Conformal Mapping as a Tool in Solving Some Mathematical ...Wiam Ali Ayad, Omar Ismael Elhasadi,...

Preview:

Citation preview

5972

ISSN 2286-4822

www.euacademic.org

EUROPEAN ACADEMIC RESEARCH

Vol. VIII, Issue 10/ January 2021

Impact Factor: 3.4546 (UIF)

DRJI Value: 5.9 (B+)

Conformal Mapping as a Tool in Solving Some

Mathematical and Physical Problems

WIAM ALI AYAD1

OMAR ISMAEL ELHASADI

Department of Mathematical Sciences, Libyan Academy, Tripoli, Libya

ZAYNAB AHMED KHALLEEFAH

Department of Mathematics, Garyan University, Garyan, Libya

ABDUSSALAM ALI AHMED

Department of Mechanical and Industrial Engineering

Bani Waleed University, Bani Waleed, Libya

Abstract

The aim of this modest study was to shed some light on one of

the useful tools of complex analysis, which is the method of conformal

mapping (Also called conformal transformation). Conformal

transformations are optimal for solving various physical and

engineering problems that are difficult to solve in their original form

and in the given domain. This work starts by introducing the meaning

of a ''Conformal Mapping'', then introducing its basic Properties. In the

second part, it deals with a set of various examples that explain the

behavior of these mappings and show how they map a given domain

from its original form into a simpler one. Some of these examples

mentioned in this study showed that conformal transformations could

be used to determine harmonic functions, that is, to solve Laplace's

equation in two dimensions, which is the equation that governs a variety

of physical phenomena such as the steady-state temperature distribution

in solids, electrostatics and inviscid and irrotational flow (potential

flow). Other mathematical problems are treated. All problems that are

dealt with in this work became easier to solve after using this technique.

In addition, they showed that the harmonicity of a function is preserved

under conformal maps and the forms of the boundary conditions change

accordingly.

1 Corresponding author: w.ali.mohammed.ayad@gmail.com

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5973

Keywords: Analytic functions, Conformal mapping, Conformal

transformation, Applications of conformal mapping, Boundary value

problems.

I. INTRODUCTION

A conformal mapping, also called a conformal transformation, or

biholomorphic map, is a transformation that preserves angles between

curves. A mapping by an analytic function is conformal at every point

of the domain of definition where the derivative does not vanish.

Conformal mappings are extremely important in complex analysis, as

well as in many areas of physics and engineering [10].

It can also be said that a conformal mapping simplifies some

solving processes of problems, mapping complex polygonal geometries

and transforming them into simpler geometries, easily studied. These

transformations became possible, due to the conformal mapping

property to modify only the polygon geometry, preserving the physical

magnitudes in each point of it [1].

Two researchers have worked in the field of conformal

mappings, and they elucidated the advantages of conformal mappings

over other advanced engineering skills. The work was to determine

how the critical stress is spread with respect to the rupture angle

using a conformal transformation. In their words, a conformal

transformation has proved to be a good engineering tool to solve footing

on slope problems, and they concluded that the critical normal stress

distribution of footing on a slope is spread evenly along the slip surface

with the mapping technique [2].

One of the applications in which a conformal mapping was used

is the complex velocity potential of the flow of an ideal fluid. It was

found that the complex velocity potential can be determined by solving

a problem in either a horizontal or vertical strip [3].

Another application using a conformal mapping is the one used

to solve the so-called third kind boundary-value problem of Laplace’s

equation. Where the work performed provides a new method for solving

the complex electrostatic field boundary-value problem and realizing

the visualization of that. It is a new way of solving the complex

electrostatic field boundary-value problem [4].

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5974

In this study, the main purpose was to focus on the use of analytic

functions when certain conditions are imposed on them. In particular,

it aimed at elucidating the topic of conformal mappings. Various

examples are given to show how conformal maps change given domains

and help to solve some boundary-value problems, which are difficult to

solve in their original domains.

Definition. [Conformal Mapping] [10]. Let 𝑀 = 𝑓(𝑧) be a complex

mapping defined in a domain 𝐷 and let 𝑧0 ∈ 𝐷. We say that 𝑀 = 𝑓(𝑧) is

conformal at 𝑧0 if for every pair of smooth curves 𝐢1 and 𝐢2 in 𝐷

intersecting at 𝑧0 the angle between 𝐢1 and 𝐢2 at 𝑧0 is equal to the angle

between the image curves 𝐢1β€² and 𝐢2

β€² at 𝑓(𝑧0) in both magnitude and

sense.

Preservation of Angles

The two curves intersect at (𝑒0 ,𝑣0), and the angle at which they

intersect there, is the angle 𝛼 between the two tangents there.

∴ 𝛼 = 𝛼1 βˆ’π›Ό2 ,

Figure 1: The w-plane.

where

tan𝛼1 = (𝑑𝑣

𝑑𝑒)1

= πœ‘1β€²(𝑒),

tan𝛼2 = (𝑑𝑣

𝑑𝑒)2= πœ‘2

β€²(𝑒).

Therefore tan𝛼 =tan𝛼1βˆ’tan𝛼2

1+tan𝛼1tan𝛼2=

πœ‘1β€² (𝑒)βˆ’πœ‘2

β€² (𝑒)

1+πœ‘1β€² (𝑒)πœ‘2

β€² (𝑒),

evaluated when 𝑒 = 𝑒0.

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5975

If 𝑀 = 𝑒 + 𝑖𝑣 = 𝑓(𝑧) is analytic, then 𝑣 = πœ‘π‘˜(𝑒), π‘˜ = 1,2 will have an

image curve in the 𝑧 βˆ’ π‘π‘™π‘Žπ‘›π‘’ which is given by 𝑣(π‘₯, 𝑦) = πœ‘π‘˜{𝑒(π‘₯, 𝑦)} β‡’

𝑦 = π‘“π‘˜(π‘₯),π‘˜ = 1,2.

If the two curves 𝑣 = πœ‘π‘˜(𝑒),π‘˜ = 1,2, intersect at (𝑒0, 𝑣0), then the

curves 𝑦 = π‘“π‘˜(π‘₯),π‘˜ = 1,2, intersect at (π‘₯0,𝑦0), where 𝑒0 = 𝑒(π‘₯0 , 𝑦0),𝑣0 =

𝑣(π‘₯0 ,𝑦0).

𝑑𝑣 = π‘‘πœ‘π‘˜{𝑒(π‘₯, 𝑦)}, βˆ‚π‘£

βˆ‚π‘₯𝑑π‘₯ +

βˆ‚π‘£

βˆ‚π‘¦π‘‘π‘¦ = πœ‘π‘˜

β€²(𝑒){βˆ‚π‘’

βˆ‚π‘₯𝑑π‘₯+

βˆ‚π‘’

βˆ‚π‘¦π‘‘π‘¦},

βˆ‚π‘£

βˆ‚π‘₯+βˆ‚π‘£

βˆ‚π‘¦π‘¦β€²(π‘₯)= πœ‘π‘˜

β€²(𝑒){βˆ‚π‘’

βˆ‚π‘₯+βˆ‚π‘’

βˆ‚π‘¦π‘¦β€²(π‘₯)}.

