Computational Modeling of the Cardiovascular Systemevicab.aalto.fi/abem/07sachse/slide/04.pdf ·...

Preview:

Citation preview

Computational Modeling of theCardiovascular System

Modeling of Electrical Conductionin Cardiac Tissue

CVRTI Frank B. Sachse, University of Utah

Computational Modeling of the Cardiovascular System - Page 2CVRTI

Overview

• Experimental Studies

• Reaction Diffusion Systems• Cable Model• Monodomain Model• Bidomain Model

• Cellular AutomataGroup work & pause

Group work

Computational Modeling of the Cardiovascular System - Page 3CVRTI

Experimental Studies of Cardiac Electrical Conduction

Measurement methods• Electrode arrays: Extracellular voltages (similar ECG measurements on body surface) Sampling rate up to several kHz Channels up to 2000• Optical: Transmembrane voltages CCD-camera Photodiode array

Preparations• Cell strands - Purkinje fibers• Small muscles - papillary muscle, trabeculae• Sections - wedge preparations from ventricles• Atria/ventricle • Whole heart

in vivo/in vitro

Color-coded visualization ofextracellular voltages measuredon surface of canine ventricles

Computational Modeling of the Cardiovascular System - Page 4CVRTI

Experimental Studies in Papillary Muscle

Rabbit papillary muscle TendonEG measurement

Stimulus positionFix

Oxygenated HEPES solution, 37 °C

Species: Adult New Zealand White rabbits (1.5-3.0 kg)1. Anti-coagulated with heparin and anesthetized with pentobarbital2. Hearts are rapidly excised and moved to dissection tray3. Retrograde perfusion via aorta with modified Tyrode solution4. Opening of right ventricle5. Selection and excision of papillary muscle including onset of chordae tendinae

Criteria: Small diameter, large length, unramified 6. Transfer to horizontal flow-through chamber7. Fixation of muscle8. Measurement

Computational Modeling of the Cardiovascular System - Page 5CVRTI

Measurement Results: Electrograms

Stimulus artifact

Distance tostimulus site

Computational Modeling of the Cardiovascular System - Page 6CVRTI

Electrical Mapping of Canine Ventricles

http://www.cvrti.utah.edu/research

Computational Modeling of the Cardiovascular System - Page 7CVRTI

Optical Mapping of Canine Ventricular Area

http://www.cvrti.utah.edu/research

Computational Modeling of the Cardiovascular System - Page 8CVRTI

In-/Outflow of Currents during Excitation

10 ms 20 ms 30 ms

40 ms 50 ms 60 ms

Computational Modeling of the Cardiovascular System - Page 9CVRTI

In-/Outflow of Currents during Repolarization

110 ms 130 ms 150 ms

170 ms 190 ms 210 ms

Computational Modeling of the Cardiovascular System - Page 10CVRTI

Dipole Approximation and Surface ECG

RA (-)

LF(+)

II

P

Q

R

S

T

RA (-)

LF(+)

II

P

Q

R

S

RA (-)

LF(+)

P

RA (-)

LF(+)

P

RA (-)

LF(+)

P

R

QQ

IIII II

Computational Modeling of the Cardiovascular System - Page 11CVRTI

Isotropic/Anisotropic Excitation Propagation (2D)

x

y

Simplifications• Homogeneous tissue• Long axis of myocytes parallel to y-axis• Stimulus at point (0,0)

t=2 3 4

Anisotropic x/y - 1/3Velocity vx: 1 / s, vy: 3 / s

x

yt=2

34

Isotropic x/y - 1/1Velocity v: 1 / s

Computational Modeling of the Cardiovascular System - Page 12CVRTI

Models of Electrical Conduction

• Macroscopic • Rule based / cellular automata (Moe 62, Eifler-Plonsey 75, Killmann-Wach 91, Wei-Okazaki 95, Werner-Sachse-Dössel 97, Siregar 98, Simelius 00 etc.)

• Reaction diffusion systems• Simplified (FitzHugh-Nagumo 61, Rogers-McCulloch 94 etc.)• Combined with models of cellular electrophysiology

• monodomain

(Rudy 89, Virag-Vesin-Kappenberger 98 etc.)• bidomain (Henriquez-Plonsey 89, Sepulveda-Wiksow 93, Sachse-Seemann-Riedel-Werner-Dössel 00 etc.)

