Chemical Product Emissions Emerging as Important Urban

Preview:

Citation preview

~ un,vers,ty or Colorado

Bou'der

CIRES a

Chemical Product Emissions Emerging as Important

Urban Source of Volatile Organic Compounds

Brian C. McDonald

California Air Resources Board (April 19, 2019)

urnvcrs,ty or Colorado Bou•der

CIRES

l♦I Environment and Cliimate Change Canada

Acknowledgements

Matt Coggon, Carsten Warneke, Jessica Gilman, Jeff Peischl, Ken

Aikin, Justin DuRant, Joost de Gouw, Stuart McKeen, Tom Ryerson,

Michael Trainer, Patrick Veres, Abigail Koss, Bin Yuan, Francois

Bernard, Abigail Koss

Alexander Vlashenko, Shao-Meng Li

Fred Moshary, Mark Arend

Funded by a CIRES Innovative Research Proposal and the NOAA Cooperative Institute Agreement.

11 l::.i SV-OOCF

10 • LV-OOCF

~ HOCF 9 ~ LOCF

---------------------8 SV-OOCNF

7 LV-OOCNF ..... .... HOCNF E -- CIOC 0) 6 1 • LOCNF ......

(/)

:E 5 < u 0 4

3

2

1 0 --1-------1 ______ ...illl ___ .._. __ .... __ .... __ ..... __ __J

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21 :00 00:00 local time (PDT)

Which Source Dominates Fossil SOA Formation?

Los Angeles 2010 (Pasadena)

Mobile Sources? Fossil

(Secondary)

Non-Fossil

14C analysis of carbonaceous aerosol

from Zotter et al. (J. Geophys. Res. 2014)

Bahreini et al. (GRL 2012)

Gasoline emissions dominate in LA

Gentner et al. (PNAS 2012)

Diesel emissions dominate in LA

Ensberg et al. (ACP 2014)

Other sources dominate, or

SOA yields of vehicle emissions

substantially underestimated

5

4

--0 u 3

!,,_

0 u 0 G 2 C) 0

ro !,,_

:J 1 .-' ro C

0

-1

• co ethene

I acetylene ----I- propene --0-- ethane

propane

- i-butane n-Butane i-pentane n-pentane benzene toluene

1960 1970 1980 1990 2000 2010

128

64

32

3 16 x ·

8

4

:J co -, Q) r-t 0

◄---1

0.5

◄---0.25

Long-Term Trend in Ambient VOCs (Los Angeles)

Gasoline VOCs Decreasing Rapidly

CO Decreasing Rapidly

Warneke et al. (J. Geophys. Res. 2012)

~ Urban flux measurements reveal a large pool of ~ oxygenated volatile organic compound emissions ':ii T. Karla·1, M . Striedn iga, M . Grausa, A. Hammerleb, and G. Wohlfahrtb

6 .-----,----------.--------,------,-------,--------.--------.--------.-----~~11--C- H- O~ 100 L___j X y

CJCxHP2 90

5 CJCxHP3 CH O 80 O

X y 4 < ~ ---------------------------------- ------------------- ---- ----·---- ---- ----------------- -- -~~~x~yo 5 __ 70 g e4 -C)

E ._. >< 3 ::::J

;;::

u ~ 2 =----·------ -- ---- --- ----------------------------- 40 ~

0 t=--::::--::-::-=::--t-----#t---r-----=----------"~~ l-------=1=----...--J 30 ~ C X

1 ~~~..b,..;d 20 fil_ o·

10 ~ O/C modelled [%]

o~~~~~~::::§:~~~:::§:::~::§:::::e::::§:::::§::::§::::=~~~~~o

2 4 6 8 10 12 14 16 18 20 22 24 Time

CJ ~ Volatile chemical products emerging

. ~ as largest petrochemical source of (]5 urban organic emissions

Consumer VCPs

Industrial VCPs

Gasoline Exhaust

Gas Fuel

Upstream Emissions

voe Emissions = 350 ± 50 Gg

Two Recent U.S. and European Studies on “Other” Sources

~50% of VOC emissions in Innsbruck, Austria

emitted as oxygenated compounds, including

emissions from solvents

. . _1 Total anthropogenic emissions All units 1n tons day .4's. Product- and process-related emissions

