CO2 splitting with plasma on a power efficient and scalable ......• Dissociation energy CO 2 > 5.5...

Preview:

Citation preview

  • CO2 splitting with plasma on a power efficient and scalable wayon a power efficient and scalable way

    Presented by Waldo Bongers

    Dutch Institute for Fundamental Energy Research,P.O.Box 1207, 3430 BE Nieuwegein, The Netherlands

    DIFFER is part of andDr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013

    &

  • Developments in power efficient dissociation of CO2 using non-equilibrium plasma activation

    Introduction FOM institute DIFFERM ti ti f f l f t i bl Motivation for fuels from sustainable

    energy: Solar FuelsWhy dissociation by plasma activation?Why dissociation by plasma activation?Experimental facilityResults obtained in 2012Future outlook

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013

  • From January 2015 Present situation:

    DIFFER is part of andDr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013

    onward: Eindhoven University campus

    FOM Institute DIFFERApprox 150 FTE

  • Mission DIFFER

    Fundamental research in: fusion energy and solar fuelsfusion energy and solar fuels

    In close partnership with academia and industryIncluding Univ Stuttgart Eindhoven Twente Delft Leiden Including Univ. Stuttgart, Eindhoven, Twente, Delft, Leiden, AmsterdamIncluding Alliander, Shell and others (Dutch Top sector policy)policy)

    National coordinating role in fundamental energy research, including NWO programme CO2 neutral fuels:research, including NWO programme CO2 neutral fuels:•Photo-catalysis (inorganic semi-conductors)•Smart matrices (artificial photo-synthesis)•Out of equilibrium processing (plasma chemistry)

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013

    q p g (p y)•Down-stream processing and reactor development

  • Motivation Solar Fuels

    Sustainable power generation is booming but it is

    German solar and wind energy

    boo g bu s

    with time-scales ranging from

    inhomogeneous and intermittent

    minutes to months

    Mismatch betweensupply and demandSolution:Energy storageEnergy storage

  • Sustainable energy - storage needed

    Storing energy: mechanicalelectricalelectricalelectro-chemicalchemical

    water reservoirs

    bio-chemical Artificial chemical fuel

    batteriesstored heat

  • Solar Fuels Cycle

    • Large potential to contribute to a CO2 neutral energy infrastructureneutral energy infrastructure

    • Storage and transport of sustainable energy in chemical bonds

    • Large efforts world wide on Solar Fuels:Basically splitting H2O or dissociating CO2using direct solar (heat & light) or sustainably

    generated electrical energy: generated electrical energy:

    End product carbon containing fuelsEnd product carbon containing fuels

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013” A il 11 2013

  • CO2 Hydrogenation

    MethaneMethanol

    Solar FuelsCourtesy Wim Haije (ECN)

    Captured CO

    CO2

    RWGSAir

    H

    COH2 O H2 + ½O2

    CO2 CO + ½O2C i

    CO2conversion

    process

    Efficiency (%)

    Electro-catalysis

    ~6CO2

    COFT Fuel

    H2Conversion:• Electrocatalysis• Photocatalysis• Thermocatalysis

    catalysis

    Thermo-catalysis

    ~3-4

    Photo-catalysis

    ~1

    FT=Fischer-Tropsch reaction(R)WGS=(reverse) watergas shift

    H2WGSwater

    Thermocatalysis•Why not Plasma?

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013

    ( ) ( ) g

    Focus: Energy efficient CO2 dissociation by plasma

  • CO2 chemistry out of equilibrium Tv>T 0

    CO2 CO + O H = 5.5 eVIf radical O is used:CO + O CO + O H 0 3 V

    96.285 kJ/mol eV

    ]CO2 + O CO + O2 H = 0.3 eVTotal reaction:CO2 CO + ½ O2 H = 5.8/2

    =2.9 eV 2000

    3000

    ergy

    [cm

    -1]

    2.9 eV

    1000Vib

    . Ene

    (4 26 m)

    (4.26 m)

    Concentrate energy on CO2 vibration state that matters for dissociation

    Thermodynamic equilibrium: Energy efficiency 41% maxOut of equilibrium > 50% Classified Russian work 60`s

    A. Fridman, Drexel Univ., US [Plasma Chemistry]

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013” A il 11 2013

    (CO production at 100%: 12.5 kJ/l or 3.5 Wh/l or 4.8 slm/kW)(CO + H2OH2+ CO2 H=-0.4 eV)

    Energy efficiency

    H/ECO

  • CO2 dissociation by plasma activation

    Can it be done energy efficiently?

