Chapter 6 Quantifying Greenhouse Gas Sources and Sinks in ... · Greenhouse Gas Sources and Sinks...

Preview:

Citation preview

Authors:

CoeliHoover,USDAForestService(LeadAuthor)RichardBirdsey,USDAForestService(Co‐LeadAuthor)BruceGoines,USDAForestServicePeterLahm,USDAForestServiceGreggMarland,AppalachianStateUniversityDavidNowak,USDAForestServiceStephenPrisley,VirginiaPolytechnicInstituteandStateUniversityElizabethReinhardt,USDAForestServiceKenSkog,USDAForestServiceDavidSkole,MichiganStateUniversityJamesSmith,USDAForestServiceCarlTrettin,USDAForestServiceChristopherWoodall,USDAForestService

Contents:

6 QuantifyingGreenhouseGasSourcesandSinksinManagedForestSystems....................6‐46.1 Overview.........................................................................................................................................................6‐5

6.1.1 OverviewofManagementPracticesandResultingGHGEmissions.........................6‐66.1.2 SystemBoundariesandTemporalScale..............................................................................6‐96.1.3 SummaryofSelectedMethods/Models..............................................................................6‐106.1.4 SourcesofData..............................................................................................................................6‐116.1.5 OrganizationofChapter/Roadmap......................................................................................6‐12

6.2 ForestCarbonAccounting......................................................................................................................6‐156.2.1 DescriptionofForestCarbonAccounting..........................................................................6‐156.2.2 DataCollectionforForestCarbonAccounting.................................................................6‐236.2.3 EstimationMethods....................................................................................................................6‐256.2.4 Limitations,Uncertainty,andResearchGaps...................................................................6‐28

6.3 Establishing,Re‐establishing,andClearingForests....................................................................6‐296.3.1 Description.....................................................................................................................................6‐296.3.2 ActivityDataCollection.............................................................................................................6‐336.3.3 EstimationMethods....................................................................................................................6‐346.3.4 SpecificProtocolforComputation........................................................................................6‐376.3.5 ActualGHGRemovalsandEmissionsbySourcesandSinksfromForestClearing...

.............................................................................................................................................................6‐436.3.6 LimitationsandUncertainty....................................................................................................6‐44

6.4 ForestManagement..................................................................................................................................6‐45

Chapter 6Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-2

6.4.1 Description.....................................................................................................................................6‐456.4.2 ActivityData...................................................................................................................................6‐536.4.3 ManagementIntensityCategories........................................................................................6‐576.4.4 EstimationMethods....................................................................................................................6‐646.4.5 LimitationsandUncertainty....................................................................................................6‐66

6.5 HarvestedWoodProducts.....................................................................................................................6‐666.5.1 GeneralAccountingIssues.......................................................................................................6‐666.5.2 EstimationMethods....................................................................................................................6‐686.5.3 ActivityDataCollection.............................................................................................................6‐696.5.4 Limitations,Uncertainty,andResearchGaps...................................................................6‐70

6.6 UrbanForests..............................................................................................................................................6‐716.6.1 Description.....................................................................................................................................6‐716.6.2 ActivityDataCollection.............................................................................................................6‐736.6.3 EstimationMethods....................................................................................................................6‐746.6.4 LimitationsandUncertainty....................................................................................................6‐80

6.7 NaturalDisturbance–WildfireandPrescribedFire...................................................................6‐826.7.1 Description.....................................................................................................................................6‐826.7.2 ActivityDataCollection.............................................................................................................6‐826.7.3 EstimationMethods....................................................................................................................6‐826.7.4 LimitationsandUncertainty....................................................................................................6‐87

Appendix6‐A:HarvestedWoodProductsLookupTables.....................................................................6‐88Chapter6References..........................................................................................................................................6‐107

SuggestedChapterCitation:Hoover,C.,R.Birdsey,B.Goines,P.Lahm,GMarland,D.Nowak,S.Prisley,E.Reinhardt,K.Skog,D.Skole,J.Smith,C.Trettin,C.Woodall,2014.Chapter6:QuantifyingGreenhouseGasSourcesandSinksinManagedForestSystems.InQuantifyingGreenhouseGasFluxesinAgricultureandForestry:MethodsforEntity‐ScaleInventory.TechnicalBulletinNumber1939.OfficeoftheChiefEconomist,U.S.DepartmentofAgriculture,Washington,DC.606pages.July2014.Eve,M.,D.Pape,M.Flugge,R.Steele,D.Man,M.Riley‐Gilbert,andS.Biggar,Eds.

USDAisanequalopportunityproviderandemployer.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-3

Acronyms,ChemicalFormulae,andUnitsBA BasalareaC CarbonCH4 Methanecm CentimetersCO2 CarbondioxideCO2‐eq CarbondioxideequivalentsCOLE CarbonOnLineEstimatorCRM ComponentratiomethodDBH DiameteratbreastheightDDW DowndeadwoodDOE DepartmentofEnergyEPA EnvironmentalProtectionAgencyFFE FireandFuelsExtensionFIA ForestInventoryandAnalysisFIADB ForestInventoryandAnalysisDatabaseFIDO ForestInventoryDataOnlineFOFEM FirstOrderFireEffectsModelFVS ForestVegetationSimulator modelft Feetg GramGHG GreenhousegasH Heightha Hectarehp Horsepowerhr HourHW HardwoodHWP Harvestedwoodproductsin Incheslbs PoundsIPCC IntergovernmentalPanelonClimateChangem Metersmm MillimetersMcf ThousandcubicfeetN2O NitrousoxideNOx Mono‐nitrousoxidesO2 OxygenPW PulpwoodSL SawlogsSOC SoilorganiccarbonSSURGO SoilSurveyGeographicdatabaseSTATSGO StateSoilGeographicdatabaseSW SoftwoodTg TeragramsUFORE UrbanForestEffectsmodelUNFCCC UnitedNationsFrameworkConventiononClimateChangeUSDA U.S.DepartmentofAgriculture

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-4

Thispageisintentionallyleftblank.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-5

6 QuantifyingGreenhouseGasSourcesandSinksinManagedForestSystems

Thischapterprovidesguidanceforreportinggreenhousegas(GHG)emissionsassociatedwithentity‐levelfluxesfromtheforestrysector.Inparticular,itfocusesonmethodsforestimatingcarbonstocksandstockchangefrommanagedforestsystems.Section6.1providesanoverviewofthesector.Section6.2describesthemethodsforforestcarbonstockaccounting.Section6.3describesthemethodsforestimatingcarbonstocksandstockchangefromestablishingandclearingforest.Section6.4describesmethodsforestimatingcarbonstocksandstockchangefromforestmanagement.Section6.5describesmethodsforestimatingcarbonstocksandstockchangefromharvestedwoodproducts.Section6.6describesmethodsforestimatingcarbonstocksandstockchangefromurbanforests(i.e.,treesoutsideofforests).Finally,Section6.7describesmethodsforestimatingemissionsfromnaturaldisturbancesincludingforestfires.

6.1 Overview

AsummaryofproposedmethodsandmodelsforestimatingGHGemissionsfrommanagedforestsystemsisprovidedinTable6‐1.

Table6‐1:OverviewofManagedForestSystemsSources,MethodandSection

Section Source Method

6.2.3 ForestCarbonAccounting

Rangeofoptionsdependentonthesizeoftheentities’forestlandincluding:ForestVegetationSimulatormodelwithFireandFuelsExtension(FVS‐FFE)(entitiesthatfitthelargelandownerdefinition);anddefaultlookuptables(entitiesfittingthesmalllandownerdefinition).

6.3.3Establishing,Re‐establishing,andClearingForests

IntergovernmentalPanelonClimateChange (IPCC) algorithmsdevelopedbyAaldeetal.(2006).Theseoptionsuse:allometricequationsfromJenkinsetal.(2003a),orFVSwiththeJenkinsetal.equationswhereapplicable;anddefaultlookuptablesfromSmithetal.(2006;GTRNE‐343)—defaultregionalvaluesbasedonforesttypeandageclassdevelopedfromFIAdata.

6.4.4 ForestManagement

Rangeofoptionsdependentonthesize/managementintensity/dataavailabilityoftheentity’sforestlandincluding:FVS‐FFEwithJenkins(2003a)allometricequations;Defaultlookuptablesofmanagementpracticescenarios;andFVSmaybeusedtodevelopasupportingproductprovidingdefaultlookuptablesofcarbonstocksovertimebyregion;foresttypecategories,includingspeciesgroup(e.g.,hardwood,softwood,mixed);regeneration(e.g.,planted,naturallyregenerated);managementintensity(e.g.,low,moderate,high,veryhigh);andsiteproductivity(e.g.,low,high).

6.5.2 HarvestedWoodProducts

MethodusesU.S.‐specificharvestedwoodproducts(HWPs)tables.TheHWPstablesarebasedonWOODCARBIImodelusedtoestimateannualchangeincarbonstoredinproductsandlandfills(Skog,2008).TheentityusesthesetablestoestimatetheaverageamountofHWPcarbonfromthecurrentyear’sharvestthatremainsstoredinendusesandlandfillsoverthenext100years.

6.6.3 UrbanForests

Rangeofoptionsdependsondataavailabilityoftheentity’surbanforestland.Theseoptionsuse:i‐TreeEcomodel(http://www.itreetools.org)toassesscarbonfromfielddataontreepopulations;andi‐TreeCanopymodel(http://www.itreetools.org/canopy/index.php)toassesstreecoverfromaerialimagesandlookuptablestoassesscarbon.Quantitativemethodsarealsodescribedformaintenanceemissionsandalteredbuildingenergyuseandincludedforinformationpurposesonly.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-6

Section Source Method

6.7.3

NaturalDisturbance—WildfireandPrescribedFire

Rangeofoptionsdepends onthedataavailabilityoftheentity’sforestlandincluding:FirstOrderFireEffectsModel(FOFEM)enteringmeasuredbiomass;andFOFEMmodelusingdefaultvaluesgeneratedbyvegetationtype.TheseoptionsuseReinhardtetal.(1997).

6.1.1 OverviewofManagementPracticesandResultingGHGEmissions

6.1.1.1 DescriptionofSector

ForestryactivitiesrepresentsignificantopportunitiestomanageGHGs(Caldeiraetal.,2004;PacalaandSocolow,2004).TherearemanykindsofforestryactivitiesthatmaybeconsideredbyentitiesasameanstoreduceGHGs,suchasestablishingnewforests,agroforestry,improvedforestmanagement,andavoidedforestclearing.Costisamajorfactorguidingdecisionsaboutwhichactivitiesinforestrytopursue(Lewandrowskietal.,2004;StavinsandRichards,2005;U.S.EPA,2005).IntheannualGHGinventoryreportedbytheU.S.DepartmentofAgriculture(USDA)andtheU.S.EnvironmentalProtectionAgency(EPA),forestsandforestproductssequesteranaverageof790millionmetrictonscarbondioxide(CO2)peryearon253millionhectares(ha)offorestland,makingitthemainlandcategorysequesteringcarbon(U.S.EPA,2012b;USDA,2011).Mostofthecarbonsequestered(89percent)isintheforestecosystem,withtheremainderaddedtothepoolofcarboninwoodproducts.

6.1.1.2 ResultingGHGEmissions

Forestsremovecarbonfromtheatmosphereandstoreitinvegetativetissuesuchasstems,roots,barks,andleaves.Throughphotosynthesis,allgreenvegetationremovesCO2andreleasesoxygen(O2)totheatmosphere.Theremainingcarbonisusedtocreateplanttissuesandstoreenergy.Duringrespiration,carbon‐containingcompoundsarebrokendowntoproduceenergy,releasingCO2intheprocess.AnyremainingcarbonissequestereduntilthenaturaldecompositionofdeadvegetativematterorcombustionreleasesitasCO2totheatmosphere.Thenetcarbonstockinforestsincreaseswhentheamountofcarbonwithdrawalfromtheatmosphereduringphotosynthesisexceedsthereleaseofcarbontotheatmosphereduringrespiration.Thenetcarbonstockdecreaseswhenbiomassisburned.