(a) 60

.-.. 0

ro ~ so 0 Cf)

...., § 40 '+-- ■-0 Cf)

c .en 30 a., E c.., Q) ..

a5 0 20 o._ 0

> 10

+ On-road motor vehicle emissions • Off-road equipment and vehicle emissions

3 2.5 x10

2.0 ~ < ...... 0 Q)

1.5 0 Q) Cl) :::J

,..+

3 :::J" ..., 1.0 -·o

~ 'O -·o 0.5

0 co :::J CD Cl) :::J

-· ('")

0 -------.----------- 0.0

VOCs also Transitioning in CARB Inventories (Mobile Sources → VCPs)

Similar trends for

SOA and Ozone

formation potential

Khare et al., “Considering the future of anthropogenic gas-phase organic compound emissions and the increasing

influence of non-combustion sources of urban air quality”, Atmos. Chem. Phys. 2018.

•• •• • •• •• • • . .. , .. • • • • •

Natural and Human Emissions Impact Atmospheric Chemistry

Atmospheric

chemistry

VOCs, CO, CH4

O3

Ingredients and reactions needed to make ozone (O3):

OH

HO2 NO

NO2 O2

CO2, H2O OVOCs,

(O2) sunlight

Secondary

Organic Aerosol

Human activities Natural processes

Primary emission

sources

Figure provided by Jessica Gilman (NOAA).

Research Objectives

(1) Identify chemical tracers for detecting VCP emissions in ambient air

Establishing D5-siloxane as a tracer of personal care product emissions

(2) Quantify VCP emissions in another US megacity: New York City

Field measurements of VOCs made in winter/summer of 2018

Are VCPs a larger fraction of anthropogenic VOCs in denser cities?

ACTIVE INGREDIENTS

Aluminum zi rcon ium octachlorohydrex G ly 16% (anhydrous)

INACTIVE INGREDIENTS

D5-Siloxane an Atmospheric Tracer for Personal Care Products

Example antiperspirant/deodorant

Cyclopentasiloxane

(D5-siloxane) Hair care

~20%

Antiperspirants

~70%

MacKay et al. (Env. Tox. & Chem. 2015)

other 4 µg m-3

6%

(A) Supply air

other 7 µg m-3

4%

(B) Classroom air

Siloxane Concentrations Enhanced in Indoor Air (mostly D5)

Siloxanes were most

abundant VOC found in

engineering classroom

100 – 700 mg/person/d

Tang et al. (Environ. Sci. & Technol. 2015)

Investigating D5-Siloxane in Boulder, CO

Ambient Sampling Mobile Sampling

Drive Path

Matthew Coggon

(NOAA)

,,-... 0 .._., Q) -0 ::i +-' ·.µ ro

....J

"¢ 0 0 "¢

N 0 0 "¢

0 0 0 "¢

00 0)

0) (Y')

-105.28 Longitude (0 )

-1 05.26 -1 05.24 -1 05.22

Investigating D5-Siloxane in Boulder, CO

Ambient Sampling Mobile Sampling PTR-ToF-MS

Drift Tube Ion source SSQ BSQ PB

Extractor MCP

Reflectron

TOFMS

Turbo pump Turbo pump

Water in Water out

Air in

150

100

50

0

Am

bie

nt D

5 M

ass S

pe

ctr

um

(c

ps)

375374373372371

600

400

200

0No

rma

lize

d c

ou

nts

p

er

se

co

nd

(ncp

s)

252015105

concentration (ppb)

600

400

200

0

D5

Sta

nd

ard

M

ass S

pe

ctr

um

(cp

s)

358357356355

m/z

20

15

10

5

0Co

un

ts p

er

se

co

nd

(cp

s)

1.61.20.80.40

concentration (ppb)

12

8

4

No

rma

lize

d c

ou

nts

p

er

se

co

nd

(n

cp

s)

3.02.52.01.51.0

concentration (ppb)

358357356355

375374373372371

m/z

...