    Plasma processing energy expensive:

    CO2 potential energy96.285 kJ/mol eV

    Plasma processing energy expensive:• Creating electron-ion pair > 30 eV• Dissociation energy CO2 > 5.5 eV

    YES if:• Vibration excitation CO by slow electrons• Vibration excitation CO2 by slow electrons

    (1 eV) creating out of equilibrium Tvib >Tgas• Low degree of ionisation (10-5)• Low reduced electric field (~10-16 Vcm2)

    energy efficient dissociation possible through vibrational excitation CO in asymmetric stretch mode

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013

    vibrational excitation CO2 in asymmetric stretch mode

  • Electron energy loss in CO2 plasma

    electrons

    electric field

    collisions

    vibrationalexcitation

    Electron energy loss depends on reduced electric

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013Rusanov et al. Usp. Fiz. Nauk. 134 185 (1981)

    field depends on average electron energy

  • Reported results on energy efficiency96 28 k / l

    (η = ∆H/ECO)CO2 CO + ½O2 ∆H = 2.9 eV

    90

    100

    microwave 1microwave 2

    96.285 kJ/mol eV

    60

    70

    80 microwave 3 microwave 4 supersonic RF-CCP RF-ICP

    30

    40

    50

    10-1 100 1010

    10

    20

    Literature reports > 50% power

    Advantage plasma:No catalysts used

    (no rare materials needed)

    10 10 10

    Ev (eV/molecule)

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013” A il 11 2013

    [Adapted From A. Fridman, “Plasma Chemistry” (2009)]

    Literature reports > 50% power efficiency of CO2 dissociation !

    ( )Scalable technology (microwave)Proof of principle (microwave)

  • How: Using a Microwave Plasma source for CFCdestruction(IPF) for (DIFFER) CO2 dissociation

    DIFFER/IPF cooperationWaldo Bongers, Adelbert Goede, Martijn Graswinckel, Pieter Willem Groen,

    Martina Leins, Jochen Kopecki, Andreas Schulz, Matthias Walker en Richard van de Sanden

    30 kW 915 MHz setup

    Sub atmospheric CO plasmas inside microwave cavity

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013” A il 11 2013

    Sub atmospheric CO2 plasmas inside microwave cavityCO2 CO + ½O2

  • Experimental Results: subsonic region

    CO produced at expense of CO2CO2 CO + ½O2 H = 2 9 eV 96 285 kJ/mol eV

    12

    CO2 CO + ½O2 H = 2.9 eV

    1,0x10 5 1 kW

    96.285 kJ/mol eV

    6

    8

    10

    ow [s

    lm] CO2

    6,0x10 4

    8 ,0x10 42 kW

    3 kW 4 kW

    y [a

    . u.]

    0

    2

    4

    Outp

    ut flo

    COO2

    200 300 400 500 600 7000,0

    2,0x10 4

    4 ,0x10 4

    inte

    nsity

    0 1000 2000 3000 4000 5000Power [W]

    200 300 400 500 600 700

    wavelength [nm ]

    CO 3rd positive, 4th positive,Angstrom and triplet identified

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013Constant CO2 flow of 11.1 SLM

    g p

  • Experimental Results: supersonic region

    CO produced at expense of CO2CO2 CO + ½O2 H = 2 9 eV 96.285 kJ/mol eV

    10

    12

    25

    30Energy efficiency [%]

    Conversion efficiency [%]

