Collective resonances in plasmonic crystalscmp.physics.iastate.edu/.../GomezRivas.pdf · 1 c e...

Preview:

Citation preview

Collective resonances in plasmonic crystalsJaime Gómez Rivaswww.plasmonics.eup

www.amolf.nl

ContentsSingle plasmonic antennas: light emissionPl i l fPlasmonic crystals of antennas: emission and sensingg

Ackowledgements

Gabriele VecchiJose A. Sánchez Gil Peter Offermans

Mercedes CregoVincenzo GianniniOtto MuskensM tij S h f

Mercedes CregoSywert Brongersma

Martijn SchaafsmaSaid R. Rodriguez

Microphotonic Light SourcesMicrophotonic Light Sources

Localized plasmon resonancespMetal nanoparticle (L<<): resonant response dominated by material by material

+ +

)(22

4 3

m

ma

Nanoantenna (L): resonant response determined by

‐ ‐ )(2 spm

Nanoantenna (L): resonant response determined by material and geometry

+ +

‐ ‐

Dimers: near‐field couplingL

+ +‐‐

+ +‐‐

+ + ‐‐

Atto 680 in PVB

O.L. Muskens… JGR, Opt. Express (2007)  

Dimer antennas: emissionPhotoluminescence enhancementL = 80 nm nm = 730 nmL = 80 nm, nm SPR em = 730 nm

1 m

O.L. Muskens… JGR, Nano Letters (2007)  

Dimer antennas: emissionFluorescence decay

1 2N t t

1. 2.1.

2.

Next to antenna

0.

12At antenna

• Fivefold enhancement of 2 with respect to 0• 1 = 0

Dimer antennas: emissionDipole radiating at 730 nm

emen

te en

hanc

Antenna length (nm)

Rat

Antenna length (nm)

Improvement of quantum efficiency

Giannini, …JGR, Sanchez Gil, JOSA B (2009)  

Arrays of particles: Far‐field coupling

1.0Localized SP

(±1,0) Rayleigh anomaly

ancePol

0.5

ansm

itt Surface latticeresonance

0 0

Tra

W= 85 nm, L= 415 nmax = 500 nm, ay = 300 nm

600 800 10000.0

Wavelength (nm)Wavelength (nm)Quartz

Arrays of particles: historyCarron et al. (JOSA B, 1986) Schatz et al. (J. Chem Phys, 2004)Kravets et al. (PRL 2008), Crozier et al. (APL 2008), Kravets et al. (PRL 2008), Crozier et al. (APL 2008), Barnes et al. (PRL 2008), Vecchi at al. (PRL 2009)

Surface lattice resonances

0 012(1,0)(‐2,0)

0 010

0.012

nm-1)

0 008

0.010

(rad

n

ce10.008

/

c

Tran

smitt

anc

0

0.5

1

(‐1,0)

0.004 0.008 k// (rad nm-1)

0

//

Vecchi … JGR, Phys. Rev. B (2009)  

Emission

Transmission vs. angle incidenceEmission vs. angle emission

30

40

cem

ent

n (d

eg)

57

30

40

0 5

1

ce (d

eg)

mita

nce

20

enha

nanc

fem

issi

o

135

20 0

0.5

inci

denc

Tran

sm

700 8000

10

PL

e

Ang

le o

f

0

10

Angl

e of

700 800A

Wavelength (nm)700 800

0A

Wavelength (nm)

Enhanced  and directional emission

Vecchi … JGR, Phys. Rev. Lett. (2009) and (2010)  

Surface lattice resonance sensor

90

n = 0.04290

e (%

)

nF M /60

tanc

e

FoM = 1.4 FoM

30

nsm

itt

F M 25

600 700 800 9000Tr

an FoM = 25

600 700 800 900

Wavelength (nm)

Universal scaling of FoM

Offermans,…, JGR, ACS‐Nano (2011)

Universal scaling of FoM

Offermans,…, JGR, ACS‐Nano (2011)

ConclusionsConclusionsDemonstrated enhanced emission of dye moleculesfrom single nanoantennas

The enhancement of the emission can be improvedby collective resonances in periodic arrays of antennas

These collective resonances improve the FoM of plasmonic refractive index sensors

Recommended