...

sensitivity= 27±0.03 ncps/ppb

sensitivity= 10±0.3 cps/ppb

A.

B.

C.

sensitivity= 7.1 ±0.5 ncps/ppb

D. E.

Fragment Isotope DataC9H27Si5O5

+C10H30Si5O5(H)

+

C9H27Si5O5(H2O)+

150

100

50

0

Am

bie

nt D

5 M

ass S

pe

ctr

um

(c

ps)

375374373372371

600

400

200

0No

rma

lize

d c

ou

nts

p

er

se

co

nd

(ncp

s)

252015105

concentration (ppb)

600

400

200

0

D5

Sta

nd

ard

M

ass S

pe

ctr

um

(cp

s)

358357356355

m/z

20

15

10

5

0Co

un

ts p

er

se

co

nd

(cp

s)

1.61.20.80.40

concentration (ppb)

12

8

4

No

rma

lize

d c

ou

nts

p

er

se

co

nd

(n

cp

s)

3.02.52.01.51.0

concentration (ppb)

358357356355

375374373372371

m/z

...

...

sensitivity= 27±0.03 ncps/ppb

sensitivity= 10±0.3 cps/ppb

A.

B.

C.

sensitivity= 7.1 ±0.5 ncps/ppb

D. E.

Fragment Isotope DataC9H27Si5O5

+C10H30Si5O5(H)

+

C9H27Si5O5(H2O)+

m/z

High sensitivity to D5 siloxane

Measures hundreds of compounds at 1 hz

Drive Path

,,-... 0 .._., Q) -0 ::i +-' ·.µ ro

....J

"¢ 0 0 "¢

N 0 0 "¢

0 0 0 "¢

00 0)

0) (Y')

-105.28 Longitude (0 )

-1 05.26 -1 05.24 -1 05.22

--■

-,­I i i i / I

I

Diurnal Pattern of D5-Siloxane and Benzene

Wintertime Measurements in Boulder using PTR-ToF-MS

30

~ 20 c.. c..

LO 0 10

0

6 112 6 112 24

600

CJ CD

400 :., CD :J CD

200 ~ "'O ,......... .._..

General structure in diurnal pattern similar,

except D5-siloxane peak not as strong as benzene in evening.

Coggon et al. (Environ. Sci. & Technol. 2018)

D5-Siloxane/Benzene Ratio Variable Throughout Day

Peak in Morning

0 0 25 0 20 0. 5 0. 0 0.05 0.00 _j_~----~-----~-

12

Hlour of D,ay

-.- 20·15 1Ground Sil1e ♦ Mobile Meia.surem1ents

8 24

Coggon et al. (Environ. Sci. & Technol. 2018)

Estimated Diurnal Emissions Rate of D5-Siloxane

Benzene

Hour

Em

issio

n R

ate

(kg

h-1

)

D5-Siloxane

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15 20

Benzene mostly from

gasoline vehicles

(morning & evening peaks)

D5-Siloxane from

personal care products

(morning peak only)

Coggon et al. (Environ. Sci. & Technol. 2018)

0~11P- """" DD 1111111 =i= 1

LJUqH1-&-,1.--1.--&-&-.l--l,J...--___i__-----1...----1 \ /

\)

'' ■ ■ ■ -

D5-Siloxane Emitted by People in Cars?