    CO2 CO + ½O2 H = 2.9 eV

    CO2 Conversion: βdiss

    /

    4

    6

    8

    tput

    flow

    [slm

    ]

    10

    15

    20

    Effic

    ency

    [%]

    CO

    CO2

    Energy: η

    diss

    0

    2

    0 1000 2000 3000 4000 5000

    Out

    Power [W]

    0

    5

    0 1000 2000 3000 4000 5000Power [W]

    COO2

    Energy: ηpower

    [ ]

    H/EEnergy efficiency:

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013Constant CO2 flow of 11.1 SLM

    H/ECO

  • Experimental Result: pre-supersonic region

    CO produced at expense of CO2CO2 CO + ½O2 H = 2 9 eV 96.285 kJ/mol eV

    8

    10

    12

    ]

    COCO21000

    1200

    1400

    1 cm3 cm/m

    s]

    P = 5 kW, d = 5 mm asymm, position IV

    CO2 CO + ½O2 H = 2.9 eV 96.285 kJ/mol eV

    2

    4

    6

    tput

    flow

    [slm O2

    400

    600

    800

    1000 6 cm

    nsity

    [cou

    nts/

    0

    2

    0 2000 4000 6000 8000

    Out

    Power [W] 200 300 400 500 600 700

    0

    200

    Inte

    nwavelength [nm]

    C2 Swan band A3Πg>X3Πu

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013 Constant CO2 flow of 11.1 SLM

  • Best results DIFFER/IPF of conversion efficiency:Low flow CO2 (2 -10 eV/CO2 molecule)

    96 285 kJ/mol eV

    12 100

    CO produced at expense of CO2

    96.285 kJ/mol eV

    6

    8

    10

    w [s

    lm]

    60

    80

    ency

    [%]

    CO2 CO

    ½O2

    Conversion: βdiss

    0

    2

    4

    0 2000 4000 6000 8000

    Out

    put f

    low

    0

    20

    40

    Effic

    e½ 2

    Energy: ηpower0 2000 4000 6000 8000

    Power [W] 0 2000 4000 6000 8000

    Power [W]

    Measurements (bold) fitted on reaction scheme (open)High energy per CO2 molecule gives low efficiencyHigh energy per CO2 molecule gives low efficiencyDeviation by little C production(spectrum shows C-Swan band)

    Energy efficiency (@3kW) ≈ 36%

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013” A il 11 2013

    Constant CO2 flow of 11.1 slm (2.3 kW@100% E. efficiency)

    Energy efficiency (@3kW)  36%Conversion efficiency (@8kW) ≈ 84% 

  • More experiments at more CO2 input flow?E ffi i ∆H/EEnergy efficiency η = ∆H/ECOCO2 CO + ½O2 ∆H = 2.9 eV

    100

    96.285 kJ/mol eV

    70

    80

    90 microwave 1 supersonic microwave 2 microwave 3 microwave 4 microwave subsonic RF-CCPRF ICP

    40

    50

    60

    RF-ICP DIFFER&IPF

    10

    20

    30

    10-1 100 1010

    Ev (eV/molecule)

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013

    Ev can be tuned by Power/flow:At same powers more input gas flow needed to reach higher efficiencies

    [Adapted From A. Fridman, “Plasma Chemistry” (2009)]

  • Best results DIFFER/IPF of energy efficiency:High flow CO2 (0.6 -1.5 eV/CO2 molecule)

    96 285 kJ/mol eV

    7080

    CO produced at expense of CO2

    96.285 kJ/mol eV

    40

    50

    60

    y [%

    ]

    40506070

    flow

    [slm

    ] CO2Energy: ηpower

    0

    10

    20

    30

    Effic

    ency

    01020300

    Out

    put f

    CO½O2Conversion: βdiss0

    0 2000 4000 6000 8000Power [W]

    00 2000 4000 6000 8000

    Power [W]

    Measurements (bold) fitted on reaction scheme (open)Low energy per CO2 molecule gives high efficiency