Let βˆ‚π‘’

βˆ‚π‘₯= π‘Ž,

βˆ‚π‘’

βˆ‚π‘¦= 𝑏,

βˆ‚π‘£

βˆ‚π‘₯= 𝑐,

βˆ‚π‘£

βˆ‚π‘¦= 𝑑, therefore

πœ‘π‘˜β€² (𝑒) =

𝑐 + 𝑑𝑦′(π‘₯)

π‘Ž + 𝑏𝑦′(π‘₯)=𝑐 + π‘‘π‘“π‘˜

β€²(π‘₯)

π‘Ž + π‘π‘“π‘˜β€²(π‘₯)

.

But

π‘Ž =βˆ‚π‘’

βˆ‚π‘₯=βˆ‚π‘£

βˆ‚π‘¦= 𝑑,

𝑏 =βˆ‚π‘’

βˆ‚π‘¦= βˆ’

βˆ‚π‘£

βˆ‚π‘₯= βˆ’π‘,

Therefore

πœ‘π‘˜β€² (𝑒) =

π‘Žπ‘“π‘˜β€²(π‘₯)βˆ’ 𝑏

π‘Ž + π‘π‘“π‘˜β€²(π‘₯)

.

Then πœ‘1β€² (𝑒)βˆ’ πœ‘2

β€² (𝑒) =(π‘Ž2+𝑏2)(𝑓1

β€²(π‘₯)βˆ’π‘“2β€²(π‘₯))

(π‘Ž+𝑏𝑓1β€²(π‘₯))(π‘Ž+𝑏𝑓2

β€²(π‘₯)).

Also 1 + πœ‘1β€² (𝑒)πœ‘2

β€² (𝑒) =(π‘Ž2+𝑏2)(1+𝑓1

β€²(π‘₯)𝑓2β€²(π‘₯))

(π‘Ž+𝑏𝑓1β€²(π‘₯))(π‘Ž+𝑏𝑓2

β€²(π‘₯)).

βˆ΄πœ‘1β€² (𝑒)βˆ’πœ‘2

β€²(𝑒)

1+πœ‘1β€² (𝑒)πœ‘2

β€² (𝑒)=

(π‘Ž2+𝑏2)(𝑓1β€²(π‘₯)βˆ’π‘“2

β€²(π‘₯))

(π‘Ž2+𝑏2)(1+𝑓1β€²(π‘₯)𝑓2

β€²(π‘₯)) =

𝑓1β€²(π‘₯)βˆ’π‘“2

β€²(π‘₯)

1+𝑓1β€²(π‘₯)𝑓2

β€²(π‘₯)= tan𝛼,

Provided that: π‘Ž2 + 𝑏2 = (βˆ‚π‘’

βˆ‚π‘₯)2+ (

βˆ‚π‘’

βˆ‚π‘¦)2= 𝑒π‘₯

2 + 𝑣π‘₯2 = |𝑓′(𝑧)|2 β‰  0.

∴ The curves 𝑦 = π‘“π‘˜(π‘₯), π‘˜ = 1,2 intersect at (π‘₯0 ,𝑦0) at an angle 𝛼 without

any change provided that 𝑓′(𝑧0) β‰  0, 𝑧0 = (π‘₯0 ,𝑦0).

Remark: Assume that 𝑓(𝑧) is analytic and non-constant in a domain 𝐷

of the complex 𝑧-plane. If 𝑓′(𝑧0) = 0 for some 𝑧0 ∈ 𝐷, then 𝑓(𝑧) is not

conformal at this point. Such a point is called a Critical point of 𝑓 [8].

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5976

Theorem. [Preservation of Harmonicity] If 𝑀 = 𝑒 + 𝑖𝑣 = 𝑓(𝑧) = 𝑓(π‘₯ +

𝑖𝑦) is a mapping, where 𝑓(𝑧) is analytic in a domain 𝐷 of the 𝑧-plane

and πœ‘(π‘₯, 𝑦) is harmonic in 𝐷 (βˆ‡2πœ‘= 0 𝑖𝑛 𝐷), then its image πœ‘βˆ—(π‘₯, 𝑦) is

harmonic in π·βˆ— (𝐷 β†’ π·βˆ—).

Proof. To prove this, we see that

πœ‘{π‘₯(𝑒, 𝑣), 𝑦(𝑒, 𝑣)} = πœ‘βˆ—(𝑒, 𝑣) β‡’ π‘‘πœ‘ = π‘‘πœ‘βˆ—

β‡’βˆ‚πœ‘

βˆ‚π‘₯𝑑π‘₯ +

βˆ‚πœ‘

βˆ‚π‘¦π‘‘π‘¦ =

βˆ‚πœ‘βˆ—

βˆ‚π‘’{βˆ‚π‘’

βˆ‚π‘₯𝑑π‘₯ +

βˆ‚π‘’

βˆ‚π‘¦π‘‘π‘¦}+

βˆ‚πœ‘βˆ—

βˆ‚π‘£{βˆ‚π‘£

βˆ‚π‘₯𝑑π‘₯ +

βˆ‚π‘£

βˆ‚π‘¦π‘‘π‘¦}.

Therefore, βˆ‚πœ‘

βˆ‚π‘₯=βˆ‚πœ‘βˆ—

βˆ‚π‘’

βˆ‚π‘’

βˆ‚π‘₯+βˆ‚πœ‘βˆ—

βˆ‚π‘£

βˆ‚π‘£

βˆ‚π‘₯

β‡’βˆ‚2πœ‘

βˆ‚π‘₯2=

βˆ‚πœ‘βˆ—

βˆ‚π‘’

βˆ‚2𝑒

βˆ‚π‘₯2+βˆ‚πœ‘βˆ—

βˆ‚π‘£

βˆ‚2𝑣

βˆ‚π‘₯2+βˆ‚π‘’

βˆ‚π‘₯{βˆ‚2πœ‘βˆ—

βˆ‚π‘’2βˆ‚π‘’

βˆ‚π‘₯+

βˆ‚2πœ‘βˆ—

βˆ‚π‘’βˆ‚π‘£

βˆ‚π‘£

βˆ‚π‘₯} +

βˆ‚π‘£

βˆ‚π‘₯{βˆ‚2πœ‘βˆ—

βˆ‚π‘’βˆ‚π‘£

βˆ‚π‘’

βˆ‚π‘₯+βˆ‚2πœ‘βˆ—

βˆ‚π‘£2βˆ‚π‘£

βˆ‚π‘₯}.

Therefore,

βˆ‚2πœ‘

βˆ‚π‘₯2=βˆ‚πœ‘βˆ—

βˆ‚π‘’

βˆ‚2𝑒

βˆ‚π‘₯2+βˆ‚πœ‘βˆ—

βˆ‚π‘£

βˆ‚2𝑣

βˆ‚π‘₯2+βˆ‚2πœ‘βˆ—

βˆ‚π‘’2(βˆ‚π‘’

βˆ‚π‘₯)2

+βˆ‚2πœ‘βˆ—

βˆ‚π‘£2(βˆ‚π‘£

βˆ‚π‘₯)2

+ 2βˆ‚π‘’

βˆ‚π‘₯

βˆ‚π‘£

βˆ‚π‘₯

βˆ‚2πœ‘βˆ—

βˆ‚π‘’βˆ‚π‘£.