Drift Tube Ion source SSQ BSQ PB

Extractor MCP

Reflectron

TOFMS

Turbo pump Turbo pump

Water in Water out

Air in

Experiment:

(1) Flush car with ambient air

(2) Measure car background

(3) Measure co-worker sitting in car

(4) Turn cabin fan

D5

-Silo

xa

ne

(p

pb

)

1.0

0.8

0.6

0.4

0.2

0.0

18:30 19:00 19:30 20:00 20:30 21:00

UTC

40

30

20

10

0

D5 C

once

ntr

atio

n (

ppb

)

S1 S2 S3 S4

Vehicle Doors Open Vechicle Background Person In Vehicle Cabin Fan On D5 Siloxane

Coggon et al. (Environ. Sci. & Technol. 2018)

Personal Care Products

.--..,

.n 0.

..e- 2 0 .n ., 0. 0. -(]) C (]) N C (])

co (]) C m >< 0

00 LO 0

1 .. 5

1 .. 0

0 .. 5

I D5, s·loxane I

0 20 40 3 60 x1 0

-2 Population Density (peopl,e mi )

D5 siloxane inventory souroes

Personal Care Emissions Enhanced Relative to Traffic in Denser Cities

Georgios Gkatzelis

(NOAA)

Cites included: NYC, CHI, DEN, PIT

Personal Care Products

..0 a. a. :a a. -3: Q) C Q) N C Q) (l)

Q) C ro X 0 (/)

l{)

0

2.0

1.5

1.0

0.5

0

I D5 siloxane I

20

N 2 N 3

.• •·······················:· 5

.... •·

40 60 x103 -2

Population Density (people mi )

Fragrances

n 8: 2.0 :a a. -3: ~ 1.5 ~ C Q)

m 1.0 (/)

Q) C

I monoterpenes l

N 3

~ 0.5 fllrl:/lllJtiGOi""' 2 0 C

~ 0.0 ... --~-------

0 20 40 60 x103

Population Density (people mi-2)

r ■

LI

D5 siloxane inventory sources

monoterpenes inventory sources

Adhesives

n 0.20 a. I D4 siloxane I a. :a a. -3: 0.15 Q) C N 3 Q) N C

0.10 Q) 2 (l)

"J.································· Q)

N 5 C ro 0.05 X HI 0 (/) G'01

'SI" 0 0.00 H

0 20 40 60 x103

Population Density (people mi-2)

Solvent-Based Coatings

n 0.30 I PCBTF I a.

.Q-0.25 ..0

a. -3: Q) 0.20 C Q) N 0.15 C Q) (l)

lL 0.1 0 N 3

f-(l)

0.05 () a..

0 20 40 60 x103

Population Density (people mi-2)

D4 siloxane inventory sources

PCBTF inventory sources

Insecticides

n a. a. :a a. -3: 0.15 Q) C Q) N C Q) (l)

Q) C Q) N C Q)

..0 e 0 :c g -0 6.

0.10

0.05

0.00

I p-dichlorobenzene I

N 2

0 20 40 60 x103

Population Density (people mi-2)

Water-based Coatings

R 50 x10·3 a. :a a. -3: 40

l rexanol l

p-dichlorobenzene inventory sources

Q) C

~ 30

20

5 Texanol C Q) (l)

0 C ro X

~

inventory sources

0 20 40 60 x103

Population Density (people mi-2)

Potential Chemical Markers Identified for Other VCP Source Sectors

Summary of Chemical Tracers for Detecting VCPs

(1) D5-Siloxane useful atmospheric marker of personal care product emissions

• Peak found in morning, then decays exponentially across the day

• D5-Siloxane/benzene ratio enhanced in denser cities

(2) Identifying other potential tracers for VCP sectors

How Important are VCP Emissions in the Biggest US City?

