconnection Bus

Presentation title - 01/01/2010 - P 219

User Interface

Presentation title - 01/01/2010 - P 220

Protective Relay Design - Computing Unit

Analogue Inputs

Analogue to

Digital Conversio

n

Power Supply

DigitalOutputs

(Relays)

DigitalInputs

(Optos)

Signal Processing CommunicationsUser

Interface (HMI)

Additional I/O

Interconnection Bus

Presentation title - 01/01/2010 - P 221

Computing Unit - Hardware

• Microprocessor(s)

• Memory−(Flash) EPROM−RAM−NV RAM

• Time synchronisation

• Communications drivers

• Battery back-up

Presentation title - 01/01/2010 - P 222

Protective Relay Design - Computing Unit

Analogue Inputs

Analogue to

Digital Conversio

n

Power Supply

DigitalOutputs

(Relays)

DigitalInputs

(Optos)

Signal Processing CommunicationsUser

Interface (HMI)

Additional I/O

Interconnection Bus

Presentation title - 01/01/2010 - P 223

• Control of analogue acquisition

• Process raw data in magnitude & phase

• Sample of plant status I/Ps

• Execute protection algorithms

• Combine protection outputs and plant status to control outputs (scheme logic)

• Control user interface

• Implement remote communications protocols

• Log events and disturbances

Computing Unit - S/W Processes

Presentation title - 01/01/2010 - P 224

CommunicationsOperatingPlatform

ApplicationSoftware

B I O S

Hardware

Protective Relay Software Design

Presentation title - 01/01/2010 - P 225

• Microprocessor requires sufficient power to− Process samples in real time before next sample

is taken− Run the protection algorithms often enough to

meet the requirements for speed of operation− Service communications tasks− Ensure background tasks have sufficient priority

(ie user interface)

• Typical maximum processor loading <70% quiescent, <90% during faults

Computing Unit - Requirements

Presentation title - 01/01/2010 - P 226

Computing Unit Performance

200

520

00

199

5

199

0

198

0

MCGG

0.1

1 10 100

L Series

Px40

Px40+

Px20

K Series

Yea

r

Millions of Instructions per second (MIPS)

Presentation title - 01/01/2010 - P 227

Computing UnitExample

• Microprocessor : 32 bit floating point

75 MIPS

• Memory− (Flash) EPROM : 4 M bytes− RAM : 2 M bytes− NV RAM : 4 M bytes

• Software : >700 000 lines code

Presentation title - 01/01/2010 - P 228

• Performance requirements− International IEC 60255, ANSI− National BS, DIN etc

• Mandatory requirements− CE marking (Europe)

• LVD

• EMC− UL (US, Canada)

Protective Relaying EquipmentProduct Certification

Presentation title - 01/01/2010 - P 229

Numerical RelaysPhysical Structure

Presentation title - 01/01/2010 - P 230

Additional Additional FeaturesFeatures

Numerical Relays

Presentation title - 01/01/2010 - P 231

• Additional features found in numerical relays− Multiple functions in same relay− Fault location− Self diagnostics & commissioning tools− Programmable scheme logic / customisation− Intelligent Communications− Fault recording− Re-configurable inputs and outputs− Monitoring and control of circuit breakers− Instrumentation

• Reliability, repeatability, ….

Numerical Relays - what are the benefits ?

Presentation title - 01/01/2010 - P 232

FaultFault LocationLocation

Numerical Relays

Presentation title - 01/01/2010 - P 233

16% 3.8 16km10miles

Fault location

Presentation title - 01/01/2010 - P 234

Self Diagnostics &Self Diagnostics &Commissioning ToolsCommissioning Tools

Numerical Relays

Presentation title - 01/01/2010 - P 235

Self Diagnostics & Commissioning

•Self diagnostics−Power-on

diagnostics−Continuous self-

monitoring−Condition based

maintenance

•Commissioning features available to user

−Input states−Output states−Internal logic status−Measurements

Presentation title - 01/01/2010 - P 236

Programmability Programmability & Customisation& Customisation

Numerical Relays

Presentation title - 01/01/2010 - P 237

User programmable scheme logic

Timers

Relay contacts

LEDs

Protectionelements

Fixed schem

elogic

Optos

Control

&

&1

Gate Logic

Customisation :Programmable Scheme Logic

Presentation title - 01/01/2010 - P 238

Trip

Trip

Opto

Tripcoil

52a

52b

Circuit breaker

Opto

Trip Circuit Monitoring

Presentation title - 01/01/2010 - P 239

Trip Circuit Fail mapped to

Contact, LED and Alarm Indication

Trip Circuit Monitoring Using Programmable Scheme Logic

Presentation title - 01/01/2010 - P 240

Off-line AnalysisOff-line Analysis

Numerical Relays

Presentation title - 01/01/2010 - P 241

Prefault Postfault

Disturbance Records

•8 Analogue channels

•32 Digital channels

•Sample 12 times per cycle

•Configurable trigger source

•Variable trigger point

•Up to 20 Records can be stored

•The duration of each record can be up to 10.5s

•Battery backed memory

•Extended recording time

•MiCOM S1 saves file in the COMTRADE format

Presentation title - 01/01/2010 - P 242

A-GND Fault,Fault Inception

Trip Command

Disturbance analysis software

Presentation title - 01/01/2010 - P 243

CommunicationsCommunications

Numerical Relays

Presentation title - 01/01/2010 - P 244

Digital Control Systems

Courier Modbus DNP3.0 IEC60870-5-103. . .

Remote CommunicationsTraditional Solutions

Presentation title - 01/01/2010 - P 245

Remote CommunicationsOverall substation Communications

Switch

Switch LAN or WAN

LAN or WAN

• Ethernet Communications− IEC61850− Tunnelling of

traditional communications (DNP3…)

Presentation title - 01/01/2010 - P 246

Overall Substation CommunicationsIEC61850

• Peer to Peer Fast I/O Communications− GOOSE (Generic Object Orientated Substation

Events)

• Sampled Analogue Values− IEC61850-9-2

• IEC61850 Data Model− Status Monitoring− Event Reporting (Un-buffered / Buffered)− Control Services (CB Tripping/Closing)

• Time Synchronisation− SNTP (Simple network Time Protocol)− IEEE1588 (Precision Time Protocol)

Presentation title - 01/01/2010 - P 247

Overall Substation CommunicationsRedundancy

• Ring Topology− Current - Areva Self

Healing Protocol− New - HSR (High

availability seamless ring)

Relay

Relay

Relay

Switch

PCRelay

Relay Relay

Switch Switch

PC

• Star Topology− Current - RSTP− New - PRP (Parallel

Redundancy Protocol)

Presentation title - 01/01/2010 - P 248

Overall Substation CommunicationsCyber Security

• Standards− NERC (North American Electric Reliability

Corporation)− IEEE1686 – Security of relays and substations− IEC62351 – Security of communications

• Security− Defined password schemes− Password blocking− Password encryption− Unused port disabling

Presentation title - 01/01/2010 - P 249

Protection & Control EquipmentLooking Forward

• Requirements− Protection enhancements− Greater Integration (Protection, Control &

Monitoring)− Programmability and customisation− Off-line analysis− Communications− Security− Expert systems / Smart Grids

• Implementation− More processing power− Higher sampling / multiple sampling− More I/O− Increased communications capabilities

Presentation title - 01/01/2010 - P 250

Self Diagnostics& Commissioning

Tools

Instrumentation

Communications

Bay Monitoring& Control

ComprehensiveProtection

FaultAnalysis Tools

Programmability& Customisation

Modern Numeric ProtectionBenefits Summary

www.alstom.com

Recommended