βˆ‚2πœ‘

βˆ‚π‘¦2=βˆ‚πœ‘βˆ—

βˆ‚π‘’

βˆ‚2𝑒

βˆ‚π‘¦2+βˆ‚πœ‘βˆ—

βˆ‚π‘£

βˆ‚2𝑣

βˆ‚π‘¦2+βˆ‚2πœ‘βˆ—

βˆ‚π‘’2(βˆ‚π‘’

βˆ‚π‘¦)2

+βˆ‚2πœ‘βˆ—

βˆ‚π‘£2(βˆ‚π‘£

βˆ‚π‘¦)2

+ 2βˆ‚π‘’

βˆ‚π‘¦

βˆ‚π‘£

βˆ‚π‘¦

βˆ‚2πœ‘βˆ—

βˆ‚π‘’βˆ‚π‘£

βˆ΄βˆ‚2πœ‘

βˆ‚π‘₯2+

βˆ‚2πœ‘

βˆ‚π‘¦2=

βˆ‚πœ‘βˆ—

βˆ‚π‘’(βˆ‡2𝑒)+

βˆ‚πœ‘βˆ—

βˆ‚π‘£(βˆ‡2𝑒)+

βˆ‚2πœ‘βˆ—

βˆ‚π‘’2{(βˆ‚π‘’

βˆ‚π‘₯)2+ (

βˆ‚π‘’

βˆ‚π‘¦)2} +

βˆ‚2πœ‘βˆ—

βˆ‚π‘£2{(βˆ‚π‘£

βˆ‚π‘₯)2+

(βˆ‚π‘£

βˆ‚π‘¦)2}

+2βˆ‚2πœ‘βˆ—

βˆ‚π‘’βˆ‚π‘£{βˆ‚π‘’

βˆ‚π‘₯

βˆ‚π‘£

βˆ‚π‘₯+βˆ‚π‘’

βˆ‚π‘¦

βˆ‚π‘£

βˆ‚π‘¦}.

But if 𝑓(𝑧) = 𝑒(π‘₯, 𝑦) + 𝑖𝑣(π‘₯, 𝑦) is analytic in 𝐷, then

βˆ‡2𝑒 = 0 = βˆ‡2𝑣 𝑖𝑛 𝐷

βˆ‚π‘’

βˆ‚π‘₯=βˆ‚π‘£

βˆ‚π‘¦,

βˆ‚π‘’

βˆ‚π‘¦= βˆ’

βˆ‚π‘£

βˆ‚π‘₯ 𝑖𝑛 𝐷

βˆ΄βˆ‚2πœ‘

βˆ‚π‘₯2+βˆ‚2πœ‘

βˆ‚π‘¦2= |𝑓′(𝑧)|2 (

βˆ‚2πœ‘βˆ—

βˆ‚π‘’2+βˆ‚2πœ‘βˆ—

βˆ‚π‘£2).

Therefore, If 𝑓′(𝑧) β‰  0 in 𝐷, then

βˆ‚2πœ‘

βˆ‚π‘₯2+βˆ‚2πœ‘

βˆ‚π‘¦2= 0 𝑖𝑛 𝐷 β‡’

βˆ‚2πœ‘βˆ—

βˆ‚π‘’2+βˆ‚2πœ‘βˆ—

βˆ‚π‘£2= 0 𝑖𝑛 π·βˆ— (𝑖. 𝑒., πœ‘βˆ—(𝑒, 𝑣) 𝑖𝑠 β„Žπ‘Žπ‘Ÿπ‘šπ‘œπ‘›π‘–π‘ 𝑖𝑛 π·βˆ—).

Preservation of Boundary Conditions

Suppose that 𝑀 = 𝑒 + 𝑖𝑣 = 𝜁(𝑧) is analytic in a domain 𝐷 and πœ‘(π‘₯, 𝑦) is

harmonic in 𝐷.

Suppose that βˆ‚π· has an equation 𝑦 = 𝑓(π‘₯). On βˆ‚π· the boundary

condition is

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5977

βˆ‚πœ‘

βˆ‚π‘›= 0 = βˆ‡πœ‘ β‹… 𝑛, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑛 = (sin𝛼,βˆ’cos𝛼).

∴ (βˆ‚πœ‘

βˆ‚π‘₯,βˆ‚πœ‘

βˆ‚π‘¦) β‹… (sin𝛼, βˆ’cos𝛼)= 0

β‡’βˆ‚πœ‘

βˆ‚π‘₯tanπ‘₯ =

βˆ‚πœ‘

βˆ‚π‘¦β‡’βˆ‚πœ‘

βˆ‚π‘₯𝑓′(π‘₯)=

βˆ‚πœ‘

βˆ‚π‘¦ π‘œπ‘› 𝐷.

Figure 2: Transformation of Neumann condition.

In the 𝑀-plane we have the following configuration:

The equation of βˆ‚π·βˆ— is given by 𝑣 = 𝐹(𝑒), therefore 𝑣(π‘₯, 𝑦) = 𝐹{𝑒(π‘₯, 𝑦)}

is the equation of βˆ‚π·.

β‡’ 𝑣(π‘₯, 𝑦) = 𝐹{𝑒(π‘₯, 𝑦)} β‡’ 𝑦 = 𝑓(π‘₯)

𝑑𝑣 = 𝑑𝐹

βˆ΄βˆ‚π‘£

βˆ‚π‘₯𝑑π‘₯ +

βˆ‚π‘£

βˆ‚π‘¦π‘‘π‘¦ = 𝐹′(𝑒){

βˆ‚π‘’

βˆ‚π‘₯𝑑π‘₯+

βˆ‚π‘’

βˆ‚π‘¦π‘‘π‘¦}

β‡’βˆ‚π‘£

βˆ‚π‘₯+βˆ‚π‘£

βˆ‚π‘¦

𝑑𝑦

𝑑π‘₯= 𝐹′(𝑒) {

βˆ‚π‘’

βˆ‚π‘₯+βˆ‚π‘’

βˆ‚π‘¦

𝑑𝑦

𝑑π‘₯}

∴

βˆ‚π‘£

βˆ‚π‘₯βˆ’πΉβ€²(𝑒)

βˆ‚π‘’

βˆ‚π‘₯

𝐹′(𝑒)βˆ‚π‘’

βˆ‚π‘¦βˆ’

βˆ‚π‘£

βˆ‚π‘¦

=𝑑𝑦

𝑑π‘₯= 𝑓′(π‘₯)

∴ 𝑓′(π‘₯) =βˆ’π‘£π‘₯ + 𝑒π‘₯𝐹′(𝑒)

𝐹′(𝑒)𝑣π‘₯ + 𝑒π‘₯.