    Energy efficiency (@3kW) ≈ 60%C i ffi i (@8kW) 20%

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013” A il 11 2013

    Conversion efficiency (@8kW) ≈ 20%

    Constant CO2 flow of 75 slm (15.6 kW@100% E. efficiency)

  • Business case: How good is 60%? compare plasma, water electrolyses and steam reformation

    Efficiency 70-80 %

    SR: CH4+ H2O 3H2 + COWGS: CO+ H2O H2 + CO2

    Comparison H2 generation by 6 :1) Fossil, CH4 3 by SR+WGS 1 : 1 €/kg2) Bio, CH4 by SR+WGS 4 : 10 €/kg3) Electrolyses H O ( =70%)2 8 €/kg3) Electrolyses, H2O ( =70%)2 8 €/kg4) Plasma, CO2 to CO and WGS:

    ( = 90-60%) 6-9 €/kg

    2H2O 2H2 + O2

    Sustainable energy

    (Exclusive CO2 emission rights 5 at2011-2050: 0.17-1.7 €/500 Mole)

    Comparison CO generation by 6 :2H2O 2H2 + O2Advantage: No gas separationDisadvantage:

    1) Fossil, CH4 3 by SR+RWGS 1 : 9 € cts/m32) Plasma, CO2 to CO :

    ( = 90-60%) 15-23 € cts/m3 [1] J ff R B t l t l I t ti l J l f H d E 35 (2010) 8371

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013

    rare materials necessary (Pt, etc)low power density

    [1] Jeffrey R. Bartels et al. Internation al Journal of Hydrogen Econ. 35 (2010) 8371[2] R. van der Krol (TUD), privé communicatie (2011)[3] J.M. Cormier et al., J. Phys. D 34 (2001) 2798–2803[4] Private communication Harry van Breen, Alliander (2011)[5] Solar Photovoltaics: competing in the energy sector, EPIA report 2011[6] CH4 8 cnts/m3 and standard electricity price 4 cts/kWh

  • Overview results DIFFER/IPF:How further optimization?

    microwave 1 supersonic microwave 2 microwave 3microwave 4

    90

    100 CO2 CO + ½O2 ∆H = 2.9 eV Key issue for further

    optimization: E-Field distribution over the density

    microwave subsonic RF-CCP RF-ICP microwave 1 supersonic microwave 1 supersonic DIFFER&IPF 11 SLM CO2 DIFFER&IPF 75 SLM CO250

    60

    70

    80

    distribution over the density (= E/n ~ average electron

    energy) to excite the optimal vibrational mode

    10

    20

    30

    40

    10-1 100 1010

    10

    Ev (eV/molecule)

    Next research DIFFER:Next research DIFFER:Insight in Plasma parameters

    with more diagnostics (E, ne, Te, Tvib, Tg, etc)

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013

    , , g, )Cavity design optimization on

    E/n (simulation)[A. Fridman, “Plasma Chemistry”]

  • Conclusion and Future outlook

    Sustainable energy generation within reach by storage in Solar Fuels using no scare materials

    The DIFFER/IPF CO2 plasma dissociation experiments prove high efficiency >50% can be obtained

    New reactor designs are now under development and production at DIFFER (INITSF 3 months-> PROTOSF 5 months ->start begin next year DEMOSF)

    Additional diagnostics for better plasma chemistry d di d i i i ill b li dunderstanding and optimization will be applied

    Modelling (microwave-plasma-flow-chemistry interaction) Efficient Capture and separation of CO2 to be to addressed

    f(preferably using process waste energy) Direct Fuel production (CH4, etc) in plasma under investigation

    using CO2 (or carbonate) and H2O combination as input

    Dr. Waldo Bongers, Spring session of PINNL, Traxxys,  Amersfoort, 10 April, 2013” A il 11 2013

    Ultimate Goal: 100 kW plasma DEMOSF reactor (efficient fuel production from sustainable energy using CO2 and H2O)

Recommended