• Microscopic (Spach 81)

Computational Modeling of the Cardiovascular System - Page 13CVRTI

Reaction Diffusion System: Cable Model

Reduction to 1DDiscretization

1D Bidomain

Computational Modeling of the Cardiovascular System - Page 14CVRTI

Cable Model: Steady State Response to Non-Excitatory Current

Length constant λ describes spatial distance between two points:1. Location of electrode for injection of

current leading to ΔVm.2. Location at which the voltage ΔVm/e

is interpolated from measurements.

Length constant λ is determined by intra-,extracellular and membrane resistances,ri, ro, and rm:

Computational Modeling of the Cardiovascular System - Page 15CVRTI

Monodomain Modeling of Electrical Conduction in 2D

Resistor of gap junctions(average conductance betweencell pairs 250-1000 nS)

Myocyteintracellular space surroundedby sarcolemma

Membrane Voltage Source

Ground

!m

!i

Computational Modeling of the Cardiovascular System - Page 16CVRTI

Monodomain Model for Electrical Conduction in 2/3D

Transmembrane voltage

Intracellular conductivity tensor(includes conductivity of gapjunctions)

!i

!m

Transmembrane currentIm

Is i

External intracellular current

! Surface-volume ratio of cell

!

"(# i"$i ) = %Im & Isi

"(#e"$

e) = &%I

m& I

se

m

!

"mx,t( ) is unknown

Ii=# $

i#"

m( ) + Isi

%"m

% t=

1

Cm

Ii

&' I

ion

(

) *

+

, -

!

!

Iion

Current through ion channels

Coupling with cell modelNumerical Procedure

Computational Modeling of the Cardiovascular System - Page 17CVRTI

2D-Simulation

Array of myocytes

Area: 6.42 mm2 Elements• number: 642

• size: 0.12 mm2 with fiber orientation

Electrophysiology

Noble et al. 98Monodomain model

Stimulus

1. left, middle

Computational Modeling of the Cardiovascular System - Page 18CVRTI

2D-Simulation of Arrhythmia

Computational Modeling of the Cardiovascular System - Page 19CVRTI

Current Flow in 3D-Model of Electrical Conduction

AnisotropicMonodomain Model

64 x 64 x 128 elementswith electrophysiology of

ventricular myocytes(Noble-Varghese-Kohl-Noble)

Stimulus at center ofplane (Z=0) at time t=0 ms

Fiber orientation parallel to Z-axis

Duration of simulation: 500ms

Colour-coded voltages and streamlines at time t=10 msin plane (Z=0). Colour indicates transmembrane voltage.

Computational Modeling of the Cardiovascular System - Page 20CVRTI

Bidomain Modeling of Electrical Conduction in 2D

Resistor of gap junctions(average conductance betweencell pairs 250-1000 nS)

Myocyteintracellular space surroundedby sarcolemma

Membrane Voltage Source

Resistor of extracellular space

Extracellular potential

Transmembrane Voltage!m

!e

Intracellular potential!i

!m

!i

!e

Computational Modeling of the Cardiovascular System - Page 21CVRTI

Bidomain Model: Motivation

Intra- and extracellular voltage distribution relevant for:• cardiac excitation propagation• body surface potential maps (BSPM)• electrocardiogram (ECG)

Problem: Realistic cell-based modeling of tissue• complex geometry of cells• large number of cells

Idea „Bidomain Model“• division of space in two domains• separated calculation

Computational Modeling of the Cardiovascular System - Page 22CVRTI

Bidomain Model: Basics

Continuum 1: Extracellular space (Interstitial space)

Continuum 2: Intracellular space

Tissue

Computational Modeling of the Cardiovascular System - Page 23CVRTI

Group Work

Find and describe other applications for (non-electrical) multidomain models in • physics• biology• …

What might be the domains of a tridomain model of cardiac electrophysiology?

Computational Modeling of the Cardiovascular System - Page 24CVRTI

Bidomain Model: Basics

!i

!e

Ji

Je

!