Now πœ‘(π‘₯, 𝑦) = πœ‘{π‘₯(𝑒,𝑣), 𝑦(𝑒, 𝑣)} = πœ‘βˆ—(𝑒, 𝑣) βˆ‚πœ‘

βˆ‚π‘₯𝑑π‘₯ +

βˆ‚πœ‘

βˆ‚π‘¦π‘‘π‘¦ =

βˆ‚πœ‘βˆ—

βˆ‚π‘’{𝑒π‘₯𝑑π‘₯+ 𝑒𝑦𝑑𝑦}+

βˆ‚πœ‘βˆ—

βˆ‚π‘£{𝑣π‘₯𝑑π‘₯+ 𝑣𝑦𝑑𝑦}

βˆ΄βˆ‚πœ‘

βˆ‚π‘₯=βˆ‚πœ‘βˆ—

βˆ‚π‘’π‘’π‘₯ +

βˆ‚πœ‘βˆ—

βˆ‚π‘£π‘£π‘₯,

βˆ‚πœ‘

βˆ‚π‘¦= βˆ’

βˆ‚πœ‘βˆ—

βˆ‚π‘’π‘£π‘₯ +

βˆ‚πœ‘βˆ—

βˆ‚π‘£π‘’π‘₯.

∴ In the 𝑀-plane, the boundary condition on βˆ‚π·βˆ— becomes

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5978

{βˆ‚πœ‘βˆ—

βˆ‚π‘’π‘’π‘₯ +

βˆ‚πœ‘βˆ—

βˆ‚π‘£π‘£π‘₯} {𝑒π‘₯𝐹′(𝑒)βˆ’ 𝑣π‘₯}

𝑒π‘₯ + 𝑣π‘₯𝐹′(𝑒)= 𝑒π‘₯

βˆ‚πœ‘βˆ—

βˆ‚π‘£βˆ’ 𝑣π‘₯

βˆ‚πœ‘βˆ—

βˆ‚π‘’

β‡’ {βˆ‚πœ‘βˆ—

βˆ‚π‘’π‘’π‘₯ +

βˆ‚πœ‘βˆ—

βˆ‚π‘£π‘£π‘₯} {𝑒π‘₯𝐹′(𝑒)βˆ’ 𝑣π‘₯} = (𝑒π‘₯

βˆ‚πœ‘βˆ—

βˆ‚π‘£βˆ’ 𝑣π‘₯

βˆ‚πœ‘βˆ—

βˆ‚π‘’) (𝑒π‘₯ + 𝑣π‘₯𝐹′(𝑒)).

βˆ΄βˆ‚πœ‘βˆ—

βˆ‚π‘’π‘’π‘₯2𝐹′(𝑒) βˆ’

βˆ‚πœ‘βˆ—

βˆ‚π‘’π‘’π‘₯𝑣π‘₯ +

βˆ‚πœ‘βˆ—

βˆ‚π‘£π‘£π‘₯𝑒π‘₯𝐹′(𝑒)βˆ’

βˆ‚πœ‘βˆ—

βˆ‚π‘£π‘£π‘₯2 =

βˆ‚πœ‘βˆ—

βˆ‚π‘£π‘’π‘₯2 +

βˆ‚πœ‘βˆ—

βˆ‚π‘£π‘£π‘₯𝑒π‘₯𝐹′(𝑒)

βˆ’βˆ‚πœ‘βˆ—

βˆ‚π‘’π‘’π‘₯𝑣π‘₯ βˆ’

βˆ‚πœ‘βˆ—

βˆ‚π‘’π‘£π‘₯2𝐹′(𝑒)

β‡’βˆ‚πœ‘βˆ—

βˆ‚π‘’π‘’π‘₯2𝐹′(𝑒) βˆ’

βˆ‚πœ‘βˆ—

βˆ‚π‘£π‘£π‘₯2 =

βˆ‚πœ‘βˆ—

βˆ‚π‘£π‘’π‘₯2 βˆ’

βˆ‚πœ‘βˆ—

βˆ‚π‘’π‘£π‘₯2𝐹′(𝑒)

β‡’βˆ‚πœ‘βˆ—

βˆ‚π‘’πΉβ€²(𝑒)(𝑒π‘₯

2 + 𝑣π‘₯2) =

βˆ‚πœ‘βˆ—

βˆ‚π‘£(𝑒π‘₯

2 + 𝑣π‘₯2)

β‡’ (βˆ‚πœ‘βˆ—

βˆ‚π‘’πΉβ€²(𝑒) βˆ’

βˆ‚πœ‘βˆ—

βˆ‚π‘£)(|πœβ€²(𝑧)|2) = 0.

If πœβ€²(𝑧) β‰  0 on βˆ‚π·, then βˆ‚πœ‘βˆ—

βˆ‚π‘’πΉβ€²(𝑒) =

βˆ‚πœ‘βˆ—

βˆ‚π‘£ on βˆ‚π·βˆ—, which means that

βˆ‚πœ‘βˆ—

βˆ‚π‘›βˆ—=

0 on βˆ‚π·βˆ— .

II. RELATED PROBLEMS

The aim of this part is to show how we use conformal transformations

in solving mathematical and physical problems.

Example: How to map the domain in the 𝑀-plane, which is outside

the triangle shown in Fig. (3) and πΌπ‘šπ‘€ β‰₯ 0, onto the upper half of the 𝑧-

plane:

First, we regard 𝐷 = limπ‘β†’βˆž

𝐷1 as shown in Fig. (4), πœƒπ‘˜ β†’ 0 as 𝑝 β†’ ∞, π‘˜ =

1,2.

𝑑𝑀

𝑑𝑧= π‘˜(𝑧 + 1)βˆ’

1

3 𝑧1

2 (π‘§βˆ’ π‘Ž3)βˆ’1

6 ,

Figure 3: The w-plane.

Figure 4: The w-plane.

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5979

∴ 𝑀 = π‘˜ ∫

𝑧

𝑧0

𝜁1

2(𝜁 + 1)βˆ’1

3(πœβˆ’ π‘Ž3)βˆ’1

6π‘‘πœ,

𝑀 = βˆ’πœ‡+ π‘˜ ∫

𝑧

βˆ’1

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(πœβˆ’ π‘Ž3)1

6

.

When 𝑀 = π‘–πœ‡βˆš3 we have 𝑧 = 0

∴ πœ‡(1+ π‘–βˆš3) = π‘˜βˆ«0

βˆ’1

𝜁12π‘‘πœ

(𝜁+1)13(πœβˆ’π‘Ž3)

16

. ……. (1)

When 𝑀 = 3πœ‡ we have 𝑧 = π‘Ž3(π‘Ž3 > 0)

∴ 4πœ‡ = π‘˜ ∫

π‘Ž3

βˆ’1

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(𝜁 βˆ’ π‘Ž3)1

6

= π‘˜ ∫

0

βˆ’1

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(𝜁 βˆ’ π‘Ž3)1

6

+ π‘˜βˆ«

π‘Ž3

0

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(𝜁 βˆ’ π‘Ž3)1

6

.