OtherGHGs,suchasnitrousoxide(N2O)andmethane(CH4),arealsoexchangedbyforestecosystems.N2Omaybeemittedfromsoilsunderwetconditionsorafternitrogenfertilization;itisalsoreleasedwhenbiomassisburned.CH4isoftenabsorbedbythemicrobialcommunityinforestsoilsbutmayalsobeemittedbywetlandforestsoils.Whenbiomassisburnedineitheraprescribedfire/controlburnorinawildfire,precursorpollutantsthatcancontributetoozoneandothershort‐livedclimateforcersaswellasCH4areemitted.Awildfireisanunplannedignitioncausedbylightning,volcanoes,unauthorizedactivity,accidentalhuman‐causedactions,andescapedprescribedfires.Aprescribedfire/controlburnisanyfireintentionallyignitedbymanagementunderanapprovedplantomeetspecificobjectives.

Someofthecarboninforestsisreleasedtotheatmosphereaftertheharvestoftimber.However,theamountofthecarbonreleased,andwhen,dependsonthefateoftheharvestedtimber.Ifthetimberisusedtomakewoodproducts,aportionofthesequesteredcarbonwillremainstoredforuptoseveraldecadesorlonger.Iftheharvestedtreesareburnedandusedtoproduceenergy,carbonwillbereleasedthroughcombustionbutmayalsopreventcarbonemissionsthatwouldhavebeenreleasedthroughtheburningoffossilfuels.Suchemissionsfrombiomassenergyuseare

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-7

typicallycombustedwithhigherefficiencyascomparedtoopenbiomassburningaswouldoccurinawildfiresituationnettinglowercarbonemissions.

6.1.1.3 ForestSectorSchematic

Figure6‐1isasimplifiedrepresentationofthekeyforestcarbonpools,carbontransfers,andGHGfluxesfortheforestsystem.Atthistime,CO2isthemainGHGrepresentedcomprehensively.Emissionsofnon‐CO2GHGsinteractwithothersectors;atthistime,potentialfluxesofnon‐CO2GHGsarerepresentedinageneralmannerontheschematic.Theproportionoftotalsystemcarbonineachpoolcanvaryovertimedependingonavarietyoffactors;ratesofcarbontransferarealsovariable.

6.1.1.4 ManagementInteractions

Forestrypracticestypicallytriggerecosystemresponsesthatchangeovertime.Forexample,anewlyestablishedforestwilltakeupcarbonatalowrateinitially,andthenpassintoaperiodofrelativelyrapidcarbonaccumulation.Thecarbonuptakeratewillthentypicallydeclineasheterotrophicandautotrophicrespirationincreaseandgrowthisbalancedagainstmortalityintheolderforest.Fromthispointintime,standinglivetreebiomassmaynotincrease,butevidencesuggeststhatcarbonmaycontinuetoflowintootherforestcarbonpoolsuntiltheforestisremovedbyharvestoranaturaldisturbanceevent.

Theneteffectsofmanagementactivitiesoncarbonflowsinforestecosystemsincludechangesinmanydifferentpoolsofcarbon(suchasabovegroundbiomass,belowgroundbiomass,litter,soil,etc.).Carbonaccountingshouldbecomprehensive,addressingtheneteffectsofactivitiesonallcarbonflows.Forestryactivitiescausecarbontomovebetweenthevariouspoolsandto/fromtheatmosphere.Forexample,forestmanagementmaybeveryeffectiveatincreasingtheaccumulationofbiomassincommerciallyvaluableforms—thatis,inthetrunksofcommercialtreespecies.Thisincreasedgrowthmaysimplyresultfromreducingcompetitionfromothertypesoftrees,causingatransferofcarbonuptakefromonegroupoftreestoanother.Forestryactivitiescanalsohaveeffectsonforestsoils,woodydebris,andtheamountofcarboninwoodproducts.Thenetcarbonfloweffectsofanyactivitywillbethesumofalltheindividualeffectsonthedifferentcarbonpools.

Inaddition,theremaybeinteractionsbetweenbiologicalandphysicalprocessesthatareaffectedbyforestmanagementtreatmentsornaturaldisturbances(e.g.,changesinalbedoduringforestregeneration,afterwildfires).Whiletheseinteractionsoccur,researchinthisfieldisintheearlystagesandsuchinteractionsarebeyondthescopeofthisguidance.

6.1.1.5 RiskofReversals

Carbonthatissequesteredinsoils,vegetation,orwoodproductsisnotnecessarilypermanentlyremovedfromtheatmosphere.Forestryactivitiesintendedforonepurposemaybechangedbyadifferentlandownerorachangeinmanagementobjectives.Landownersmaychangetheirpractices,causingthereleaseofstoredcarbon,ornaturaldisturbancesmaycausethelossofstoredcarbontotheatmosphere.Insectepidemics,drought,orwildfiremayhappenatanytimeandmayaffectalloronlyaportionofthelandareawithinactivityorentityboundaries.Naturaldisturbancesmayberareevents,inwhichcasetheeffectsonestimatedcarbonflowsmaybesmallwhenaveragedoverlargeforestedareasorlongperiodsoftime.Catastrophicdisturbancessuchaswindstormsmaycauseobviousandeasilyestimatedchangesincarbonstocks,whileinothercases,suchasaone‐yearperiodofinsectdefoliation,itmaybedifficultafterafewyearstoseparatetheeffectsofthenaturaldisturbancefromotherfactors.ItshouldbenotedthatGHGregistriesgenerallyrequireentitiestocalculatecarbonstocksandfluxesandgenerallyrequireentitiestoconductanassessmentofriskofreversalofprojectedcarbonvalues.Suchassessmentsgenerally

Cha

pter

6: Q

uant

ifyin

g G

reen

hous

e G

as S

ourc

es a

nd S

inks

in M

anag

ed F

ores

t Sys

tem

s

6-8

Figure6‐1:Schem

aticofForestCarbonPools,CarbonTransfers,andGreenhouseGasFlux

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-9

includeriskofnaturaldisturbancessuchasfire,drought,insectanddiseasemortality,windthrow(hurricane,tornado,highwindevents),aswellasfinancialrisks,managementrisks,andsocialpoliticalrisks.Theseriskassessmentsarecommonlyusedtogenerateavaluethatdiscountstheprojectedcarbonvalueofmanagementactivitiesandtoprovidean“insurancepolicy”againstreversalsthatmaybeusedtoensurethataprogram’sclimatebenefitsarerealized.Manyforestmanagementpracticescanreducethesenaturalhazardrisks(suchasfuelhazardreduction,forestthinningforgrowthorresiliencetodroughts,climatechange,insectordiseaseagents,anduseofprescribedfiretoreduceriskoffires).Reducingtheriskofreversalthroughmanagementmayleadtoreducedemissions,long‐termnetincreaseincarbonstocks,andimprovedresultsinariskassessment.

6.1.2 SystemBoundariesandTemporalScale

Forthisreport,thenominalsystemboundariesaretheextentofthelandowner’sproperty.Estimationmethodspresentedinthissectionarefortheforestsector;however,wheretheforestsectormayinteractwiththeanimalagricultureorcroplandsandgrazinglandssectors,theseinstancesarenotedandlandownersshouldrefertotherelevantsectorguidance.AlandownermayneedtouseestimationmethodsforseveralsectorstoachieveacomprehensivereportofGHGsourcesandsinksfortheirproperty,ensuringthatdoublecountingdoesnotoccur.Inaddition,ifland‐usetransitionsoccurwithintheproperty,thesemustbeaccountedforsothatapparentchangesincarbonstocksorfluxesare“real”andnottheresultofanunrecordedtransferfromonesectortoanother.WhileGHGfluxeswilloccuracrossthesystemboundary,thesearegenerallynotestimatedexceptintheinstanceofharvestedwoodproducts(HWPs).

Theforestsectorpresentsanaccountingchallengerelatedtotemporalscalethatmaynotoccurinothersectors.Whilemanyfarmsoperateonanannualcycle,forestryoperations,bytheirnature,occurovermultipleyearsanddecades.Whileannualestimationandreportingarerequired,annualmeasurementsofforestcarbonpoolsarenoteconomicallyfeasible,norarechangesincarbonstocksgenerallydetectablewithinacceptableerrorlevelsonanannualbasis.ThisnecessitatestheuseofmodelsandprojectionstoassessthecarbonconsequencesofmanagementpracticesandevaluatethepossibleGHGbenefitsofachangeinmanagementpractices.Throughouttheforestguidance,referenceswillbemadetoseveraltypesofestimatesthatmaybegenerated.ATypeIestimateistheestimateofthecarbonstockinthecurrentyear(orarecentpastyear)basedonfieldmeasurementsandotherdata.Toassessthecarbonimpactsofapracticeovertime,anecessarysteptogenerateanannualestimate,projectionsoffuturecarbonstocksmustbemade.ThiswillbereferredtoasaTypeIIestimateandwillrequiretheuseoflookuptables,simulationmodels,orothertools.ATypeIIIestimateisusedtoassessthechangeintheGHGfootprintasaresultofachangeinmanagementpractice.TogenerateaTypeIIIestimate,alandownerwillneedtoproduceTypeIIestimatesforthecurrentpracticeandthepracticeunderconsiderationandcomparethetwo.Whilesomelandownersmayrequireonlyanestimateofcurrentcarbonstocks(TypeIestimate),manywillbeinterestedingeneratingestimatesoftherateofcarbonstorageovertime(TypeIIestimate),whichnecessitatestheuseofmodelstoprojectforestgrowth.TheoverallgoalofthisguidanceistoenablealandownertodevelopanestimateoftheirGHGfootprintandtoassessthepotentialeffectsofchangesinmanagementpracticesorlanduseonthisfootprint(forforestsystems,thiswillbedominatedbycarbon).TypeIIestimatescanbegeneratedandcomparedforthecurrentmanagementschemeandmultiplealternatives(whichmayincludea“noaction”scenario).Comparingtheestimatespermitslandownerstoevaluatethepotentialimpactsofawiderangeofpossiblefactors,includingforegonegrowth,land‐usechange,andchangesinmanagementpractices.

Generally,entitiesreportannuallyforthelifeofaproject.Sinceforestsmaylastindefinitely,thereisnobiologicalending,althougheventssuchasland‐usechange,anaturaldisturbance,orbiome

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-10

shiftfromclimatechangemayeffectivelyendthelifeofaspecificforestorforesttype.Variousprogramsmayimposetimelimitsforreporting,ortheentitymaychooseaprojectlengththatisconsistentwithmanagementobjectives.Theaccountingmethodsarenotaffectedbyprojectorreportingperiodlength;thereforenospecificrecommendationsaremadeinthisguidance.

6.1.3 SummaryofSelectedMethods/Models

6.1.3.1 FieldMeasurementsofCarbonPoolsandFluxes

Methodsforestimatingthekeyforestcarbonpoolsarewelldevelopedandfairlystandard.PoolsaredefinedinSection6.2,althoughdetailedmethodsarenotgiven.Methodsformeasuringforestcarbonstocksaredescribedinavarietyofpublications,includingtheIPCCGoodPracticeGuidanceforLandUse,LandUseChange,andForestry(IPCC,2003),Pearsonetal.(2007),andHoover(2008),amongothers.AstheForestInventoryandAnalysis(FIA)programoftheUSDAForestServiceistheFederalprogramtaskedwithprovidingnational‐scaleestimatesoftheU.S.forestcarbonstocks/flux(Heathetal.,2011),documentedinventoryproceduresfromthisprogram(USDAForestService,2010a;2010b)serveasabasisformanyfacetsofentitylevelcarbonreportingprescribedinthisdocument.

