Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display....

Preview:

Citation preview

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CHAPTER 8LECTURE

SLIDES

To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please note: once you have used any of the animation functions (such as Play or Pause), you must first click in the white background before you advance the next slide.

Photosynthesis

Chapter 8

3

Photosynthesis Overview

• Energy for all life on Earth ultimately comes from photosynthesis

6CO2 + 12H2O C6H12O6 + 6H2O + 6O2

• Oxygenic photosynthesis is carried out by– Cyanobacteria– 7 groups of algae– All land plants – chloroplasts

Chloroplast

• Thylakoid membrane – internal membrane– Contains chlorophyll and other photosynthetic

pigments– Pigments clustered into photosystems

• Grana – stacks of flattened sacs of thylakoid membrane

• Stroma lamella – connect grana

• Stroma – semiliquid surrounding thylakoid membranes

4

5

6

Stages

• Light-dependent reactions– Require light

1.Capture energy from sunlight

2.Make ATP and reduce NADP+ to NADPH

• Carbon fixation reactions or light-independent reactions– Does not require light

3.Use ATP and NADPH to synthesize organic molecules from CO2

7

8

Discovery of Photosynthesis

• Jan Baptista van Helmont (1580–1644)– Demonstrated that the substance of the plant

was not produced only from the soil

• Joseph Priestly (1733–1804)– Living vegetation adds something to the air

• Jan Ingen-Housz (1730–1799)– Proposed plants carry out a process that uses

sunlight to split carbon dioxide into carbon and oxygen (O2 gas)

• F.F. Blackman (1866–1947)– Came to the startling

conclusion that photosynthesis is in fact a multistage process, only one portion of which uses light directly

– Light versus dark reactions

– Enzymes involved

9

10

Pigments

• Molecules that absorb light energy in the visible range

• Light is a form of energy

• Photon – particle of light– Acts as a discrete bundle of energy– Energy content of a photon is inversely

proportional to the wavelength of the light

• Photoelectric effect – removal of an electron from a molecule by light

11

12

Absorption spectrum

• When a photon strikes a molecule, its energy is either – Lost as heat– Absorbed by the electrons of the molecule

• Boosts electrons into higher energy level

• Absorption spectrum – range and efficiency of photons molecule is capable of absorbing

13

• Organisms have evolved a variety of different pigments

• Only two general types are used in green plant photosynthesis– Chlorophylls– Carotenoids

• In some organisms, other molecules also absorb light energy

14

Chlorophylls

• Chlorophyll a– Main pigment in plants and cyanobacteria– Only pigment that can act directly to convert

light energy to chemical energy– Absorbs violet-blue and red light

• Chlorophyll b– Accessory pigment or secondary pigment

absorbing light wavelengths that chlorophyll a does not absorb

15

16

Pigments

Pigments:

• Structure of chlorophyll

• porphyrin ring– Complex ring structure

with alternating double and single bonds

– Magnesium ion at the center of the ring

• Photons excite electrons in the ring

• Electrons are shuttled away from the ring

17

• Carotenoids– Carbon rings linked to

chains with alternating single and double bonds

– Can absorb photons with a wide range of energies

– Also scavenge free radicals – antioxidant

• Protective role

• Phycobiloproteins– Important in low-light

ocean areas18

19

Photosystem Organization

• Antenna complex– Hundreds of accessory pigment molecules– Gather photons and feed the captured light

energy to the reaction center

• Reaction center– 1 or more chlorophyll a molecules

– Passes excited electrons out of the photosystem

Antenna complex

• Also called light-harvesting complex

• Captures photons from sunlight and channels them to the reaction center chlorophylls

• In chloroplasts, light-harvesting complexes consist of a web of chlorophyll molecules linked together and held tightly in the thylakoid membrane by a matrix of proteins

20

21

Reaction center

• Transmembrane protein–pigment complex• When a chlorophyll in the reaction center

absorbs a photon of light, an electron is excited to a higher energy level

• Light-energized electron can be transferred to the primary electron acceptor, reducing it

• Oxidized chlorophyll then fills its electron “hole” by oxidizing a donor molecule

22

23

24

Light-Dependent Reactions

1. Primary photoevent– Photon of light is captured by a pigment molecule

2. Charge separation – Energy is transferred to the reaction center; an

excited electron is transferred to an acceptor molecule

3. Electron transport– Electrons move through carriers to reduce NADP+

4. Chemiosmosis– Produces ATP

Cap

ture

of

light

ene

rgy

25

• In sulfur bacteria, only one photosystem is used

• Generates ATP via electron transport

• Excited electron passed to electron transport chain

• Generates a proton gradient for ATP synthesis

Cyclic photophosphorylation

26

27

Chloroplasts have two connected photosystems

• Oxygenic photosynthesis

• Photosystem I (P700)– Functions like sulfur bacteria

• Photosystem II (P680)– Can generate an oxidation potential high enough to

oxidize water

• Working together, the two photosystems carry out a noncyclic transfer of electrons that is used to generate both ATP and NADPH

28

• Photosystem I transfers electrons ultimately to NADP+, producing NADPH

• Electrons lost from photosystem I are replaced by electrons from photosystem II