From (1) we have

4πœ‡ = πœ‡(1 + π‘–βˆš3) + π‘˜βˆ«π‘Ž30

𝜁12π‘‘πœ

(𝜁+1)13(πœβˆ’π‘Ž3)

16

, …………………. (2)

∴4πœ‡βˆš3

√3 + 𝑖= π‘˜βˆ«

π‘Ž3

0

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(𝜁 βˆ’ π‘Ž3)1

6

,

β‡’4πœ‡βˆš3

2π‘’π‘–πœ‹

6

= π‘˜βˆ«

π‘Ž3

0

πœ‰1

2π‘‘πœ‰

(πœ‰ + 1)1

3{π‘’π‘–πœ‹(π‘Ž3βˆ’ πœ‰)}1

6

,

β‡’ 2√3πœ‡ = π‘˜βˆ«π‘Ž3

0

π‘₯12𝑑π‘₯

(π‘₯+1)13(π‘Ž3βˆ’π‘₯)

16

. …………………. (3)

Also from (1) we have

πœ‡(1 + π‘–βˆš3) = π‘˜ ∫

0

βˆ’1

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(𝜁 βˆ’ π‘Ž3)1

6

,

On the path of integration we have 𝜁 = π‘‘π‘’π‘–πœ‹ β‡’ π‘‘πœ = βˆ’π‘‘π‘‘, 𝜁1

2 = 𝑖𝑑1

2

∴ πœ‡(1 + π‘–βˆš3) = π‘˜βˆ«

0

1

βˆ’π‘–π‘‘1

2𝑑𝑑

(1 βˆ’ 𝑑)1

3{π‘’π‘–πœ‹(𝑑 + π‘Ž3)}1

6

,

∴2𝑒𝑖

πœ‹

3π‘’π‘–πœ‹

6πœ‡

𝑖= π‘˜βˆ«

1

0

𝑑1

2𝑑𝑑

(1 βˆ’ 𝑑)1

3(𝑑 + π‘Ž3)1

6

,

β‡’ 2πœ‡ = π‘˜βˆ«1

0

βˆšπ‘‘π‘‘π‘‘

(1βˆ’π‘‘)13(𝑑+π‘Ž3)

16

. …………………. (4)

Equations (3) and (4) determine the constants π‘˜ and π‘Ž3. They also show

that π‘˜ is real.

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5980

Note also that, the transformation can be written as an integral from

𝜁 = 0 to 𝜁 = 𝑧, as follows:

Since 𝑀 = βˆ’πœ‡ + π‘˜ ∫0

βˆ’1

𝜁12π‘‘πœ

(𝜁+1)13(πœβˆ’π‘Ž3)

16

+ π‘˜βˆ«π‘§

0

𝜁12π‘‘πœ

(𝜁+1)13(πœβˆ’π‘Ž3)

16

,

Using (1) we obtain

𝑀 = βˆ’πœ‡ + πœ‡(1 + π‘–βˆš3) + π‘˜βˆ«

𝑧

0

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(𝜁 βˆ’ π‘Ž3)1

6

,

Or 𝑀 = π‘–πœ‡βˆš3 + π‘˜βˆ«π‘§

0

𝜁12π‘‘πœ

(𝜁+1)13(πœβˆ’π‘Ž3)

16

.

Note that, in most of the cases, the Schwarz-Christoffel transformation

is obtained in the form of an integral and cannot be obtained in closed

form except in very few cases. However, the mapping can be used to

find the behavior of 𝑀 when 𝑧 is very near to a certain it.

Put 𝑧 = π‘Ž3 + 𝑠, |𝑧 βˆ’ π‘Ž3| ≀ 1 β‡’ |𝑠| ≀ 1 in 𝑀 βˆ’ π‘–πœ‡βˆš3 = π‘˜βˆ«π‘§

0

𝜁12π‘‘πœ

(𝜁+1)13(πœβˆ’π‘Ž3)

16

,

∴ 𝑀 βˆ’ π‘–πœ‡βˆš3 = π‘˜ ∫

π‘Ž3+𝑠

0

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(𝜁 βˆ’ π‘Ž3 )1

6

= π‘˜ ∫

π‘Ž3

0

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(𝜁 βˆ’ π‘Ž3)1

6

+ π‘˜ ∫

π‘Ž3+𝑠

π‘Ž3

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(𝜁 βˆ’ π‘Ž3)1

6

,

𝑀 βˆ’ π‘–πœ‡βˆš3 = πœ‡(3βˆ’ π‘–βˆš3) + π‘˜ ∫

π‘Ž3+𝑠

π‘Ž3

𝜁1

2π‘‘πœ

(𝜁 + 1)1

3(𝜁 βˆ’ π‘Ž3)1

6

, from Eqn. (2).

Put 𝜁 = π‘Ž3+ 𝜏, hence

π‘€βˆ’ 3πœ‡ = π‘˜βˆ«

𝑠

0

(π‘Ž3+ 𝜏)1

2π‘‘πœ

(π‘Ž3+1 + 𝜏)1

3𝜏1

6

.

∴ π‘€βˆ’ 3πœ‡ ∼ π‘˜βˆšπ‘Ž3

√1+ π‘Ž33

6

5(𝑧 βˆ’ π‘Ž3)

5

6 π‘Žπ‘  𝑧 β†’ π‘Ž3 .

Example: To map the domain shown in the diagram onto the upper

half-plane:

Figure 5: The z-plane.

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5981

1. First, we apply the conformal map

𝑧 = 𝛼 (𝜁 +1

𝜁),

Where 𝛼 is a real constant to be determined. And as 𝑧 β†’βˆž we have 𝜁 β†’

∞.

To find 𝛾1βˆ— (the image of 𝛾1 in the 𝜁 βˆ’plane) we put

π‘Žcosπœƒ + 𝑖𝑏sinπœƒ = 𝛼 {π‘…π‘’π‘–πœ‘ +1

π‘…π‘’βˆ’π‘–πœ‘},

β‡’ πœƒ = πœ‘,π‘Ž = 𝛼 (𝑅 +1

𝑅) , 𝑏 = 𝛼 (𝑅 βˆ’

1

𝑅) , (

πœ‹

2< πœ‘ < πœ‹)

β‡’π‘Ž+ 𝑏

2= 𝛼𝑅,

π‘Ž βˆ’ 𝑏

2=𝛼

𝑅⇒ 𝛼2 =

π‘Ž2 βˆ’ 𝑏2

4

β‡’ 𝛼 =1

2βˆšπ‘Ž2 βˆ’ 𝑏2 , 𝑅 =

π‘Ž + 𝑏

βˆšπ‘Ž2 βˆ’ 𝑏2= √

π‘Ž + 𝑏

π‘Ž βˆ’ 𝑏= 𝜌 > 1.

∴ 𝛾1βˆ— Is the circular arc

𝜁 = πœŒπ‘’π‘–πœ‘, (πœ‹

2< πœ‘ < πœ‹).

To find 𝛾2βˆ— we put 𝑧 = 𝑖𝑦 (𝑦 = 𝑏 β†’ 𝑦 = 0)

β‡’ 𝑖𝑦 = 𝛼 (𝑅 +1

𝑅) cosπœ‘ + 𝑖𝛼 (𝑅 βˆ’

1

𝑅) sinπœ‘

β‡’ 𝛼(𝑅 +1

𝑅) cosπœ‘ = 0 β‡’ πœ‘ =

πœ‹

2,

and 𝑦

𝛼𝑅 = 𝑅2 βˆ’ 1 β‡’ (𝑅 βˆ’

𝑦

2𝛼)2

= 1+𝑦2

4𝛼2 .

∴ 𝑅 =𝑦

2𝛼± √1+

𝑦2

4𝛼2.

Because 𝑅 > 0 we take 𝑅 =𝑦

2𝛼+√1+

𝑦2

4𝛼2.

If 𝑦 = 𝑏, then 𝑅 =𝑏

2𝛼+

π‘Ž

2𝛼= 𝜌. If 𝑦 = 0 β‡’ 𝑅 = 1.