6.1.3.2 LookupTablesandRegionalEstimates

ThemostcomprehensivecollectionoftablesofcarbonstockestimatesisSmithetal.(2006).Estimationmethodsaredescribed,andestimatesforeachcarbonpoolareprovidedbyforesttypeforeachregionoftheconterminousUnitedStates.ThevolumeincludesmethodsandtablestoestimatecarboninHWPs.

6.1.3.3 Models

Avarietyofmodelsmaybeusedtoassistintheestimationofforestcarbonstocksandstockchanges.Modelswillbedescribedinmoredetailinthesectionsthatfollow,butforreferencepurposes,briefsummariesofthemostcommonlyusedmodelsareprovidedbelow.Someofthesemodelsarecomplexandmayrequireasubstantialtimeinvestment.Interactingwithsomeofthesemodelsoftenrequiresspecialistknowledgeortrainingorboth.Forsuchmodels,anonlineestimationtoolcouldbedevelopedsothatlandownerswouldnotneedtolearneachindividualmodel,butwouldinteractwiththemthroughtheinterfaceofanestimationtool,whilethecomponentsoperateinthebackground.Whileallmodelshavestrengthsandlimitations,themodelsrecommendedforuseineachsectionofthisreportwereselectedbecauseoftheirnationwidecoverage,historyofperformance,andsuitabilityforthistask.

ForestVegetationSimulatorandFireandFuelsExtensionCarbonReports.TheForestVegetationSimulator(FVS)isanationalsystemofgrowthandyieldmodels,withmultipleregionalvariants,thatcanbeusedtosimulategrowthandyieldforU.S.forests.FVSisastand‐levelmodelandcansimulatenearlyanytypeofforestmanagementpractice.TheFireandFuelsExtension(FFE)toFVScanbeusedtogeneratereportsofallcarbonpoolsexceptsoilbutincludingHWPs;nonCO2GHGsarenotincluded.1Anumberofgeographicvariantsareavailable,eachwithregionallyspecificequationsanddefaultvalues.2

i‐Tree.Twoofthetoolsini‐Treeestimatecarbonstoragewithinurbantrees,annualcarbonsequestration,andcarbonemissionsavoidedthroughenergyconservationduetourbantrees.Onetool,theUrbanForestEffects(UFORE)model,focusesonanentireurbanforest.Theothertool,

1Seehttp://www.fs.fed.us/fmsc/fvs/index.shtml2Suggestedvariantsmaybefoundhere:http://www.fs.fed.us/fmsc/fvs/whatis/index.shtml

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-11

STRATUM,focusesonstreettreepopulations.Treesample(e.g.,fromrandomfieldplots)orinventorydataarerequiredtorunthemodel.Modelstoestimatefuturecarboneffectsbasedonlocalfielddataanduser‐definedmortalityandplantingrateshavealsobeendeveloped.3

FirstOrderFireEffectModel.TheFirstOrderFireEffectsModel(FOFEM)isanationallevelmodelwithgeographicvariants,designedtopredicttreemortality,fuelconsumption,smokeproduction,andsoilheatingcausedbyprescribedfireorwildfire.4

COMSUME.CONSUMEisadecision‐makingtooldesignedtoassistresourcemanagersinplanningforprescribedfireandimpactsofwildfire.CONSUMEpredictsfuelconsumption,pollutantemissions,andheatreleasebasedonfuelloadings,fuelmoisture,andotherenvironmentalfactors.5ItallowsestimationofGHGemissionsandconsumptionfrompost‐harvestandthinningactivities.

6.1.4 SourcesofData

SourcesofavailabledatathatmaybeappropriateforuseindevelopingestimatesofGHGemissionsandcarbonsequestrationvarybycarbonpool(orflux).Inallcases,fieldcollectionofdataispossible,andmaybetheonlyavailableapproachforthoseinstanceswherecredibledefaultvalueshavenotbeendevelopedand/orlookuptablesarenotavailable;thismaybeparticularlyrelevantforagroforestryandurbanforestryapplications.Inthecaseofmanyofthenon‐livingforestcarbonpools,regionaldefaultvaluesareavailablefordowndeadwood(DDW),forestfloor,andstandingdeadwoodthroughtheFIAprogram,aswellasanumberofdocumentsdevelopedinsupportofofficialU.S.governmentestimates.AllFIAdataareavailablethroughanumberofportals,includingtheFIAdatabasetools—ForestInventoryDateOnline(FIDO)andEVALIDator—andtheCarbonOnLineEstimator(COLE),6whichinteractsdirectlywiththeFIAdatabase.SeeTable6‐2forapartiallistofpotentialdatasources.

Currently,valuesforsoilorganiccarbon(SOC)stocksaredrawnfromtheStateSoilGeographic(STATSGO)database,andareofcoarsespatialresolution.Alimitedamountoffield‐sampledSOCdataarealsoavailablethroughtheFIAdatabaseaspartoftheForestHealthMonitoringportionoftheinventoryprocess.CarboninlivetreebiomassisalsoavailablefromFIAandlikeothervariablescanberetrievedatthecountylevel.TheFIAsamplingdesignisintendedtomeetaspecifiederrortargetatlargeareasofforestland;soFIAdatamaynotbeappropriateforuseatsmallerspatialscales.Estimatesbasedonasmallnumberofplotsmaypresentanunacceptableerrorlevel.COLEandEVALIDatorprovideerrorestimatesforallvariables;thesevaluesshouldbecarefullyconsideredbeforethedataareusedtodevelopestimatesforaparticularsite.

DataforemissionsofotherGHGsfromforestsarenotwidelyavailable,althoughestimatesandcalculationmethodsarebetterdevelopedforN2OthanCH4.TheU.S.EPAandIPCCprovideestimationmethodsandemissionsfactorsforbothgasesfromwildfires,andforN2Ofromforestfertilization(IPCC,2006;U.S.EPA,2011).TheU.S.EPApublishesaNationalEmissionsInventoryeverythreeyears,whichprovidesestimatesforwildfireaswellasprescribedfireforcriteriapollutantsaswellashazardousairpollutants,includingsomeGHGspecies(U.S.EPA,2012a).

3Seehttp://www.itreetools.org/4Seehttp://www.firelab.org/science‐applications/fire‐fuel/111‐fofem5Seehttp://www.fs.fed.us/pnw/fera/research/smoke/consume/index.shtml6Seehttp://www.ncasi2.org/COLE/index.html.COLEwasdevelopedthroughUSDAForestServicefinancialsupport,butiscurrentlyhostedbyNCASI.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-12

6.1.5 OrganizationofChapter/Roadmap

ThischapterprovidesguidanceonestimatingcarbonsequestrationandGHGemissionsfortheforestsector.Incaseswherealandowner’sholdingsinvolvemultiplelanduses,guidancefortheothersectorsshouldbeconsulted.Inthischapter,attemptstonoteareaswherecross‐sectorinteractionsarelikelytooccurhavebeenmade.Wetlandsandhydrologicallymanagedsoilsareimportantinseveralsectors,andforthisreasonguidanceforestimatingGHGemissionsandsequestrationfromwetlandsystemsiscoveredinaseparatesection,outsideofthecroplands/grazinglandsandforestsectors.

Thechapterisorganizedtoprovideanoverviewoftheelementsofforestcarbonaccounting,includingdefinitionsofthekeycarbonpoolsandbasicmethodsfortheirestimation.Nextisasectionrelatingtoestimationmethodsincaseswhereforestshavebeenestablished,re‐established,and/orcleared.TheforestmanagementsectionconsiderstheGHGimplicationsofavarietyofcommonlyemployedmanagementpractices,andisfollowedbyguidanceontheestimationofcarboninHWPs.Whileagroforestrysystemsandurbanforestsmaynotbeconsideredastraditionalforestlandscapes,theworkinggrouprecognizestheimportanceoftreeslocatedoutsideofforests.Sincethemostimportantcomponentinthesesystemsisoftenthelivebiomass,urbansystemshavebeenincludedintheforestsector.Agroforestryisacomplextopic,combiningaspectsofforestry,croplandagriculture,andanimalagriculture.Sinceagroforestryismostlikelytobepracticedonlandsprimarilyusedforagriculture,theestimationguidanceisprovidedinthecroplandsandgrazinglandssectionofthedocument.Itisimportanttonotethatagroforestryhasmanycross‐sectorlinkages,andacompleteestimateoftheGHGimplicationsofagroforestrypracticesmaynecessitateconsultationoftheforestmethodsprovidedhere.Asnotedabove,naturaldisturbanceisoneoftheimportantrisksofreversalintheforestsector,andthefinalsectionprovidesguidanceonestimatingtheimpactsfromnaturaldisturbanceinforestedsystems.

Theremainderofthischapterisorganizedasfollows:

Section6.2:ForestCarbonAccounting

Section6.3:Establishing,Re‐establishing,andClearingForest

Section6.4:ForestManagement

Section6.5:HarvestedWoodProducts

Section6.6:UrbanForests

Section6.7:NaturalDisturbances

Table6‐2showsinternetsitesavailableforinformationoncarbonestimation.Figure6‐2showsadecisiontreefortheforestsectorshowingwhichforestchaptersections(i.e.,sourcecategories)arerelevantdependingonwhichforestactivitiesaretakingplaceforanentity.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-13

Table6‐2:InternetSitesAvailableforInformationonCEstimation

Internetsite Organization RelevantContent

http://fia.fs.fed.us/ USDAForestService,ForestInventoryandAnalysis

Foreststatisticsbystate,includingcarbonestimates

Sampleplotandtreedata Forestinventorymethodsandbasicdefinitions

http://www.fhm.fs.fed.us/

USDAForestService,ForestHealthMonitoring

Foresthealthstatus Regionaldataonsoilsanddeadwoodstocks Foresthealthmonitoringmethods

http://www.usda.gov/oce/climate_change/greenhouse.htm

USDAGHGInventory State‐by‐Stateforestcarbonestimates

http://unfccc.int/http://www.ipcc.ch/

UNFCCCandIPCC Internationalguidanceoncarbonaccounting

andestimationhttp://soildatamart.nrcs.usda.gov/

USDANaturalResourcesConservationService

SoilDataMart:accesstoavarietyofsoildata

http://www.nrs.fs.fed.us/carbon/tools/

USDAForestService,NorthernResearchStation

Accountingandreportingprocedures Softwaretoolsforcarbonestimation

http://www.eia.gov/oiaf/1605/gdlins.html

U.S.EnergyInformationAdministration,VoluntaryGHGReporting

Methodsandinformationforcalculatingsequestrationandemissionsfromforestry;seePartI,Appendix

http://www.epa.gov/climatechange/emissions/usinventoryreport.html

U.S.EnvironmentalProtectionAgency

MethodsandestimatesforGHGemissionsandsequestration

http://www.comet2.colostate.edu/

USDANaturalResourcesConservationServiceandColoradoStateUniversityNaturalResourcesEcologyLab

Web‐basedtoolforestimatingcarbonsequestrationandnetGHGemissionsfromsoilsandbiomassforU.S.farmsandranches

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-14

Figure6‐2:DecisionTreeforForestSectorShowingRelevantChapterSectionsDependingonApplicableSourceCategories

NO

NO

YES

YES

NO

See Section 6.7:Natural Disturbances

YES

YES

NO

Start

Chapter 6 is not applicable for your 

entity. 

Did you have any natural disturbances 

(e.g., fires, pests, storms) in your forest 

stands?

Did you establish new, 

re‐establish, or clear forest stands on your 

land?

Did you initiateany improved forest 

management practices on your forest stands?

Did youharvest any wood for 

products from your forest stands?

Do you have forest stands that are located 

in an urban area?

See Section 6.3:Establishing, 

Re‐establishing, and Clearing Forest

See Section 6.4:Forest Management

See Section 6.2:Forest Carbon Accounting

See Section 6.6:Urban Forestry

See Section 6.5: Harvested Wood 

Products

YES

NO

NO

YES

NO

YES

YES

Do you have forest stands on your 

land?