• Photosystem II oxidizes water to replace the electrons transferred to photosystem I

• 2 photosystems connected by cytochrome/ b6-f complex

29

Noncyclic photophosphorylation

• Plants use photosystems II and I in series to produce both ATP and NADPH

• Path of electrons not a circle

• Photosystems replenished with electrons obtained by splitting water

• Z diagram

30

31

Photosystem II

• Resembles the reaction center of purple bacteria• Core of 10 transmembrane protein subunits with

electron transfer components and two P680 chlorophyll molecules

• Reaction center differs from purple bacteria in that it also contains four manganese atoms– Essential for the oxidation of water

• b6-f complex– Proton pump embedded in thylakoid membrane

32

Photosystem I

• Reaction center consists of a core transmembrane complex consisting of 12 to 14 protein subunits with two bound P700 chlorophyll molecules

• Photosystem I accepts an electron from plastocyanin into the “hole” created by the exit of a light-energized electron

• Passes electrons to NADP+ to form NADPH

33

Chemiosmosis

• Electrochemical gradient can be used to synthesize ATP

• Chloroplast has ATP synthase enzymes in the thylakoid membrane– Allows protons back into stroma

• Stroma also contains enzymes that catalyze the reactions of carbon fixation – the Calvin cycle reactions

34

Production of additional ATP

• Noncyclic photophosphorylation generates– NADPH– ATP

• Building organic molecules takes more energy than that alone

• Cyclic photophosphorylation used to produce additional ATP– Short-circuit photosystem I to make a larger

proton gradient to make more ATP35

36

Carbon Fixation – Calvin Cycle

• To build carbohydrates cells use

• Energy– ATP from light-dependent reactions– Cyclic and noncyclic photophosphorylation– Drives endergonic reaction

• Reduction potential– NADPH from photosystem I– Source of protons and energetic electrons

37

Calvin cycle

• Named after Melvin Calvin (1911–1997)

• Also called C3 photosynthesis

• Key step is attachment of CO2 to RuBP to form PGA

• Uses enzyme ribulose bisphosphate carboxylase/oxygenase or rubisco

38

3 phases

1. Carbon fixation– RuBP + CO2 → PGA

2. Reduction– PGA is reduced to G3P

3. Regeneration of RuBP– PGA is used to regenerate RuBP

• 3 turns incorporate enough carbon to produce a new G3P

• 6 turns incorporate enough carbon for 1 glucose

39

40

Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the “Normal” or “Slide Sorter” views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at http://get.adobe.com/flashplayer.

41

Output of Calvin cycle

• Glucose is not a direct product of the Calvin cycle

• G3P is a 3 carbon sugar– Used to form sucrose

• Major transport sugar in plants• Disaccharide made of fructose and glucose

– Used to make starch• Insoluble glucose polymer• Stored for later use

42

Energy cycle

• Photosynthesis uses the products of respiration as starting substrates

• Respiration uses the products of photosynthesis as starting substrates

• Production of glucose from G3P even uses part of the ancient glycolytic pathway, run in reverse

• Principal proteins involved in electron transport and ATP production in plants are evolutionarily related to those in mitochondria

43

44

Photorespiration

• Rubisco has 2 enzymatic activities– Carboxylation

• Addition of CO2 to RuBP

• Favored under normal conditions

– Photorespiration• Oxidation of RuBP by the addition of O2

• Favored when stoma are closed in hot conditions

• Creates low-CO2 and high-O2

• CO2 and O2 compete for the active site on RuBP

45

46

Types of photosynthesis

• C3

– Plants that fix carbon using only C3 photosynthesis (the Calvin cycle)

• C4 and CAM

– Add CO2 to PEP to form 4 carbon molecule

– Use PEP carboxylase

– Greater affinity for CO2, no oxidase activity

– C4 – spatial solution

– CAM – temporal solution

47

C4 plants

• Corn, sugarcane, sorghum, and a number of other grasses

• Initially fix carbon using PEP carboxylase in mesophyll cells

• Produces oxaloacetate, converted to malate, transported to bundle-sheath cells

• Within the bundle-sheath cells, malate is decarboxylated to produce pyruvate and CO2

• Carbon fixation then by rubisco and the Calvin cycle

48

• C4 pathway, although it overcomes the problems of photorespiration, does have a cost

• To produce a single glucose requires 12 additional ATP compared with the Calvin cycle alone

• C4 photosynthesis is advantageous in hot dry climates where photorespiration would remove more than half of the carbon fixed by the usual C3 pathway alone

49

50

CAM plants

• Many succulent (water-storing) plants, such as cacti, pineapples, and some members of about two dozen other plant groups

• Stomata open during the night and close during the day– Reverse of that in most plants

• Fix CO2 using PEP carboxylase during the night and store in vacuole

• When stomata closed during the day, organic acids are decarboxylated to yield high levels of CO2

• High levels of CO2 drive the Calvin cycle and minimize photorespiration

51

52

Compare C4 and CAM

• Both use both C3 and C4 pathways

• C4 – two pathways occur in different cells

• CAM – C4 pathway at night and the C3 pathway during the day

53

Recommended