∴ 𝛾2βˆ— Is given by

𝜁 = π‘–πœ‚, (πœ‚ = 𝜌 β†’ πœ‚ = 1).

To find 𝛾3βˆ—: put 𝑧 = π‘₯ > 0

β‡’π‘₯

𝛼= 𝜁 +

1

πœβ‡’ (𝜁 βˆ’

π‘₯

2𝛼)2

=π‘₯2

4𝛼2βˆ’ 1

β‡’ 𝜁 =π‘₯

2π›ΌΒ±βˆš

π‘₯2

4𝛼2βˆ’1.

Because 𝜁 β†’ ∞ as 𝑧 β†’ ∞ we must have 𝜁 =π‘₯

2𝛼+ √

π‘₯2

4𝛼2βˆ’ 1.

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5982

If 0 < π‘₯ < 2𝛼, then

𝜁 =π‘₯

2𝛼+ π‘–βˆš1 βˆ’

π‘₯2

4𝛼2β‡’ πœ‰2 + πœ‚2 = 1 = |𝜁|2 π‘Žπ‘›π‘‘ 𝜁 = π‘’π‘–πœ‘, (0 < πœ‘ <

πœ‹

2).

If π‘₯ β‰₯ 2𝛼, then

πœ‚ = 0, πœ‰ =π‘₯

2𝛼+√

π‘₯2

4𝛼2βˆ’ 1 & 𝜁 = πœ‰, (1 ≀ πœ‰ < +∞).

To find 𝛾4βˆ— we put 𝑧 = π‘₯, π‘₯ ≀ βˆ’π‘Ž or 𝑧 = βˆ’π‘‘, 𝑑 β‰₯ π‘Ž

βˆ’π‘‘ = 𝛼(𝜁 +1

𝜁) β‡’ βˆ’

𝑑

π›Όπœ = 𝜁2 +1.

∴ (𝜁 +𝑑

2𝛼)2

=𝑑2

4𝛼2βˆ’ 1β‡’ 𝜁 =

βˆ’π‘‘

2π›ΌΒ±βˆš

𝑑2

4𝛼2βˆ’ 1,

𝜁 β†’ ∞ when 𝑧 β†’ ∞ β‡’ 𝜁 =βˆ’π‘‘

2π›Όβˆ’βˆš

𝑑2

4𝛼2βˆ’1.

Note that 𝑑2 βˆ’ 4𝛼2 > π‘Ž2 βˆ’ (π‘Ž2 βˆ’ 𝑏2) = 𝑏2

∴ 0 > πœ‰ =βˆ’π‘‘

2π›Όβˆ’βˆš

𝑑2

4𝛼2βˆ’1, πœ‚ = 0,βˆ’πœŒ ≀ πœ‰ < βˆ’βˆž

β‡’ 𝜁 = π‘…π‘’π‘–πœ‹ , (𝜌 ≀ 𝑅 < ∞).

Figure 6: The ΞΆ-plane.

2. Now, we apply the map 𝑀 = 𝑒+ 𝑖𝑣 = log𝜁:

𝛾1βˆ—βˆ— Is found by

𝑀 = 𝑒 + 𝑖𝑣 = log(πœŒπ‘’π‘–πœ‘) β‡’ 𝑒 = log𝜌,𝑣 = πœ‘ (πœ‹

2< πœ‘ < πœ‹) .

𝛾2βˆ—βˆ— Is obtained by putting 𝑀 = log(𝑅𝑒𝑖

πœ‹

2) β‡’ 𝑒 = log𝑅 (𝑅 = 𝜌 β†’ 𝑅 =

1), 𝑣 =πœ‹

2 and for 𝛾3

βˆ—βˆ— we put 𝑀 = log(π‘’π‘–πœ‘) = π‘–πœ‘ (0 < πœ‘ <πœ‹

2) and 𝑀 =

log𝑅 (1 ≀ 𝑅 < ∞). For 𝛾4βˆ—βˆ— put 𝑀 = log(π‘…π‘’π‘–πœ‹) (𝜌 ≀ 𝑅 < ∞).

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5983

Note that the map from 𝐷 to π·βˆ—βˆ— is given by

𝑧 = 𝛼(𝑒𝑀 + π‘’βˆ’π‘€) = 2𝛼cosh𝑀 β‡’ 𝑧 = βˆšπ‘Ž2βˆ’ 𝑏2 cosh𝑀.

Figure 7: The w-plane.

To map π·βˆ—βˆ— onto the upper half-plane we need the Schwarz-Christoffel

transformation. This can be done by considering the limiting case as

𝑃 β†’ ∞.

Figure 8: The w-plane.

Example: [The Electric Field Distribution in a Semi-Infinite Domain]

[4,7]

𝛻2πœ‘= 0 𝑖𝑛 𝐷 = {(π‘₯, 𝑦): 𝑦 > 0,βˆ’βˆž< π‘₯ < ∞} πœ‘ = 0 π‘œπ‘› 𝑦 = 0,βˆ’βˆž < π‘₯ < βˆ’1

πœ‘ = 1 π‘œπ‘› 𝑦 = 0, 1 < π‘₯ < ∞

The part βˆ’1 < π‘₯ < 1, 𝑦 = 0 is insulated (𝑖. 𝑒.,πœ•πœ‘

πœ•π‘¦= 0).

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5984

Figure 9: The z-plane.

This is a mixed boundary value problem, and there are two different

boundary conditions on the same boundary line. It is difficult to find

the electric potential distribution directly. In order to solve this

boundary value problem easily, we consider the mapping

𝑀 = sinβˆ’1(𝑧). …………….. (1)

The transformation function is

𝑀 = sinβˆ’1(𝑧) =πœ‹

2+ 𝑖log {𝑧 +βˆšπ‘§2βˆ’ 1 }.

On 𝛾1: let 𝑧 = 1 + 𝑑, (0 < 𝑑 < ∞) β‡’ 𝑧 βˆ’ 1 = 𝑑 π‘Žπ‘›π‘‘ 𝑧+ 1 = 2 + 𝑑.

∴ 𝛾1βˆ— Is given by

𝑀 =πœ‹

2+ 𝑖log{1 + 𝑑 +βˆšπ‘‘(2 + 𝑑)}.

∴ On 𝛾1βˆ—:

𝑒 =πœ‹

2 π‘Žπ‘›π‘‘ 𝑣 = log{1 + 𝑑 +βˆšπ‘‘(2+ 𝑑)} , (0 < 𝑑 < ∞)

β‡’ 𝑒 =πœ‹

2, (0 < 𝑣 < ∞).

On 𝛾2: let 𝑧 = (1 + 𝑑)π‘’π‘–πœ‹ , (0 < 𝑑 < ∞) β‡’ 𝑧 + 1 = π‘‘π‘’π‘–πœ‹ π‘Žπ‘›π‘‘ π‘§βˆ’ 1 = (2 +

𝑑)π‘’π‘–πœ‹ .