Boulder, CO Manhattan, NY

Land Area = 64 km2 Land Area = 59 km2

Population = 100,000 Population = 1,600,000

Commute time ~ 20 min Commute time ~ 1.5 hr

CCNY

NOAA Field Measurements in Winter/Summer of 2018

March 5 – 28, 2018

July 6 – 26, 2018

Deployed mobile van

Inlet

Matthew

Coggon

Brian

McDonald

Georgios

Gkatzelis

Jessica

Gilman

Carsten

Warneke

Jeff

Peischl

with PTR-ToF-MS,

iWAS canisters, CO,

CO2, CH4, N2O

1200

1000 -..c a. S 800 >-z (.) o 600 0 (.)

400

200

1 /1 /18

- CO NOAA van 5min - CO_CCNY hourly - CO_CCNY daily

1/21/18 2/10/18

mm

Fourth nor'easter in 3 weeks

3/2/18

NOAA arrives and cleans up NY air

3/22/18

in four weeks

1.2

1.0

0.8

0.6

0.4

0.2

0 0 z 0

~ < Sl) :::J -"O

"O 3 ._.

Wintry Conditions = Lack of Biogenic Emissions of VOCs

Yahoo News (3/21/18)

Methods to Quantify New York City VOC Emissions

(1) Quantify “bottom-up” VOC emissions using inventory methods

• Emissions = Activity * Emission Factor

(2) Estimate VOC/CO emission ratios for individual VOC species

• Controls for effects of atmospheric dilution on ambient concentration data

(3) Compare inventory with ambient VOC/CO field data

• Evaluate with ground site data at City College of New York

Product Use = 6.6 kg/person/d

Quantifying Fossil Fuel and Chemical Product Use in NYC

Gasoline VCPs 4%

Diesel

Manhattan (Winter 2018)

Natural Gas

State-level on-road gasoline and diesel fuel

sales allocated to NYC using traffic data [McDonald et al., ES&T 2018]

State-level off-road gasoline and diesel fuel

sales allocated to NYC by population [FHWA, EIA]

State-level natural gas fuel sales by month

allocated to NYC by population [EIA]

Per capita VCP use allocated to NYC by

population [McDonald et al., Science 2018]

Petrochemical Use Data between NYC and Los Angeles

VCPs 4%

Manhattan (Winter 2018) Los Angeles (Summer 2010)

Gasoline

Diesel

Natural Gas Diesel

Gasoline

VCPs 4%

Natural

Gas

Product Use = 6.6 kg/person/d Product Use = 6.5 kg/person/d

1000

I.. 100 0 .... (J -ca ....

(J L1. :;j C: "'C 0 0

I.. UJ C. 10 UJ ·-"""" E

I

C)

w ~ (.) C) -0 > 1

0.1 Fugitive Evaporated Pesticides Coatings, Cleaning Personal Natural Gasoline Gasoline Inks, Agents Care

Gas Fuel Exhaust Adhesives

Manhattan Sales 4920 920 700 220 430 70 4.3 56 160 28 (g/person/d) (±250) (±60) (±50) (±110) (±40) (±10) (±2.0) (±8} (±40) (±7}

Fossil Fuel vs. VCP VOC Emission Factors (NYC 2018)

Fossil Fuels Chemical Products

Updated from McDonald et al. (2018)

Distribution of Petrochemical VOC Emissions

Manhattan (Winter 2018) Los Angeles (Summer 2010)