Do you have additional forest 

stands ?

End

NO

Did you useagroforestry: e.g., 

windbreaks, riparian forest buffers, alley cropping, 

silvopastures?

See Section 3.4: Agroforestry

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-15

6.2 ForestCarbonAccounting

6.2.1 DescriptionofForestCarbonAccounting

Thebasicquestioninherentwithinthebroadercontextofforestcarbonestimationis:“Howmuchcarbonisinthisforest?”AnydiscussionofforestsorforestryactivitiesinthecontextofGHGsdependsonquantifyingforestcarbon.Forestecosystemsaregenerallyrecognizedassignificantstocksofcarbon,andaggrading,orgrowing,forestscanbestrongcarbonsinks.Disturbancesandforestmanagementinfluencethesizeandratesofchangeofthesestocks.Itisimportanttonotethatforestcarbongenerallyisnotmeasureddirectly(e.g.,collectingforestbiomasssamplesforlaboratorydeterminationofcarboncontent).Itisusuallyquantifiedindirectlyfromstandardforestinventoriesandassociatedcarbonmodels(e.g.,littercarbondependentonforesttypeandstandage).Forlivetreepools,forestinventoriesoftenonlymeasurelimiteddimensionalattributes(e.g.,diameterandheight)ofindividualtreesandusebiomasscomponentmodels(e.g.,boleandcrowns)andwooddensityvaluestoconvertthesevaluesintoanestimateoftotaltreebiomass.Onceanestimateofbiomassisattained,astandardcarbonconversionconstantisappliedtoproduceacarbonstockestimate.Carbonconversionsvaryslightly,but50percentofdryweightisausefulroundvalueapplicabletoallvegetationandsoundwood(IPCC,2006).Forotherpools,suchaslitterlayersandsoilorganicmatter,specificcarboncontentperunitvolumedependsondecayandcompositionofthematerialandisgenerallylessthan50percentcarbon.Giventhediversityofestimationproceduresandcarbonpooldefinitions,areasonableselectionofmethodologiesshouldbeavailableforentitieswishingtoassesstheirforestcarbon.

Amajorattributeofcarbon“accounting”istoexplicitlydocumentanddefineaccountingproceduressuchthatforestcarbonreportsarecomparableacrossownershipsandforestecosystems.Absolutequantitiesofcarbon,orcarbonmass,arenotonlyafunctionofaspecificforestbutalsodependentonhowpoolsaredefinedandhowthemassofcarbonwithinthepoolisestimated.Forexample,bothremotelysensedimagesandground‐basedtreemeasurementscanprovideseparateestimatesofthesameforest.Thesetwotechniquesareunlikelytoprovideidenticalestimatesduetomethodologicaldifferences,includingthefactthateachapproachmaydefinedifferentpopulationsofinterestandthusaccountfordifferentsetsoftrees.Identifyingandresolvingsuchissuesisanobjectiveofforestcarbonresearch.Notallforestcarbonassessmentsormanagementplansneedtoencompassallcarbon(orGHGs)poolsifthecarbonisproperlyidentified.Measuringthecurrentstateofaforest’scarbonstocksandrecentchangesisapartof

MethodsforForestCarbonAccountingUtilizedinthisGuidance

Rangeofoptionsdependentonthesizeoftheentities’forestlandincluding:

− FVS‐FFEmodule(entitiesthatfitthelargelandownerdefinition),and

− Defaultlookuptables(entitiesfittingthesmalllandownerdefinition).

Theseoptionsuse:

− AllometricequationsfromJenkinsetal.(2003a),and

− DefaultlookuptablesfromSmithetal.(2006;GTRNE‐343)—defaultregionalvaluesbasedonforesttypeandageclassdevelopedfromFIAdata.

Thesemethodswereselectedbecausetheyprovidearangeofoptionsdependentonthesizeoftheentities'forestland.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-16

developingabaseline,whichcanthenbeusedforadditionalanalysis.Abaselineofpastcarbonstocksandchangecanbeconstructedandusedwithmodelingtodetermineprojectionsoflikelyfuturecarbon.Similarly,abaselineisnecessaryforanalysisofalternatemanagementoptionstoevaluatepotentialforsequestration/emission.Thetechnicalspecificationsofbaselines(e.g.,startingyearandincludedstockcategories)areoftenasocial/politicaldecision,andarebeyondthepurviewofthisdocument.However,tostandardizeforestcarbonaccountingoptionsforthepurposeofentityreporting(e.g.,woodlandowners),thisdocumentwillproposeasinglesetofforestcarbonpooldefinitions.Thespecificrecommendationsincludedhereareintendedtodirectlandownerstotoolsanddatasourcesspeciallydevelopedforquantifyingforestcarbon.Notethattheselistedprocessesarenotintendedtoexcludealternativedatasummariesthatmaybeavailabletoentities.Detailsarediscussedbelowinthediscussionoftherespectiveforestcarbonpools,butthegeneraloptionslistedindecreasingaccuracy(andcost)includethefollowing:

(1) Measure/sampleyourforestandestimatecarbonfromthesedata(reducesampledatasoastothenapplyavailablebiomassequationsorothercarbonconversionfactors);

(2) Characterizeyourforestaccordingtoclassifications(i.e.,lookuptables)basedonstandorsiteattributesderivedfromrecordsinthenation’sforestinventorydatabase(FIADB)(Woodalletal.,2010;Woudenbergetal.,2010);or

(3) Useassociatedmodels(FIDO,COLE,etc.),whichbaseyourforest’scarbonestimatesonrepresentativedatasampledbyotherswithcriticaldependentuservariableinput(e.g.,standage).

Notethattheabovethreeoptionsarenotnecessarilymutuallyexclusive.Forexample,FIADBdataorsimilarmodels(Option2)arebasedonpermanentinventoryplotsamplingandcarbonconversion(Option1),andlookuptables(Option3)arebasedontheFIADB(Option2).Therecommendedforestcarboninventoryoptionsinvolvetradeoffsincostsandlevelofinformationuniquetotheentities’forestland.

Theprocessofobtainingforestcarbonestimatesdependsoncircumstancesuniquetoeachentity,butmostlydependsontheintendedaudienceandtheresourcesavailableforforestinventory.Forthisguidance,atwo‐tiersystemisinplace.Thegoalistobeasinclusiveaspossiblewhilenotcreatingameasurementburden.Smallerholdingsthatarenotactivelymanagedareunlikelytobeinventoried;atwo‐tierapproachpermitsownersofsuchholdingstoestimatetheirfootprintandthepotentialchangesfromchangesinpracticesappliedwithoutincurringthecostsofmeasurement.Smallerlandownerswhohaveinventorydataorwhowishtoacquireitshouldusethetoolsandprotocolsdescribedforlargelandowners.

Landownersizeclassesaredefinedasfollows:

Landownerswhohold200ormoreacres(80.9hectares[ha])offorestlandshouldfollowthemethodsforlargelandowners.Also,landownerswhoholdlessthan200acres(80.9ha)offorestlandshouldfollowthemethodsforlargelandownersifthreeormoreofthefollowingaretrue:

Landownerownsormanagesmorethan50forestedacres(20.2ha)

Landowner’sforestiscertified

Landownerhasdevelopedaforestmanagementplan

Landowner’sforestedpropertyhasahistoryoftimberharvesting

LandownerparticipatesinStateforesttaxabatementprograms

Landownersnotmeetingthedefinitionoflargelandownershouldfollowthemethodsforsmalllandowners.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-17

Recommendedmethodsdependonforestlandownersize.Smalllandownersmayusegeneralizedlookuptablesbasedonregion,foresttype,andageclasstoestimatecarbonstocks.LargelandownersshouldcollectstandardforestinventorydataandusetheFVS‐FFEmodulewithJenkinsetal.(2003a)allometricequations.ItshouldbenotedthatFVSandtheFFEarelargeandcomplicatedmodels;anytoolthatimplementsthesemethodswillrequiredevelopmentofasimplifieduserinterfacethatinteractswithFVSandFFE.

Atthistime,theJenkinsetal.(2003a)equationsarespecifiedsincetheyarenationallyconsistent.FuturedevelopmentislikelytoincludetheimplementationofamorerecentFIAbiomassestimationmethodinFVS,enablingtheproductionofestimatesthatmatchtheofficialU.S.forestcarbonestimates.Whilelocalvolumeorbiomassequationsmaybemoreaccurateforagivenlocation,useofsuchequationswillresultinadditionalinconsistenciesinresults,sonootherequationsareapprovedforuseatthistimeunderthismethodology.

Althoughcarbonreportingbeyondthatoftheentitylevel(e.g.,majortimberlandownerornationalforest)mayuserefinedmeasurementprotocols,expandedcarbonpooldefinitions,and/orancillarydata(e.g.,remotelysensedimagery),theproposedpoolsandinventorymethodologiesinthisdocumentserveasastartingpoint.Classificationofcarbonestimateswithinmulti‐tieredsystems,andlinkstomodelstoprojectfuturechangeunderalternatescenariosareaddressedattheendofSection6.2.

Tofacilitateaccounting,forestcarbonistypicallyclassifiedintoafewdiscretepools,whichshouldbecomprehensive(allorganiccarbon)withnogapsandnooverlap.Thepurposeofestablishingtheseseparatepools,orbins,offorestcarbonistwofold:(1)toalignappropriatedatawithecosystem/productcomponents(e.g.,treeinventoriesandlivetreecarbonpool),oralternativelytoidentifygaps;and(2)asapartoftheaccountingprocess,notallreportedstockorchangenecessarilyneedstoincludeallofthecarbonpools,butwhatisincludedmustbeunambiguouslyidentified.Notethatthecarbonpools(orbinsorclassifications)focusoncarbonfromphytomass.Strictlyspeaking,totalcarbonstockswithinaforestincludeanon‐plant(notoriginatingfromtheplantkingdom)percentage,butsuchpoolsarenotdefinedbecausethisisgenerallyaninsignificantproportion.Exceptionsaretheforestfloorandsoilpools,whichincludedecomposersandsoilfauna.Asometimessignificantamountofcarbonisremovedfromforestsaswoodisharvestedandusedinwoodproducts.Someofthatcarbonremainssequesteredforlongperiodsoftime,dependingontheproducts.Thus,harvestedwoodshouldbeincludedinforestcarbonestimates.

Figure6‐3isadecisiontreefortheforestcarbonaccountingsourcecategoryshowingwhichcarbonaccountingassumptions(e.g.,simulationmodels,allometricequations,biomassexpansionfactors,lookuptables)arerecommendedforanentitydependingonthetypeofactivitydataavailable.However,itshouldbenotedthatfornationalreporting—i.e.,theannualGHGinventoryreportedbyUSDAandU.S.EPA—whereindividualtreemeasurementsfromFIA’sinventoryplotsareavailable,thecomponentratiomethod(CRM)forestimatingbiomass(Woodalletal.,2011)iscurrentlyused.Again,futuredevelopmentwilllikelybringthesemethodsintoalignment.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-18

Figure6‐3:DecisionTreeforForestCarbonAccountingShowingMethodsAppropriateforEstimatingForestCarbonStocks

1Smalllandowners(asdefinedinSection6.2.1)mayusegeneralizedlookuptablesbasedonregion,foresttype,andageclasstoestimatecarbonstocks.Largelandownersshouldcollectstandardforestinventorydataanduseallometricequationstoestimatelivetreebiomasscarbon(othercarbonpoolsmaybeobtainedfromlookuptables).2Jenkinsetal.(2003a).3Notethatvolumeequationsusedbylandownersshouldalignwith“meanvolume”specifications(e.g.,rotten/culldeductions)ofSmithetal.(2006).Differentvolumeequationsanddeductionswillproducevolumeestimatesthatdifferfromthoseusedinthetables.4Smithetal.(2006).