∴ 𝛾2βˆ— is given by

𝑀 =πœ‹

2+ 𝑖log [βˆ’(1+ 𝑑)βˆ’βˆšπ‘‘(2+ 𝑑)]

=πœ‹

2+ 𝑖log[π‘’π‘–πœ‹{(1+ 𝑑) +βˆšπ‘‘(2+ 𝑑)}]

=πœ‹

2+ 𝑖log{π‘’π‘–πœ‹}+ 𝑖log{1 + 𝑑 +βˆšπ‘‘(2+ 𝑑)}

= (πœ‹

2βˆ’ πœ‹) + 𝑖log {1 + 𝑑 + βˆšπ‘‘(2+ 𝑑)}

= (βˆ’πœ‹

2) + 𝑖log {1 + 𝑑 +βˆšπ‘‘(2 + 𝑑)}.

∴ On 𝛾2βˆ—:

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5985

𝑒 = βˆ’πœ‹

2 π‘Žπ‘›π‘‘ 𝑣 = log {1 + 𝑑 + βˆšπ‘‘(2+ 𝑑)} , (0 < 𝑑 < ∞)

β‡’ 𝑒 = βˆ’πœ‹

2 π‘Žπ‘›π‘‘ (0 < 𝑣 < ∞).

On 𝛾3: let 𝑧 = π‘‘π‘’π‘–πœ‹ , (0 ≀ 𝑑 < 1) β‡’ 𝑧 + 1 = 1 βˆ’ 𝑑, 𝑧 βˆ’ 1 = (1 + 𝑑)π‘’π‘–πœ‹ .

∴ 𝛾3βˆ— is given by

𝑀 =πœ‹

2+ 𝑖log{βˆ’π‘‘ + π‘–βˆš(1βˆ’ 𝑑2)} =

πœ‹

2+ 𝑖log{

βˆ’1

𝑑+π‘–βˆš1βˆ’π‘‘2}

=πœ‹

2+ 𝑖log(π‘’π‘–πœ‹)βˆ’ 𝑖log{𝑑 + π‘–βˆš1 βˆ’ 𝑑2}

= βˆ’πœ‹

2+ tanβˆ’1 {

√1βˆ’π‘‘2

𝑑} , (0 ≀ 𝑑 < 1).

∴ On 𝛾3βˆ—:

(βˆ’πœ‹

2< 𝑒 ≀ 0) π‘Žπ‘›π‘‘ 𝑣 = 0.

On 𝛾4: let 𝑧 = 𝑑, (0 ≀ 𝑑 < 1) β‡’ 𝑧 βˆ’ 1 = (1 βˆ’ 𝑑)π‘’π‘–πœ‹ π‘Žπ‘›π‘‘ 𝑧 + 1 = 1 + 𝑑.

∴ 𝛾4βˆ— is given by

𝑀 =πœ‹

2+ 𝑖log (𝑑 + π‘–βˆš1βˆ’ 𝑑2) =

πœ‹

2βˆ’ tanβˆ’1 {

√1 βˆ’ 𝑑2

𝑑}, (0 ≀ 𝑑 < 1).

∴ On 𝛾4βˆ—: 𝑣 = 0 π‘Žπ‘›π‘‘ (0 ≀ 𝑒 <

πœ‹

2).

Thus, the upper half-plane of 𝑧-plane is mapped onto a semi-infinite

strip of 𝑀-plan. The boundary condition at the bottom of the semi-

infinite strip is the Neumann boundary condition (𝑖. 𝑒.,πœ•πœ‘βˆ—

πœ•π‘£= 0), as

shown

{

βˆ‡

2πœ‘βˆ— = 0 𝑖𝑛 π·βˆ— = {(𝑒, 𝑣): 𝑣 > 0,βˆ’πœ‹

2< 𝑒 <

πœ‹

2}

πœ‘βˆ— = 0 π‘“π‘œπ‘Ÿ 0 < 𝑣 < ∞,𝑒 = βˆ’πœ‹

2

πœ‘βˆ— = 1 π‘“π‘œπ‘Ÿ 0 < 𝑣 < ∞,𝑒 =πœ‹

2

.

The part βˆ’πœ‹

2< 𝑒 <

πœ‹

2, 𝑣 = 0 is insulated (𝑖. 𝑒. ,

πœ•πœ‘βˆ—

πœ•π‘£= 0).

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5986

Figure10: The w-plane.

The electric field inside this domain is uniform, therefore, we should

seek a solution that takes on constant values along the vertical lines

𝑒 = 𝑒0 and that πœ‘βˆ—(𝑒,𝑣) should be a function of 𝑒 alone. That is,

πœ‘βˆ—(𝑒, 𝑣) = 𝐴𝑒+𝐡,

for some real constant 𝐴 and 𝐡.

The boundary conditions above lead to

𝐡 =1

2,𝐴 =

1

πœ‹.

∴ πœ‘βˆ—(𝑒, 𝑣) =1

πœ‹π‘’ +

1

2= 𝑅𝑒 {

1

2+1

πœ‹π‘€}.

To find the solution of the original problem, we must substitute for 𝑒 in

terms of π‘₯ and 𝑦 as follows: π‘₯2

sin2π‘’βˆ’

𝑦2

cos2𝑒= 1 ……… (2)

Now, (2) is a hyperbola as shown

Figure11: The z-plane.

𝐴𝐡 = 2sin𝑒. It is obvious that

π‘Ÿ1 + π‘Ÿ2 > 2sin𝑒. …….. (3)

Put sin2𝑒 = 𝑑 β‡’π‘₯2

π‘‘βˆ’

𝑦2

1βˆ’π‘‘= 1 β‡’ π‘₯2(1βˆ’ 𝑑) βˆ’ 𝑦2𝑑 = 𝑑 βˆ’ 𝑑2 .

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5987

Therefore

{𝑑 βˆ’(π‘₯2 +𝑦2+1)

2}

2

=(π‘₯2 + 𝑦2+ 1)2 βˆ’4π‘₯2

4

∴ 4𝑑 = 2π‘₯2 + 2𝑦2+ 2 ±√{π‘₯2+𝑦2 + 1 βˆ’ 2π‘₯}{π‘₯2+ 𝑦2 + 1 + 2π‘₯}

= π‘Ÿ12 + π‘Ÿ2

2 Β±2π‘Ÿ1π‘Ÿ2 = (π‘Ÿ1 Β± π‘Ÿ2)2

β‡’ 4sin2𝑒 = (π‘Ÿ1 Β± π‘Ÿ2)2 .

∴ 2sin𝑒 = π‘Ÿ1 Β± π‘Ÿ2 .

In view of inequality (3), we reject the plus sign

∴ sin𝑒 =π‘Ÿ1βˆ’π‘Ÿ2

2. ……… (4)

∴ 𝑒 = sinβˆ’1(π‘Ÿ2 βˆ’ π‘Ÿ12

),

or 𝑒 = sinβˆ’1 {√(π‘₯+1)2+𝑦2βˆ’βˆš(π‘₯βˆ’1)2+𝑦2

2}.

∴ The solution is

πœ‘ =1

2+ (

1

πœ‹) sinβˆ’1 {

√(π‘₯+ 1)2 +𝑦2 βˆ’βˆš(π‘₯βˆ’ 1)2 +𝑦2

2}.