"m ="i #"e

"m : Transmembrane voltage V[ ]

"i / e : Intra - /extracellular potential V[ ]

J = Ji + Je

J : Summary current density A/m2[ ]Ji / e : Intra - /extracellular current density A/m2[ ]

Computational Modeling of the Cardiovascular System - Page 25CVRTI

Bidomain Model: Intracellular Space

!Im

Is i

!

"# $ i J i( ) =# $ i#%i( ) =&'m " Isi

$ i : Intracellular conductivity S

m

(

) * +

, -

Ji : Intracellular current density A

m2

(

) * +

, -

%i : Intracellular potential V[ ]

Isi : Intracellular current source density A

m3

(

) * +

, -

Im : Membrane source density A

m2

(

) * +

, -

& : Ratio of membrane surface to volume m-1[ ]

!

"i#i

Computational Modeling of the Cardiovascular System - Page 26CVRTI

Bidomain Model: Extracellular Space

!Im

Ise

!

"# $e Je( ) =# $e#%e( ) = "&'m " Ise

$e : Intracellular conductivity S

m

(

) * +

, -

Je : Intracellular current density A

m2

(

) * +

, -

%e : Intracellular potential V[ ]

Ise : Intracellular current source density A

m3

(

) * +

, -

Im : Membrane source density A

m2

(

) * +

, -

& : Ratio of membrane surface to volume m-1[ ]

!

"e

#e

Computational Modeling of the Cardiovascular System - Page 27CVRTI

Bidomain Model: Relationships

Generalized Poisson‘s Equation

!

J = Ji+ J

e= "#

i$%

i"#

e$%

e

with %m

= %i" %

e:

J = "#i$%

m"#

i$%

e"#

e$%

e

with #H

= #i+ #

e:

J = "#i$%

m"#

H$%

e

with $J = 0 :

#i$%

m= "#

H$%

e

Computational Modeling of the Cardiovascular System - Page 28CVRTI

Bidomain Model: Numerical Solution

Elliptical partial

differential equations

(Poisson‘s equation)

Ordinary differentialequation(Cell model)

Problem: Spatio-temporal discretization!

unkn

own

unkn

own

!

" #i"$

m( ) = %" #H"$

e( )

Istim

=" #i"$

m( ) +" #i"$

e( )

&$m

& t=1

Cm

Istim

'% I

ion

(

) *

+

, -

!

"mx,t( ) and "

ex,t( ) are unknown

Computational Modeling of the Cardiovascular System - Page 29CVRTI

Simulation of Electrophysiology in Myocardial Area

Myocyte clusterin left ventricular

free wall

128 x 128 x 128 elementswith electrophysiology of

ventricular myocytes(Noble-Varghese-Kohl-Noble)

Inclusion of wall depth dependent

• myocyte orientation• current Ito

Element couplingvia bidomain model

Computational Modeling of the Cardiovascular System - Page 30CVRTI

Transmembrane Voltage in Static Myocardial Area

Computational Modeling of the Cardiovascular System - Page 31CVRTI

Calcium Concentration in Static Myocardial Area

Computational Modeling of the Cardiovascular System - Page 32CVRTI

Rotor in Static Myocardial Area

Computational Modeling of the Cardiovascular System - Page 33CVRTI

• Wiener, Rosenblueth 2D sheets • Moe, Rheinboldt, Abildskov Atria (2D sheet) -

• Eiffler, Plonsey Ventricular myocardium (2D sheet)• Adam Human ventricles (ellipsoids)

• Killmann, Wach, Dienstl Human heart (from drawings)• Saxberg, Cohen Myocardium• Wei, Okoazaki, Harumi, Harasawa, Human ventricles (Anisotropic) Hosaka• Siregar, Sinteff, Chadine, Le Beux Human heart (2D)• Werner, Sachse, Dössel Human heart (Anisotropic)• Siregar, Sinteff, Julen, Le Beux Human heart (CAD)…