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-19

Anotheraspectofacarbonaccountingframeworkisconsistentorcomparablerepresentationofchange,whichgoesbeyondtheidentificationofcarbonpools.Changeisaffectedbyprocessesofrecruitmentandgrowthaswellasdisturbance,mortality,andharvest.Inthemostbasicsense,changecanbethedifferencebetweentwosuccessivestockestimates.ThisiscommonforGHGreportingbasedonstandardforestinventories.Somecomponentsofchangecanbemeasuredwithintensivesamplingatsmallscales,butingeneralchangeisestimatedfrommeasurementsattwosuccessiveinventorytimes(e.g.,totalstockchange,orgrowth/removals/mortalityestimates,orremotelysenseddata),orbasedonmodelsofecosystemorbiogeochemicalchange.Abasicapproachtoquantifyingchangeinforestcarbonisbasedonthequantitiesdefinedforforestcarbonstocks.Netannualcarbonstockchangesarecalculatedbytakingthedifferencebetweentheinventoriesanddividingbythenumberofyearsbetweentheinventoriesforaselectedforestorforestarea(e.g.,Δstock=(stock2–stock1)/time).Thisstock‐changeapproach(IPCC,2006)isthechangemethodappliedtoFIAstrategic‐scaleinventoriesforthestock‐changevaluesreportedintheU.S.NationalGHGInventories(e.g.,U.S.EPA,2011).

SixStepstoForestEntityCarbonEstimation

Theapproachtoestimationofcarbonstocksandfluxesintheforestsectorisasfollows:

Step1:Determinelandownersizeclassbasedonforestarea.Basedontheacreageunderconsideration,landownersaredividedintotwogroups:“small”landownersand“large”landownersasdefinedinSection6.2.1.

Step2:Collectforestdata.Forbothsizeclassesoflandowners,somelevelofforestinventory(i.e.,fieldsurvey)dataisrequired.However,therearedifferingdatarequirementsforsmalllandownersandlargelandowners.

Smalllandownersshouldcollectbasicdataonspeciesmix(i.e.,typeofforest)andstandage(ortimesincelastmajordisturbance)withintheirforest.Greaterinventorydetailcanleadtomorepreciseestimatesofcarbon,butevenbroadgeneralizationsabouttheregion,age(and/ormeanvolume),andtypeofforestcanleadtoacarbonestimate.Theobjectiveistoobtainreasonableandconsistentestimatesovertimeatthelowestcost.Ifasmalllandownerwishestoconductaninventoryandfollowtherecommendedguidanceforlargelandowners,theyarefreetochoosethisoption.Theprincipaltradeoffisbetweencostandaccuracy;collectinginventorydataincreasesthecostofdevelopingestimatesbutincreasesaccuracy.

Largelandownersshouldgathermoreextensivedataaboutforestandstandcharacteristics.AthoroughforestinventoryiscreatedusingindustrystandardsandpracticesofthetypedescribedinGTRNRS‐18:MeasurementGuidelinesfortheSequestrationofForestCarbon.Variablesconsideredmustincludedominantspecies,dominantageclass,standdensity,andsiteclass.Inclusionofadditionalvariables,whilenotrequired,willimproveaccuracyofcarbonestimates.

Step3:Estimateinitialforestcarbonstockandannualfluxes.Quantitiesofcarbonchangeovertime.Forestcarbonestimatesaredividedintosixdiscrete,mutuallyexclusivepools,includinglivetrees,standingdeadtrees,understoryvegetation,downdeadwood,forestfloor,andsoilorganiccarbon.Anumberofpool‐specificcarbonconversionmethodsareavailable;thesemethodsusetheinventorydatagatheredinStep2toquantifycarbonforeachpool.However,thespecificmethodstobeuseddifferdependingonthelandownersizeclass.

(Continued)

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-20

(Continued)

Smalllandowners,aftercollectingobservationaldata,canuselookuptablesfromSmithetal.(2006)(alsoknownasGTR‐NE‐343:MethodsforcalculatingforestecosystemandharvestedcarbonwithstandardestimatesforforesttypesoftheUnitedStates)toestimatecarbonstocksandcarbonstockchanges.Thelookuptablesarecategorizedbyregion,foresttype,previouslanduse,andinsomecases,managementactivity.Usersmustidentifythecategoriesfortheirforestsandestimatetheareaofforestland.TofacilitateuseofthedatafromGTR‐NE‐343,atoolcouldincorporatethedatasuchthat,inmostcases,landownerswouldbeabletoselecttheirstandcharacteristicsfromadrop‐downmenuofdefaults.Basedonthelandowner’sselectionsfromthedefaultmenus,thetoolwouldproduceestimatesofcarbonstocksineachofthesixcarbonpools.

LargelandownersshouldusethedatacollectedintheirforestsurveystoperformmodelrunsusingtheFVSmodel.FVSwillusethesite‐andstand‐specificdatatoprovidemoreaccurateestimatesofcarbonstocksineachofthecarbonpools(excludingsoilcarbon,whichFVSdoesnotestimate).Soilcarbonestimatescanbedeterminedfromarangeofmethodsincludingsamplingorexistingforestsoilcarbonestimatedatasetsdependingonaspecificentity’scircumstances.

Thoughthemethodsdifferforsmalllandownersandlargelandowners,bothcalculateinitialcarbonstocksandexpectedannualratesofaccumulationunderaverageconditions(repeatingthefieldsurveyatprescribedintervalswillhelpcalibrateorvalidatethestockchangeestimates).

ThemethodsalsoallowforadjustmentsduetoHWPs(Step4),forestmanagementpractices(Step5),andnaturaldisturbances(Step6).

Step4:AdjustcarbonestimatesduetoHWPs.Harvestingactivitiescanhaveconsiderableimpactoncarbonquantityacrossthesixforestcarbonpools.Intermsofemissions,thefateoftheharvestedmaterialmustbeconsideredaswell,includingwhetherthematerialisusedinHWPsorforenergy.Asabove,themethodsforestimatingtheseimpactsdifferdependingonthelandownersizeclass.

ForHWPs,smalllandownersshouldrelyondataprovidedinlookuptablesinGTR‐NE‐343,whichprovidesfactorsforcalculationofcarboninHWPsbasedonregion,timbertype,andindustrialroundwoodcategory.Thelookuptablesdividetheharvestedforestmaterialspoolintofourdistinctfates:productsinuse,landfill,emittedwithenergycapture,andemittedwithoutenergycapture.Carbonemissionsdifferdependingonthefate,whichinturndependsontheregionandharvestmaterialcharacteristics.Byusingthelookuptables,landownerscanadjustcarbonestimatesaccordingly.

LargelandownersshouldrelyonFVStomodelforestmanagementpractices,resultinginestimatesofthecarbonimpactofthesepractices(e.g.,harvesting).Forexample,FVScanconsiderthetypeofharvest(e.g.,clearcutversusstrategicthinning)andprojecttheresultsofthisharvestoncarbonstocks,thusallowinguserstoquantifythecarbonimpactofvariousharvestingactivities,aswellasadjustingfortheultimatefateofharvestedmaterials.TheharvestedforestmaterialpoolisdividedbyFVSintothesamefourdistinctfatesasforGTR‐NE‐343:productsinuse,landfill,emittedwithenergycapture,andemittedwithoutenergycapture.Harvestsalsoimpactforestgrowthovertime,whichismodeledbyFVS.

(Continued)

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-21

6.2.1.1 ForestCarbonPools

Carbonreporting—suchasfortheU.S.reportingcommitmenttotheUnitedNationsFrameworkConventiononClimateChange(UNFCCC),whichismetbytheU.S.EPA’sofficialGHGinventory(e.g.,

(Continued)

Step5:Adjustcarbonestimatesduetoimprovedforestmanagement.Forestmanagementpractices,suchasthinningorfertilization,mayimpactcarbonfluxesaswell.Asabove,themethodsforestimatingtheseimpactsdifferdependingonthelandownersizeclass.

FVSallowslargelandownerstoquantifytheimpactofvariousforestmanagementpractices.Forexample,usingkeywords(orcombinationsofkeywords)providedbyFVS,userscangenerateestimatesfortheimpactofstanddensitymanagement,sitepreparationmethods,vegetationcontrols,variousdensitiesofplantingstock,fertilization,rotationlengthmanagement,prescribedfire/controlburnsandfuelloadmanagement,andpestanddiseasecontrol.Withgivenstandandtree‐listdata,userscandevelopabaseline,whichcanthenbecomparedtoalternativemanagementstrategies.Thisallowsforassessmentofcarbonimpactofimplementingthosemanagementpractices.ItshouldbenotedthatFVSistherecommendedmethod,evenifalargelandownerhasitsowncustominventoryandmodelingsystem,whichmightbeconsideredsuperiortoregionalmodelssuchasFVS.Theadoptionofasingle,recommendedmethodforlandownersallowsfortransparent,consistent,comparable,andcompleteestimatesacrosslandownersappreciatingthattherewillbealikelytradeoffintheaccuracy,costeffectiveness,andeaseofuseofthemethodforthoselandownerswithcustomsystems.Futuredevelopmentmayincludeameansforlargelandownerstousecustommodelsinthisframework,butthisoptionisnotavailableatthistime.

Unfortunately,thelookuptablesdonotallowforestimatesassociatedwithimprovedforestmanagement.Ifprescribedfire/controlburningisusedbyeitherlandownertype,itisrecommendedthattheemissionsfortheactivitybecalculatedasguidedinStep6.

Step6:Adjustcarbonestimatesduetoforestfiresandothernaturaldisturbances.Naturaldisturbances,suchasforestfires,storms,wind,drought,orpest/insectinfestation,canalsohaveconsiderableimpactoncarbonquantitiesacrossthesixforestcarbonpools.Landownersshouldestimatethecarbonimpactofnaturaldisturbances.

Forforestfires,wildfires,andprescribed/controlledburns,bothsmallandlargelandownersshouldrelyonFOFEMtogeneratecarbonestimates.FOFEMinputrequirementsincludebasicforesttype,sitelocation,anddominantspeciesdata,butalsoallowsuserstoinputadditionalinformation,dependingonaspecificentity’scircumstances,onamountofduff,moisturecontent,andothervariablesassociatedwithfire.Theseverityofthefirecanbecategorizedbypercentofthelandaffected.Theresultingoutputincludesestimatesofcarbonemissions.

Themethodsassumesmalllandownerscanprovideobservationalestimatesfortheimpactsofnaturaldisturbancessuchaspests,basedonthepercentageofforestlandaffectedbythedisturbance.LargelandownersmaymodelimpactsofpeststhroughavailablekeywordsandextensionsprovidedbyFVS.

Thephilosophybehindthesesixstepsisthattheyallowtheentitytoassesswhatcarbonstockstheyhaveunderanypresentconditionsandwhatstockstheymightexpectgivenimplementationofaparticularharvestingregime,changeinforestmanagementpractices,and/oravarietyofnaturaldisturbances.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-22

U.S.EPA,2011)—providesaframeworkforthepoolsdescribedhere.However,thepoolsaremodifiedtomorecloselycorrespondtotypesofforestinventorydata.Forexample,forestcarboncanbeeasilycategorizedaccordingtoabovegroundversusbelowground,orlivingversusdeadplantmaterial.Inpractice,classificationsofcarbonpoolsdependontheforestdataandhowtheyareused.Assuch,thepoolsdescribedbelowarejointlydefinedbyUNFCCCreportingrequirementsandtheuseofFIAforestinventoryastheprimarydatasource.Inotherwords,thepoolsdefinedbelowareaconvenientset,butdefinitionsandboundariesaroundpoolscanvaryaccordingtospecificcarbonestimationprocedures/capabilitiesandreportingneeds(seeFigure6‐4).