Example: Use the appropriate transformation to solve the potential

problem shown below:

{𝛻2πœ‘ = 0 𝑖𝑛 𝐷 = {𝑧: |𝑧| < 1}

πœ‘ = 0 π‘œπ‘› 𝛾1 = {𝑧: |𝑧| = 1,0 < π‘Žπ‘Ÿπ‘”π‘§ < πœ‹}

πœ‘ = πœ‘0 π‘œπ‘› 𝛾2 = {𝑧: |𝑧| = 1, πœ‹ < π‘Žπ‘Ÿπ‘”π‘§ < 2πœ‹}.

Figure12: The unit circle |z|=1 in the z-plane

Note that πœ‘(π‘₯, 𝑦) may be a temperature distribution in 𝐷 or an

electrostatic potential due to some distribution of electric charges or a

velocity potential where 𝐷 is a fluid region which is incompressible.

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5988

To solve the problem we employ the conformal transformation

𝑧 =π‘€βˆ’ 𝑖

𝑀+ 𝑖.

This mapping maps the upper half of the 𝑀-plane onto the unit disc

(i.e., π·βˆ— →𝐷), on the other hand

𝑧𝑀 + 𝑖𝑧 = 𝑀 βˆ’ 𝑖 β‡’ 𝑀(1βˆ’ 𝑧) = 𝑖(1 + 𝑧),

∴ 𝑀 = 𝑒+ 𝑖𝑣 =𝑖(1 + 𝑧)

1 βˆ’ 𝑧.

On 𝛾1: 𝑧 = π‘’π‘–πœƒ , 0 < πœƒ < πœ‹,

β‡’ 𝑀 = 𝑒 + 𝑖𝑣 =𝑖(1+ π‘’π‘–πœƒ)

1 βˆ’ π‘’π‘–πœƒ=𝑖(𝑒

π‘–πœƒ

2 + π‘’βˆ’π‘–πœƒ

2 )

π‘’βˆ’π‘–πœƒ

2 βˆ’ π‘’π‘–πœƒ

2

=2𝑖cos

1

2πœƒ

βˆ’2𝑖sin1

2πœƒ=βˆ’cos

1

2πœƒ

sin1

2πœƒ.

∴ On 𝛾1βˆ—: 𝑣 = 0, (βˆ’βˆž< 𝑒 < 0).

On 𝛾2: 𝑧 = π‘’π‘–πœƒ , πœ‹ < πœƒ < 2πœ‹

β‡’ 𝑀 =βˆ’cos

1

2πœƒ

sin1

2πœƒ,

πœ‹

2<πœƒ

2< πœ‹.

∴ on 𝛾2βˆ—: 𝑣 = 0, 0 < 𝑒 < ∞.

By inspection, we see that

πœ‘βˆ— = πœ‘0 {1βˆ’1

πœ‹arg𝑀},

Or πœ‘βˆ— = πœ‘0{1 βˆ’1

πœ‹tanβˆ’1

𝑣

𝑒}.

Figure13: The image of the circle in Fig. (11) in the π’˜ βˆ’π’‘π’π’‚π’π’†.

∴ πœ‘ = πœ‘0 {1βˆ’1

πœ‹tanβˆ’1

𝑣(π‘₯, 𝑦)

𝑒(π‘₯, 𝑦)}.

Now 𝑀 =𝑖(1+π‘₯+𝑖𝑦)

1βˆ’π‘₯βˆ’π‘–π‘¦=

𝑖(1+π‘₯+𝑖𝑦)(1βˆ’π‘₯+𝑖𝑦)

(1βˆ’π‘₯)2+𝑦2=

βˆ’2𝑦+𝑖(1βˆ’π‘₯2βˆ’π‘¦2)

(1βˆ’π‘₯)2+𝑦2

∴ πœ‘(π‘₯, 𝑦) = πœ‘0 {1 βˆ’1

πœ‹tanβˆ’1

(1 βˆ’ π‘₯2 βˆ’ 𝑦2)

βˆ’2𝑦}.

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5989

III. CONCLUSIONS AND RECOMMENDATIONS

This part presents some conclusions derived from the conduct of the

study of conformal mappings. It also provides some recommendations

that can be followed when expanding the study.

CONCLUSION

From our modest study, we conclude the following:

Conformal maps are transformations that preserve angles

between curves (angles between tangents) including their

orientation.

Conformal maps are analytic functions whose derivatives do

not vanish in the domains of definition (i.e., locally univalent).

If 𝑓 is a conformal map from 𝐷 onto π·βˆ—, then π‘“βˆ’1 (the inverse

map) is also a conformal map from π·βˆ— onto 𝐷.

The Schwarz-Christoffel transformation maps the interior of a

polygon, say in the 𝑀-plane, onto the upper half of the 𝑧-plane.

The harmonicity of a function is preserved under conformal

maps.

Conformal maps take complicated boundaries into simpler ones

sometimes.

We can determine a harmonic potential by using a conformal

mapping that maps 𝐷 onto π·βˆ— where the solution of the problem

is easier to find.

RECOMMENDATIONS

This study dealt with the technique of conformal mapping without

using computer programs and numerical techniques. Thus, the

following recommendations are hereby presented:

Since the study dealt with this technique without using

computer programs, a study should be attempted using these

programs.

It is recommended that, numerical techniques should be used

in the study of conformal maps.

Wiam Ali Ayad, Omar Ismael Elhasadi, Zaynab Ahmed Khalleefah, Abdussalam Ali

Ahmed- Conformal Mapping as a Tool in Solving Some Mathematical and

Physical Problems

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 10 / January 2021

5990

REFERENCES

[1] Calixto, W. P., Alvarenga, B., da Mota, J. C., Brito, L. da C., Wu, M., Alves, A.

J., … Antunes, C. F. R. L. (2010). Electromagnetic Problems Solving by

Conformal Mapping: A Mathematical Operator for Optimization. Mathematical

Problems in Engineering, 2010, 1–19. doi:10.1155/2010/742039

[2] Onyelowe, Ken C. and Agunwamba, J.C., Conformal mapping and Swartz-

Christophel and transformation of the critical normal stress distribution of

footing on slope, International journal of civil Engineering and Technology,

Volume 3, Issue 1, January- June (2012), pp. 128-135.

[3] Mohammed Mukhtar Mohammed Zabih, R.M. Lahurikar, Applications of

Conformal Mapping to Complex Velocity Potential of the Flow of an Ideal Fluid,

International Journal of Mathematics Trends and Technology (IJMTT) –

Volume 52 Number 3 December 2017.

[4] Fuqian Wang, Solution of the Third Kind Boundary Value Problem of Laplace’s

Equation Based on Conformal Mapping, Journal of Applied Mathematics and

Physics, 2019, 7, 536-546.

[5] B. NYANDWI, "Applications of conformal mappings to the fluid flow", Ph.D.

dissertation, University of Rwanda. 2018.

[6] D. Zill and P. Shanahan, A first course in complex analysis with applications,

Jones & Bartlett Learning, 2003.

[7] J. H. Mathews, Basic complex variables for mathematics and engineering, Allyn

& Bacon, 1982.

[8] S. Ganguli, "Conformal Mapping and its Applications," Department of Physics,

University of Tennessee, Knoxville, TN37996, pp. 1-4, 2008.

[9] S. Madhwendra, "Application of Conformal Mapping: Electrostatic Potential",

Galgotias University, 2020.

[10] https://mathworld.wolfram.com/ConformalMapping.html

Recommended