1946

today

Cellular Automatons of Cardiac Excitation Propagation

Computational Modeling of the Cardiovascular System - Page 34CVRTI

Cellular Automaton: Basics

CellularAutomaton

AnatomicalModel

PhysiologicalParameters

• Autorhythmicity• Transmembrane voltage• Conduction velocity• Refractory period

Computational Modeling of the Cardiovascular System - Page 35CVRTI

Cellular Automaton: Modeling of Propagation

Initial excitation

Excitation

Passive element

Active element

1 2

3 4

5 6

Computational Modeling of the Cardiovascular System - Page 36CVRTI

Anatomical Model of Heart: Requirements

• left atrial myocardium

• right atrial myocardium

• left ventricular myocardium

• right ventricular myocardium

• Sinus node

• AV node

• His bundle

• Tawara bundle branches

• Purkinje fibers

• Fiber orientation

Image segmentation Manual/rule-based definition

Necessary: Anatomical model of all excitation triggering and conductive components

Example: Components in model of Werner et al.:

Computational Modeling of the Cardiovascular System - Page 37CVRTI

Parameters for Simulation: Lookup Tables

• Stimulus

• Time since activation tS• Stimulus frequency f

• Tissue type

•Transmembrane voltage (tS)

• Refractory period (tS)

• Autorhythmicity (tS)

• Conduction velocity (f)

• Excitable neighborhood

(constant)

Known per volume element dV

and for time t

dV

Computational Modeling of the Cardiovascular System - Page 38CVRTI

Cellular Automaton: Parameter - Transmembrane Voltage

t [ms]Vm [mV]

0

-50

t [ms]Vm [mV]

0

-50

t [ms]Vm [mV]

0

-80

Sinus node AV node Atrial myocardium

Course of transmembrane voltage is dependent on tissue type andstimulus frequency.Activation is only possible outside of absolute refractory time.

Most cellular electrophysiological properties, e.g. ion and transmitter concentrations, nervous influences, extracellular potentials etc. areneglected!

Computational Modeling of the Cardiovascular System - Page 39CVRTI

Cellular Automaton: Parameterization

Ventricle: Noble-Varghese-Kohl-Noble 98 Atrium: Earm-Hilgemann-Noble 90

Course of transmembrane voltageLongitudinal/transversal propagation velocity

Measurements Numerical experiments} {

Computational Modeling of the Cardiovascular System - Page 40CVRTI

Unidirectional Block/Rotation Around Obstacles (2D)

Computational Modeling of the Cardiovascular System - Page 41CVRTI

Unidirectional Block/Rotation Around Obstacles (2D)

Computational Modeling of the Cardiovascular System - Page 42CVRTI

Unidirectional Block in Homogeneous Slice (2D)

Computational Modeling of the Cardiovascular System - Page 43CVRTI

Results of Whole Heart Simulations

Transmembrane voltage color-coded at heart surface for physiological excitationpropagation

8 time steps• atrial activation starting at sinus node• ...• atrial repolarisation• ventricular activation starting at subendocardium• ...• ventricular repolarisation

Computational Modeling of the Cardiovascular System - Page 44CVRTI

Simulation of 3rd Degree AV Block

Computational Modeling of the Cardiovascular System - Page 45CVRTI

Simulation of Infarction

Computational Modeling of the Cardiovascular System - Page 46CVRTI

Cellular Automaton: Application in ECG/BSPM Simulation

T / msUm / mV

0

-80

AnatomieElectrophysiology

NumericalField Calculation• Volume and surface

voltages• Current densities

EKG

Cellular Automaton• Transmembrane voltages• Membrane current densities

BSPM

BodySurfacePotentialMap

Computational Modeling of the Cardiovascular System - Page 47CVRTI

Visualization

Images/Movies

Simulation System: Overview

Electrophysiological Model Macro-/microscopic, rule-based/analytical

Electrical Model Body/Thorax

Source modelBidomain approximation

Lead Modele.g. standard leads of

Einthoven and Goldberger

Trans-membrane

voltage

Current sourcedensity

Electrical Voltages

Computational Modeling of the Cardiovascular System - Page 48CVRTI

Example: ECG Simulation

ECG

BSPMVm

Trans-membranevoltage

fe

Currentsourcedensities

Cellular automatonof excitation propagation

Bidomainmodel

Computational Modeling of the Cardiovascular System - Page 49CVRTI

Computational Modeling of the Cardiovascular System - Page 50CVRTI

Group Work

Compare cellular automata with mono-/bidomain models of cardiacconduction! Apply ~5 criteria for comparison.

Recommended