Figure6‐4:ForestCarbonPoolHierarchyShowingHowForestCarbonPoolsCanBeDelineatedintoEvenSmallerPoolsDependentontheEntityNeedsandInventoryCapabilities

Livetrees:Alargewoodyperennialplant(capableofreachingatleast15feet(4.6m)inheight)withadiameteratbreastheight(DBH)oratrootcollar(ifmultistemmedwoodlandspecies)greaterthan1inch(2.5centimeters[cm]).Includesthecarbonmassinroots(i.e.,livebelowgroundbiomass)withdiametersgreaterthan0.08in(2millimeters[mm],stems,branches,andfoliage.

Understory:Roots,stems,branches,andfoliageoftreeseedlings,shrubs,herbs,forbs,andgrasses.

Standingdeadtrees:Deadtreesofatleast1inch(2.5cm)DBHthathavenotyetfallen,includingcarbonmassofcoarseroots,stems,andbranches,butthatdonotleanmorethan45degreesfromvertical(Woudenbergetal.,2010),includingcoarsenonlivingrootsmorethan0.08in(2mm)indiameter.

Downdeadwood(alsoknownascoarsewoodydebris):Allnonlivingwoodybiomasswithadiameterofatleast3inches(7.6cm)attransectintersection,lyingontheground.Thispoolalso

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-23

includessomeless‐than‐obviouscomponentsofDDW:(1)debrispiles,usuallyfrompastlogging;and(2)previouslystandingdeadtreesthathavelostenoughheightorvolume,orleangreaterthan45degreesfromvertical,sotheydonotqualifyasstandingdeadtrees.

Forestfloor:Thelitter,fulvic,andhumiclayers,andallfinewoodydebriswithadiameterlessthan3inches(7.6cm)attransectintersection,lyingonthegroundabovethemineralsoil.

SoilorganicC:Allorganicmaterialinsoiltoadepthofgenerally3.3feet(1meter[m]),includingthefineroots(e.g.,lessthan0.08in(2mm)indiameter)oftheliveandstandingdeadtreepools,butexcludingthecoarserootsofthepoolsmentionedearlier.

Harvestedwood:Woodremovedfromtheforestecosystemforprocessingintoproducts,notincludingloggingdebris(slash)leftintheforestafterharvesting.

Thesepooldefinitionsaredevelopedaroundacommonsetinusebyanumberofpublications(e.g.,Smithetal.,2006)andattheforeststandlevel,whichinturndifferfromstockdefinitionsusedbytheUnitedStatestomeetUNFCCCnationalreportingrequirements.

Alsonotable(inthereportinglist)istheinclusionofHWP(coveredindetailinSection6.5),whichassumesthatameasurableportionofwoodremovedatharvestremainssequesteredfromreemissiontotheatmosphereforaperiodoftimethatcanbeestimated.PoolsandestimationofstocksareorganizedprimarilyaccordingtodatacollectionandestimationwithFIA’spermanentinventoryplots(phasetwo(P2),thestandardinventorymeasurements;andphasethree(P3),theforesthealthmeasurements).Notethatpooldefinitionsarenotindependentofrelatedestimators;detailsrelatedtoestimationarenotaddresseduntilsubsequentsectionsofthisguidance.

6.2.2 DataCollectionforForestCarbonAccounting

Forestcarbonistypicallyestimatedindirectly,throughapplyingconversionconstantstoastandardforestinventory,usingalocalizedbiogeochemicalmodel,orsimplylookingupspecificforestattributes(e.g.,standage,foresttype)inalookuptable(e.g.,Smithetal.,2006).Forthepurposesofthisdocumentation,astandardsetofcarbonpooldefinitionsthatarepartofFIA’snationalinventoryaredelineatedthatcorrespondtoavailablelookuptables(Smithetal.,2006).

6.2.2.1 LiveTrees

Thetreecarbonpoolsincludeabovegroundandbelowground(coarseroot)carbonmassoflivetrees.Separateestimatesaremadeforfull‐treeandaboveground‐onlybiomasstoestimatethebelowgroundcomponent.TreecarbonestimateswithintheFIADB(USDAForestService,2012;Woudenbergetal.,2010)arebasedonWoodalletal.(2011)andJenkinsetal.(2003a).Theper‐treecarbonestimatesareafunctionoftreespecies,diameter,height,andvolumeofwood.Belowgroundbiomassiscalculatedasavaryingproportionofabovegroundbiomass.Again,thisisdependentonspeciesandsizeofindividualtrees.ThepooloflivetreeswithintheFIADBisdefinedastrees,orwoodybiomasswithgreaterorequalto1inch(2.5cm)DBH.However,treeslessthan5inches(12.7cm)DBHaresampleddifferentlythanthosethatare5inches(12.7cm)ormore.Thesedifferencesshouldnotaffectprecisionintheoverallamountoftreecarbonorstandleveldensity.Saplingsaretreesatleast1inch(2.5cm)butlessthan5inches(12.7cm)DBH.The“sapling”versuslargertreedistinctionisbasedonsamplingdifferencesontheFIAplots.Thisillustratesthatpoolclassificationisdependentonboththeobviousphysicalandspatialseparationinastandaswellasdatasources.

6.2.2.2 Understory

Understoryvegetationisaminorcomponentofbiomassortheliveplantcomponent.Understoryvegetationisdefinedasallbiomassofundergrowthplantsinaforest,includingwoodyshrubsand

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-24

treeslessthan1inch(2.5cm)DBH.InFIADB‐basedcarboninventory,itisassumedthat10percentofunderstorycarbonmassisbelowground.Thisgeneralroot‐to‐shootratio(0.11)isnearthelowerrangeoftemperateforestvaluesprovidedinIPCC(2006)andwasselectedbasedontwogeneralassumptions:ratiosarelikelytobelowerforlight‐limitedunderstoryvegetationcomparedwithlargertrees,andagreaterproportionofallrootmasswillbelessthan0.08in(2mm)indiameter.EstimatesofcarbondensityarebasedoninformationinBirdsey(1996),whichwasappliedtoFIApermanentplots.

6.2.2.3 StandingDead

Thestandingdeadtreecarbonpoolsincludeabovegroundandbelowground(coarseroot)mass.Estimatesandallometryareessentiallysimilartothoseforlivetrees,withsomeadditionalconsiderationsfordecayandmechanical/structuraldamage(Domkeetal.,2011;Harmonetal.,2011).Carbonconversionsvaryslightly,but50percentisausefulroundvaluefordeadwood.However,specificcarboncontentislessforthelitterandorganiclayersoftheforestfloor.Thereisnotadeadplantmaterialpoolcorrespondingtounderstory;itisassumedtheseveryquicklybecomelitterorsmallwoodydebris.Pairingpooldefinitions(boundaries)withdatasourcesisalsoveryimportantwiththepoolsofdeadplantmaterial,becausemeasurementsspecifictoestimatesaremuchlesslikelyforDDW,forestfloor,etc.IntheFIADBthedistinctionbetween“standing”and“down”deadwoodisbasedonangleofleanandisappliedtoP2(phasetwo,“standard”forestinventoryplot)andP3(phasethree,asmallernumberofplotsthatincludeadditionalmeasurementssuchassoilsandforestfloor)data;otherdefinitionsmayvary.Forsmalldiameterstandingdeadtrees,estimatesexistbutareproblematic:FIAdataonlyprovidesamplesofstandingdeadtreesat5inches(12.7cm)DBHorlarger.Estimatesofsaplings(1–5inch(2.5—12.7cm)DBHtrees)necessarilywillbemodeled(Woodalletal.,2012).

6.2.2.4 DownDeadWood

DDWisdefinedaspiecesofdeadwoodnolongerapartofstandingdeadorsnags,yetdistinctfromsmalleroradvanceddecayedwoodoftheforestfloor.ThedefinitionlargelycorrespondstotheP3downwoodymaterialpool,andrepresentsaslightchangefromthepastdefinition.Thispoolalsoincludessomeless‐than‐obviouscomponentsofDDW:(1)debrispiles,usuallyfrompastlogging;(2)previouslystandingdeadtreesthathavelostenoughheightorvolumeorleangreaterthan45degreesfromverticalsotheydonotqualifyasstandingdead;(3)stumpswithcoarseroots(aspreviouslydefined);and(4)nonlivingvegetationthatotherwisewouldfallunderthedefinitionofunderstory.

6.2.2.5 ForestFloororLitter

Theforestflooristhelayersoflitter,oftenclassifiedasthefibric(Oi),hemic(Oe),andsapric(Oa)organiclayersabovethemineralsoilandsmallerthanDDW.Thisclassificationrepresentsachangefromthepastdefinition,whichalsoincludedthesmallwoodydebrisfromtheDDWpool.Organicsoilspresentadditionalchallengeswhendelimitingthispool.

6.2.2.6 ForestSoilOrganicCarbon(SOC)

Thispoolisorganiccarbonwithinthesoilbutexcludingcoarserootsasdefinedforlivetrees,understory,standingdeadtrees,andstumps—allasdefinedabove.Byconvention,largepiecesofwoodymaterialthatareseparatelyandindependentlyestimatedthroughsamplingandallometryareexcluded.Depthisarbitraryandsofarhasbeendefinedbythedatasetinuse.Thedatasetshouldrepresentsamplesofasmuchoftheorganiccarbonaspossible,althoughpeatlandspresentauniqueproblem.Acommonsamplingdepthis1m,althoughthisisnotanIPCCstandard.Adequatesamplingdepthmaybeascertainedthroughlocalknowledge;3.9to7.9inches(10to20

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-25

cm)maybeadequateforsomeforestecosystems,whileothersrequiregreaterdepths.Datasetsofsoilmapsfromsurveysareanothersourceofdata(inadditiontoP3plots).SOCvariabilityextendstorelativelylarge‐scalemapssuchaslocationssurroundingP2/P3plots.Thatis,soilsmapsarebasedondatawiththesamevariabilityasseenintheP3subplot‐to‐subplotprecision.

NotethatthepooldefinitionsusedbyFVSdonotmatchdefinitionsusedbyFIAinallcases.Whilethemaincategoriesofliveanddeadbiomasswillincludethesameelements,theFIAdefinitionofforestfloorincludesfinewoodydebris,whiletheFVS‐FFEdefinitionplacesfinewoodydebrisintheDDWcategory.FIAconsiderstreesunder1inch(2.5cm)DBHtobepartoftheunderstorypool,whileFVStrackstheseastreesregardlessofsize.FutureworkislikelytoincludethecapabilityofFVS‐FFEtogenerateacarbonreportwithpoolscorrespondingtothedefinitionsusedbyFIAinnationalaccounting.

6.2.3 EstimationMethods

Theflexibilityinusingthebestobtainabledatabalancedwiththeneedsandresourcesofeachindividualforestownercanprovidegood/validforestcarbonestimatesifsomebasicguidelinesarefollowed:

Carbonpoolsshouldbeexplicitlyidentifiedtomakeitpossibletoidentifypossiblegapsoroverlapsbetweenpools.Identifyingandrecognizingthatagapexists(forexample,therearenoseedlingdata,orstandingdeadtreeswerenotmeasured)ismoreusefulthanfuzzyboundariesbetweenpools.

Consistentpooldefinitionsandmethodsforcarbonestimationwithinthosepoolsarerequiredforvalidestimatesofchange.Thatis,changeshouldbebasedonthesamepoolsandmethodsatbothtime1andtime2.

6.2.3.1 LiveTrees

Variousapproachesareusedforestimatesoftreebiomassorcarboncontent;ultimately,eachreliesonallometricrelationshipsdevelopedfromacharacteristicsubsetoftrees.Here,livetreesincludestemswithDBHofatleast1inch(2.5cm).Allometrycanincorporatewholetreesorcomponentssuchascoarseroots(greaterthan0.08to0.20inches(0.2to0.5cm);publisheddistinctionsbetweenfineandcoarserootsarenotalwaysclear),stems,branches,andfoliage.Livetreebelowgroundcarbonestimatescanbetroublesome,butoverallaccuracyisbestiftheboundaryissettoconformtoavailabledataratherthanapredefinedthreshold.