Consumer

VCPs

Off-Road

Gas

On-Road Gas Evap Gas

Diesel

Other O&G

Consumer

VCPs

Off-Road Gas

On-Road

Gas

Evap

Gas

Upstream

Diesel

Industrial

VCPs

<5% }

voe Emissions = 46 + 12 g/person/d voe Emissions = 61 ± 9 g/person/d

Oil & Gas Production

Petrochemical Facilities

Evaporated Gasoline Vapor

Evaporated Gasoline Fuel

Gasoline Exhaust

Diesel Exhaust

Industrial Degreasing

Pesticides

Industrial Adhesives

Architectural Coatings

Consumer Adhesives

Industrial Coatings

Cleaning Agents

Printing Inks

Personal Care

0 20 40 60 80

Mass Percent of Solvents

~-------- -C :I: (') )> (') )> )> CJ) )> m )> ::JC>'<-'<--, =-ti) -tn -n "°n "°O o a. ... n "'CO -CD -C> 3 >< CD CD 0 CD (') 0 ::J O ::J C> c, ::::r ci'J ::::r (') C> C> CD C> CD ,.. :::, '< 0 -· C' ~ ti> ~ ti> n' CD a. en !, 0 CD C> ti> ti> CD CD ::J ::J ::J ti> Q. ti> CD CD

t/) t/) " CD ... 0 ::J CD t/) -

100

VO

C S

pe

cia

tion

Pro

files fo

r Fo

ssil F

uels

an

d V

CP

s

Lite

ratu

re

CA

RB

Su

rve

ys (2

01

4/2

01

5)

Incre

asin

gly

Oxyg

en

ate

d

Fuel-Based Inventory of Vehicle Emissions for estimating CO

'if ~

WIND

FIVE ~ 100 t CO h-1 FIVE ~ 130 t CO h-1

Obs ~ 63 t CO h-1 Obs ~ 110 t CO h-1

FIVE ~ 125 t CO h-1

Obs ~ 130 t CO h-1

See McDonald et al. (ES&T 2018) for FIVE

Mass balance from Jeff Peischl (NOAA)

0.30

0.25

0.20

Cl) C: ns 0.15 >< 0 -■-en

I 0.10 Lt) C

0.05

0

2 NYC WIN = 0.19 ppt/ppb {R = 0.76)

2 NYC SUM = 0.16 ppt/ppb {R = 0.55))

0

0

t 200 400 600 800 1 000 1200

Carbon Monoxide (ppb)

Estimating a D5-Siloxane Emission Factor in New York City

New York City (Manhattan only)

CO Emissions = 240 ± 60 t/d

Population = 1.7 million

D5 EF (NYC) = 330 ± 100 mg/person/d

D5 EF (LA) = 390 ± 150 mg/person/d

McDonald et al. (Science 2018)

1000

100

10

1

0.1

0.01

0.01

♦ ♦

♦ ♦

5:1 2:1 1 :1

♦ • ♦ ethanol

♦ ,♦ •

• •• • ♦ acetone ♦

• ♦ ♦ ••

♦ ♦ • • "-k C9+C10 alkane ♦ • me

♦ Bias = -73 ± 7%

R2 = 0.44

0.1 1 10 100 1000

Fossil Fuels Only

Fossil Fuels Alone Cannot Explain Ambient VOC Levels in Manhattan

Fossil Fuels Only

VO

C/C

O In

ve

nto

ry

(g/k

g)

30+ VOCs measured by…

GC-MS analysis of iWAS canisters

(alkanes, cycloalkanes, alkenes, aromatics)

In-situ PTR-ToF-MS

(oxygenates, terpenes, select halocarbons)

VOC/CO Obs. (g/kg)

1000

100

10

1

0.1

0.01

0.01

♦ ♦

♦ ♦

5:1 2:1 1 :1

♦ • ♦ ethanol

♦ ,♦ •

• •• • ♦ acetone ♦

• ♦ ♦ ••

♦ ♦ • • "-k C9+C10 alkane ♦ • me

♦ Bias = -73 ± 7%

R2 = 0.44

0.1 1 10 100 1000

acetone toluene

terpene , D5 '

pcbtf ~ D4 ..__

dichlorobenzen

0.01 0.1 1 10

5:1 2:1 1 :1

Bias= -19 ± 5%

R2 = 0.94

100 1000

Fossil Fuels Only

Need VCP Emissions to Explain Ambient VOC Levels in Manhattan

+VCPs Fossil Fuels Only

VO

C/C

O In

ve

nto

ry

(g/k

g)