Recommendedoptionsforobtainingestimatesofcarbonstockoflivetreesare:

Smalllandowners(asdefinedinSection6.2.1):Valuesobtainedfromlookuptables(e.g.,eitherthoseinSmithetal.,2006,orasotherwiseprovided)categorizedbygeographicregion,foresttype,andageclass.

Largelandowners(asdefinedinSection6.2.1):Standardforestinventory,estimatescalculatedusingindividualtreemeasurement(diameter)andtheFVS‐FFEmodulewiththeJenkinsbiomassequations(Jenkinsetal.,2003a).

Biomassequationsmustbeappliedappropriately;usingequationsoutsidethediameterorgeographicrangesforwhichtheyweredevelopedwillintroduceadditionalerrortotheestimates.GiventhehundredsofdifferenttreespeciesgrowingindiversehabitatsacrosstheUnitedStates,itisbeyondthescopeofthisdocumenttosuggestthemagnitudeoftheeffectofalternativetreevolumemodelsbeyondthenational‐scalemodelssuggestedherein.Regardlessoftheestimationapproachselected,itiscriticaltousethatmethodconsistentlyovertime.Estimatesproducedfromdifferentmethodswillvary;changingestimationmethodsovertimewillintroduceadditionalerror.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-26

AlthoughwearecurrentlyspecifyingonlytheuseofbiomassequationsbyJenkinsetal.(2003a),itisunderstoodthattheseequationsmaynotbethemostappropriateinallcircumstances.Forexample,usingequationsoutsidethediameterorgeographicrangesforwhichtheyweredevelopedwillintroduceadditionalerrortotheestimates.SomeJenkinsequationshavelimitstotheallowablediameters.SpecificguidancewillbedevelopedinthefuturetofacilitatetheuseofdifferentbiomassequationssuchasthoseusedbyFIAbasedontheCRMandlocally‐specificequations.RefertoFigure6‐3foradecisiontreefortheforestcarbonaccountingsourcecategoryshowingwhichcarbonaccountingassumptions(e.g.,simulationmodel,allometricequations,andlookuptables)arerecommendedforanentitydependingonthesizeclassandtypeofactivitydataavailable.

SamplingandAllometry.Recommendedapproachesarebasedontheapplicationofallometricrelationshiptosampledinventorydata.TheFIADB‐basedestimatesoflivetreecarbonarebasedontheplotdata–P2dataandCRMbiomassestimation(Woodalletal.,2011).Inaddition,alargenumberofotherallometricrelationshipshavebeendevelopedfortreebiomass(biomassregressionequations).Manybiomassequationsareavailableforavarietyofforesttypes;forexample,possibleoldercitationsareTer‐MikaelinandKorzukhin(1997);seealsocitationsinJenkinsetal.(2003b).TheequationsrecommendedinthisreportaretheJenkinsetal.(2003a)equations,whicharenationallyconsistentandstraightforwardtoapply.FuturedevelopmentorintegrationofthismethodintoasoftwaretoolshouldconsiderimplementationoftheCRMbiomassestimationmethodinordertobetteralignwiththemethodsusedforU.S.GHGinventoryreporting.TheCRMapproachiscomputationallycomplex,andisnotincludedatthistime.

Inventorydesignsandprotocolsarewelldocumentedbyavarietyofauthorsandwillnotbediscussedfurtherhere.AgoodexampleisPearsonetal.(2007),whichiswrittenspecificallyforcarboninventories.

LookupTables.Publishedsummaryvaluesofsimilarorrepresentativeforestsprovidequickandinexpensivemeansofroughlyassessinglikelyforestcarbon.Agoodexampleofsuchlookupvaluesarethepastrevised1605(b)guidelines,withtheforesttablespublishedasSmithetal.(2006).AlternativeversionsofrepresentativevaluesincludeFIAonlineapplicationssuchasFIDOorEVALIDator,FIA‐relatedapplicationssuchasCOLE,ormodelsfromspatialdatasuchastheFIAbiomassmaportheNationalLandCoverDatasetlayers.

Simulations/Modeling.Notonlydoforestbiometricalmodelsprovideaplatformforestimatingfuturescenariosofforestcarbonstocks,buttheycanalsobearapidmethodologyforentity‐levelcalculationofcurrentforestcarbonstocks.TheFVSisonesuchsimulationtoolthatcanprovideestimatesofcurrentforestcarbonstocksgivenanelementaryforestinventorywasconducted(e.g.,numberoftrees,size,andspecies).Inaddition,andperhapsamorepowerfulaspectofsuchatool,isthatprojectionsoffuturestandattributescanbeacquired(e.g.,forestcarbonstocks50yearsfrompresent)asdescribedinDixon(2002)andHooverandRebain(2008;2011).

6.2.3.2 Understory

Estimationproceduresanddatasourcesarelimitedforthispool.Unlessanentityhasthecapabilitytodeveloplocalizedunderstorymodelsandallometricrelationships,thedevelopmentofcarbonestimatesforthesepoolswillbelimitedtolookuptablesandsimulations/modeling.ValuesareprovidedintheSmithetal.(2006)lookuptables,whicharebasedonBirdsey(1996)andmodifiedtoapplytoFIAdata;seeU.S.EPAAnnex3.12(2010)foradditionaldetails.TheFIADBconditiontableincludesestimatesbasedonthismodel,soestimatesbasedonsimilarstandscanbeobtainedfromtheFIADB.UnderstoryvaluesareprovidedinthecarbonreportsinFVSandareregionaldefaultvaluessetwithinthemodel.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-27

6.2.3.3 StandingDead

Theprevailingdifferenceinvolume/biomass/carbonestimationofstandingdeadtreesfromlivetreesistheincorporationofdecayreductionfactorsandrotting/missing/cullcomponents(Domkeetal.,2011;Harmonetal.,2011).

SamplingandAllometry.FIAinventory‐basedestimationforstandingdeadtreesisfromP2plot,condition,andtreerecords.TreemassintheFIADBiscalculatedaccordingtoCRMmethods(Woodalletal.,2011)withrefinementstotheCRMapproachspecifictostandingdeadtreesproposedbyDomkeetal.(2011).Duringastandardforestinventory,standingdeadtreesaremeasuredandtallied,andlargelandownerscanusethisinformationwithFVStoproduceestimatesofthebiomassandcarboninthispool.

LookupTables.Publishedsummaryvaluesofsimilarorrepresentativeforestsprovidequickandinexpensivemeansofroughlyassessinglikelyforestcarbon.Agoodexampleofsuchlookupvaluesarethepastrevised1605(b)guidelines,withtheforesttablespublishedasSmithetal.(2006).AlternativeversionsofrepresentativevaluesincludeFIAonlineapplicationssuchasFIDOorEVALIDATOR,andFIA‐relatedapplicationssuchasCOLE.Notethatsomedifferencesmayappearamongpoolestimatescomparedtothesampleestimates,becausesomeorallarebasedonempiricalmodels(regressions)andnotthedirectplot‐levelmeasurementsthatarenowavailablewithintheFIADB.SmalllandownerscanobtainestimatesofthestandingdeadpoolusingtheSmithetal.(2006)lookuptables.

6.2.3.4 DownDeadWood

TherecommendedmethodforobtainingestimatesofcarbonstockofDDWforlargelandownersisestimationfromtransectdatacollectedduringtheinventory.CareshouldbetakentoadheretotheboundsbetweentheDDWandforestfloorpools(notingthatfinewoodydebrisisconsideredpartoftheforestfloorpoolinthisguidance).Smalllandownersmayrefertothelookuptablesforpoolestimates.

SamplingandAllometry.AvarietyofsamplingandestimationprotocolsisavailablefortheDDWpool;astraightforwardandcommonlyusedapproachcanbefoundinPearsonetal.(2007).

LookupTables.RegionalaveragesbyforesttypeareasdescribedinSmithetal.(2006),orestimatescanbesummarizedandextractedfromtheFIADBconditiontabletocorrespondtotheentity’sforest.However,notethatthecurrentFIADB’sDDWfromtheconditiontableisamodelindependentofP3sampling.SeeSmithetal.(2006),U.S.EPAAnnex3.12(2010),Woodalletal.(2013),andDomkeetal.(2013)fordetails.

Simulations/Modeling.DDWcarbonvaluesareprovidedinthecarbonreportsinFVS.Valuesmaybesuppliedbythelandowner;ifthesedataarenotavailable,regionaldefaultvaluesbasedonP3dataoravailabledatafortheregionandforesttypeareautomaticallyinputbythemodel.

6.2.3.5 ForestFloororLitter

Recommendedoptionsforobtainingestimatesofcarbonstockofforestfloorforalllandownersistheuseoflookuptablesbasedonforesttype,region,andstandage.Largelandownerswhoarechanginglandusesfromnon‐foresttoforestmaywishtocollectdataforthispool.

SamplingandAllometry.LandownerswishingtoestimatethesepoolsfromfielddatacanusefinewoodydebrissamplingandcarbonconversionaccordingtoWoodallandMonleon(2008),andforestfloorusingtheapproachdescribedbyPearsonetal.(2007).NotethatwhilePearsonetal.(2007)applyamasstocarbonconversionfactorof0.5(Smithetal.,2006)),othersuseaconversion

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-28

factorof0.37.Landownerswhoareestimatingtheforestfloorpoolusingfielddatashouldapplythe0.37conversionfactor.

LookupTables.RegionalaveragesbyforesttypeareasdescribedinSmithetal.(2006);estimatescanalsobesummarizedandextractedfromtheFIADBconditiontabletocorrespondtotheentity’sforest.TheseestimatesarebasedonsimulationsdescribedinSmithandHeath(2002).NotethatthecurrentFIADBconditiontableestimatesofforestfloorarethesemodeledvaluesindependentoftheP3sampling.

Simulations/Modeling.ForestfloorcarbonvaluesareprovidedinthecarbonreportsinFVS.Valuesmaybesuppliedbythelandowner;ifthesedataarenotavailable,regionaldefaultvaluesbasedonP3dataoravailabledatafortheregionandforesttypeareautomaticallyinputbythemodel(FVSemploysthe0.37masstocarbonconversionfactorwhenestimatingthispool).

6.2.3.6 SoilOrganicCarbon

PossibleoptionsforobtainingestimatesofSOCstocksare:

Sampling,followingstandardfieldmethods;

DatasetssuchastheSoilSurveyGeographic(SSURGO)Database,StateSoilGeographic(STATSGO)Database,ortheDigitalGeneralSoilMapoftheUnitedStates(STATSGO2);and

Stand/forestclassification:extractrangeofmodeledestimatesfromFIADBconditiontable.

SamplingandAllometry.SoilsamplingandcarbonestimationaccordingtoFIAP3plotprotocolscanbefoundattheUSDAForestServiceFIALibrary:FieldGuidesforStandards(Phase3)Measurements;7methodsarealsoavailableinPearsonetal.(2007),Hoover(2008),andothers.

Soilsdataaregenerallyconsidereddifficulttomeasureandspatiallyquitevariable.Theconsequenceisthatthecostsarehighandthepayoffislikelylow.Ourrecommendationisthatsamplingisonlyusefulifthereisanimportantreasontodoso,suchasachangefromnon‐foresttoforestorviceversa.Ifawildfireoccursandthereissignificantconsumptionofpeatlands,samplingshouldbeconductedandemissionscalculatedusingFOFEMand/orCONSUMEmodels.ThissituationismostlikelytobefoundintheSoutheastorNorthCentralStates.

LookupTables.Forestsoilorganiccarbonestimates—representativevaluesorlookuptables.DatasetssuchasSTATSGOorSSURGOarepossiblesources.EstimatescanbesummarizedandextractedfromtheFIADBconditiontabletocorrespondtotheentity’sforest;thesearebasedonaSTATSGO/P2overlay(Smithetal.,2006;U.S.EPA,2010).