VOC/CO Obs. (g/kg) VOC/CO Obs. (g/kg)

Summary of NYC VOC Field Measurements

(1) Quantified petrochemical VOC emissions for NYC using same methodology

as Los Angeles

• VCPs account for over half of the petrochemical VOC emissions in NYC

(2) Evaluated VOC inventory with ambient field measurements

• VCP emissions needed to explain ambient levels of VOCs (R2 ~ 0.94)

• Can explain ambient levels of chemical tracers for VCPs

5

4

--0 u 3

!,,_

0 u 0 G 2 C) 0

ro !,,_

:J 1 .-' ro C

0

-1

• co ethene

I acetylene ----I- propene --0-- ethane

propane

- i-butane n-Butane i-pentane n-pentane benzene toluene

1960 1970 1980 1990 2000 2010

128

64

32

3 16 x ·

8

:J co -, Q) r-t 0

◄---1

0.5

◄---0.25

Identifying Atmospheric Constraints on Trends in VCP Emissions

Acetone Increasing → Flat Trend

Gasoline VOCs Decreasing Rapidly

CO Decreasing Rapidly

Warneke et al. (J. Geophys. Res. 2012)

~ 0

0) 0

co 0

...... 0 0

...... I\) 0

...... ~ 0

...... 0) 0

...... co 0

I\) 0 0

I\)

...... 0

0

I

...... 0 ..... I

...... ...... 0 0

I\) w

I I

...... ...... ...... ...... 0 0 0 0

""' 01 0) -..J

I ! ~e HC I

116 HC

HC H

HC HC ~ K HC

benzene HC HC

HC ides, C4 amides, morpholi rie

toluene HC HC

c~~omatics HC

C9 f.fematics HC

C10m~Rb'i1if~Jn~ HC HC

r acid ca carboxy IC C11 aromatic:c!ie

~EHC

1\)---"'=---------------------....J._ 0

~ 0

0) 0

co 0

...... 0 0

...... I\) 0

...... ~ 0

...... 0

0

~ c-= 0

...... co 0

g E I\) I\) 0

...... 0 .....

...... 0

I\)

...... 0

w

...... 0

""'

...... 0

01

...... 0

0)

ethylene glycol

...... 0

-..J

1-:J C -<fr;:inmPn._ ______ _. __ _

HC fragment MEK

ethyl acetate

PTR-ToF-MS Signal

PT

R-T

oF

-MS

Mass S

pectra

of V

ario

us C

oatin

gs

Aceto

ne

P

ara

ch

loro

be

nzo

trifluo

ride

A

ceto

ne

Texan

ol

(mo

st c

oatin

gs)

(so

lven

t-bo

rne tra

cer)

(mo

st c

oatin

gs)

(wate

r-bo

rne tra

cer)

Solv

ent-b

orn

e W

ate

r Sta

in

Low

VO

C P

ain

t >

>

12 x106 16 ~ PCBTF sale <

10 ~ Texanol sale 14 0 .......... 0~ Cl) PCBTF fraction .c 12 s· Q) - Texanol fraction ...._....

8 cc ("') () Q) 10 co~. -o~ c.. 0 > Cl) -· ::J 6 8 CD 0 ..-- C: ::J ~ ~ Q) 6

,-+ ,-+

o·- 4 en o ..- -0 Pl --+ Q) - OJ ~ 4 CD -C) C 2

...--... ~ ·- 2 0 ...._....

0 0 2004 2006 2008 2010 2012 2014 2016 2018

Trends in Two Tracers for Coating-Related Products

https://www.arb.ca.gov/coatings/arch/survey/2005/survey.htm

Concluding Remarks

(1) Ambient measurements in New York City and Los Angeles indicate that

VCPs are ubiquitous and significant source of urban VOCs.

(2) Measurements of VCP markers now possible with advancements in VOC

instrumentation → improve confidence in emission inventories

Recommended