6.2.4 Limitations,Uncertainty,andResearchGaps

Thereisoftentremendousuncertaintyassociatedwithestimatesofforestcarbonbaselines,suchthatevenatlargescales(e.g.,state‐level)thepowertodetectstatisticallysignificantchangesinforestcarbonstocksislimitedtomajordisturbances(Westfalletal.,2013).Compoundingthesamplingerroroftenassociatedwithforestinventories,thereismeasurementandmodelerrorthatmaynotbeacknowledged.Usersofanyinventories,lookuptables,ormodelsshouldremainawareofthesepotentialerrorsduringtheirapplicationofinformation.

Thereisalevelofuncertaintyassociatedwithnotonlytreevolume/biomassequations,butalsowiththevariousforestcarbonpools(e.g.,belowgroundtoforestfloor)foundacrossadiversityofforestecosystems(e.g.,tropicaltoboreal)intheUnitedStates.Researchtorefineapproachestoforestcarbonaccountingandrefinementsofassociatedmodelsiscurrentlyinprogress.Perhaps7http://fia.fs.fed.us/library/field‐guides‐methods‐proc/

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-29

someofthemostneededimprovementsareforindividualtreevolume/biomassequations,especiallyfortraditionallynon‐commercialspecies.Anotherforestcarbonpoolthatisbeinginvestigatedissoilorganiccarbon.Althoughthesoilcarbonpoolisnotexpectedtochangequicklyincomparisontolivetreepools,inmanyareasoftheUnitedStatesitisthelargestcarbonstock(e.g.,northernMinnesota).Beyondreducingtheuncertaintyassociatedwithestimatesofcarbonpools,researchisbeingconductedtorefineunderstandingoftheeffectsofdisturbanceandclimatechangeoncarbonpools.

6.3 Establishing,Re‐establishing,andClearingForests

6.3.1 Description

Conventionalparlanceattributeschangesofcarbononasiteundergoingland‐usechangeintothreedirectionalprocesses:establishing(i.e.,afforestation),re‐establishing(i.e.,reforestation),andclearingforest(i.e.,deforestation).Inrecentyears,thetermforestdegradationhasbeenusedtoacknowledgethatanexistingforestcanbesignificantlyreducedincarbonstocksandcanbeconsideredasourceofemissions,aslongasthereductionincarbonstocksisnotanaspectofnormalforestmanagement.However,thisisnotaformofland‐usechangebecausethelandremainsinforests.Thisisanimportantconsiderationunderforestmanagement,butmayalsobeimportantwhenhumanuseandremovalsofforeststockstakeplaceevenwhennotprescribedbyamanagementregime.ThemostimportantsourceofGHGemissionsfromforestsisassociatedwithforestclearing(IPCC,2007).Theconversionofforeststootherlandusesimmediatelyreducesthestockofcarboninabovegroundbiomassandsoilorganicmatter,andislikelytoreducethelong‐termcarbonstoragepotentialoftheland.Thecarbonthatwasoncestoredinforestbiomassandsoilisreducedthroughrapidoxidationbyfireorslowlyovertimebymicrobialdecomposition.Someofthebiomasscanalsoberemovedfromthesiteandconvertedtoforestproductssuchaslumber,paper,pulp,andotherproductsthathavelongertermbutvariabledecompositionrates—andhencelongertermandvariableemissionsovertime.Allofthesecomponentsofland‐usechangeneedtobeaccountedforwhendeterminingthechangesinsitecarbonstocksduetoland‐usechange.

Aparceloflandcanbeconvertedtoforest,plantation,orothertreedlandscapeeitherthroughintentionalplantingorthenaturalprocessofsecondarysuccession.Landthathadoncebeeninforestisreturnedtoforestthroughre‐establishment.Notethatthisappliestolandthatisnotcurrentlyinforest,nottoforestlandthatisregeneratedaspartofforestmanagement.Landthathadnotbeeninforest,suchasgrasslands,canbeconvertedtoforeststhroughestablishment.In

MethodsforEstablishing,Re‐establishing,andClearingForest

IPCCalgorithmsdevelopedbyAaldeetal.(2006).

Theseoptionsuse:

− AllometricequationsfromJenkinsetal.(2003a),orFVSwiththeJenkinsetal.equationswhereapplicable;and

− DefaultlookuptablesfromSmithetal.(2006;GTRNE‐343)—defaultregionalvaluesbasedonforesttypeandageclassdevelopedfromFIAdata.

Thesemethodswereselectedbecausetheyprovidearangeofoptionsdependentonthesizeofanentity'sforestland.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-30

eithercase,generallyspeaking,thestockofcarboninbiomassandsoilorganicmatterwillincreaseovertimeasaresultofthistypeofland‐usechange.Biomassincreasespredictablyastreesandothervegetationareestablishedonthesite.Soilorganicmatteralsochanges,butinlesspredictableways.Forinstance,theestablishmentofaforestplantationongrasslandincooltemperateregionsmayresultinatemporarylossofcarboninsoilorganicmatterbeforeitbuildsupagainaftertheplantationisfullyestablished.Forbothaccountingandplanningpurposes,thesechangesinstocksofcarbonmustbeestimatedandaccountedforwhenassessingtheeffectsofland‐usechange.

Currentinternationaldefinitionsarepresentedbelowanddrawadistinctionbetweenlandsthathaveneverbeenunderforestcoverandthosewhichwereinforestcoverinthepastbuthavenotbeenforestedrecently(e.g.,forthelast50years).Thesedefinitionsarepresentedherebecausetheyarecommonlyusedintheliterature;however,intermsofcarbonaccountingforlivebiomass,thereisnopracticaldifferencebetweenthetwocategories.Thegreatestimpactisonthesoilcarbonpool.Wheretheaimistoestimateentity‐levelGHGfluxes,thesetwocategorieswillbetreatedtogetherandtermed“establishingforest”inthisguidance.

6.3.1.1 EstablishingForest

Establishmentistheconversionofanon‐forestsitethatisnotnaturallyaforestedortreedecosystemorhadneverbeeninforesttoaforestorsimilartree‐dominatedlandcover.Examplesofestablishmentincludetheconversionofbarelandtoaforestandconversionofgrasslandstoforestsorplantation.Inpracticalterms,andforthesakeofthisguidance,landthathadbeeninagricultureorothernon‐forestlandcoverforalongtime(e.g.,morethan50years)thatisconvertedtotreecovercanalsobeviewedasestablishment.Hence,establishedforestlandisthatwhichhasnotbeendominatedbytreesformorethan50years.

6.3.1.2 Re‐establishingForest

Re‐establishmentisthereversionofforestsortreecoveronsitesthathadformerlyandrecentlybeen(e.g.,lessthan50years)inforestordominatedbytreecover.Examplesofre‐establishmentincludenaturalregenerationofadisturbedorclearedparcelofforesttoasecondaryforest,conversionofagriculturallandtoaforest,andestablishmentofaplantationonasitethathadoncebeenforestbutisnowinanotherlanduse(suchascropland).Itisimportanttodistinguishbetweenre‐establishmentasaland‐usechangeandforestregrowthaspartofforestmanagementortheresultofanaturaldisturbance.Forexample,aland‐usechangefromagriculturetoforestisconsideredhereasre‐establishment,whereforestregenerationfollowingawindthroworclear‐cuttingisnotconsideredaland‐usechangeresultinginre‐establishment.

Intheinternationalconventions,theIPCCSpecialReportonLandUse,Land‐UseChange,andForestry(IPCC,2000),whichwasdevelopedexplicitlyforcarboninventory,definesre‐establishmentas"theestablishmentoftreesonlandthathasbeenclearedofforestwithintherelativelyrecentpast;theplantingofforestsonlandswhichhave,historically,previouslycontainedforestsbutwhichhavebeenconvertedtosomeotheruse." Establishmentandre‐establishmentbothrefertoestablishmentoftreesonnon‐treedland.Re‐establishmentreferstocreationofforestonlandthathadrecenttreecover,whereasestablishmentreferstolandthathasbeenwithoutforestformuchlonger.Avarietyofdefinitionsdifferentiatebetweenthesetwoprocesses.Somedefinitionsofestablishmentarebasedonphrasessuchas"hasnotsupportedforestinhistoricaltime;"othersrefertoaspecificperiodofyears,andsomemakereferencetootherprocesses,suchas"undercurrentclimateconditions."TheIPCCGuidelinesdefineestablishmentasthe"plantingofnewforestsonlandswhich,historically,havenotcontainedforests"(IPCC,2000).

Asnotedabove,forthepracticalpurposesofreportingunderthesemethods,achangefromnon‐foresttoforestcoverwillbetermedestablishingforest,andthe50yeartimehorizonwillnotapply.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-31

6.3.1.3 ClearingForest

Clearingistheconversionofaforestortree‐dominatedsitetoanotherlanduseotherthanforestoratree‐dominatedsite.Oftenclearingresultsinthecompleteremovalofabovegroundlivebiomass.Examplesofclearingincludetheconversionofaforestwoodlottocroplandorpasture,conversionofaforestwoodlottocommercialorresidentialuse,andconversionofanaturalforesttoagriculture.

6.3.1.4 OtherImportantConsiderations

DistinctionbetweenLand‐UseChangeandLand‐CoverChange.Itisveryimportanttounderstandanddelineatethedifferencebetweenland‐coverchangeandland‐usechange.Becausetheterms“landuse”and“landmanagement”areoftenconfusedorusedinterchangeablythedistinctionisdefinedhere.Abasicdefinitionoflandcoveris“theobservedphysicalandbiologicalcoveroftheEarth’slandasvegetationorhuman‐madefeatures.”Abasicdefinitionoflanduseis“thetotalofarrangements,activities,andinputsundertakeninacertainland‐covertype(asetofhumanactions).Thesocialandeconomicpurposesforwhichlandismanaged(e.g.,grazing,timberextraction,conservation).”Theconventionsfoundintheliterature—Turneretal.(1994),Skole(1994),andLambinetal.(2006)—arefollowedandwereadoptedbytheIPCCin2000.Itisrecognizedthatinadoptionoftheterminologyoflanduse,land‐usechange,andforestry,theIPCCGoodPracticeGuidancedocument(IPCC,2006)generalizedtheuseoftermstoincludethesixbroadland‐usecategoriesdefinedinIPCC(2003)Chapter2andrecognizedthattheseland‐usecategoriesareamixtureoflandcover(e.g.,forest,grassland,wetlands)andlanduse(e.g.,cropland,settlements)classes.Forconvenience,theyareherereferredtoasland‐usecategories.

Werecognizeherethatthetermland‐usechangecanbeadoptedtoincludeland‐coverchanges,aswellasland‐usechanges.Thus,forthisguidance,aswithIPCC,land‐usechangewillbetheconversionofthe“typeofvegetation”fromonecovertype,suchasaforestdominatedbytrees,toacompletelydifferentcovertype,suchascroplanddominatedbynon‐woodyfoodcrops.Thedirectionofcoverchangedeterminesthenatureofthechangeincarbonstocks(e.g.,forestclearingversusestablishment).Generallyspeaking,land‐usechangeisthemostimportantconsiderationforalandowner,sincethisprocessusuallyresultsinthelargestchangeinonsitecarbon.

However,wealsorecognizethatlandownerswillhaveimportantchangestotheirlandsthroughthemanagementactivitiesthattheydeploy,andtheseactivitiescanhaveimportantimplicationsforcarbonstocksandGHGemissionsandremovals.Thus,wealsorecognizetheconceptandterminologyofland‐managementchange,whichisachangeinthetypeofactivitybeingcarriedoutonaunitofland,andthushowitismanagedorused,suchaschangingthemanagementpracticeswithinaforestfromselectiveharvesttoprotection.Land‐managementchangemayormaynothaveasignificantimpactoncarbonandotherGHGs.

Landmanagementexplicitlyreferstohowthelandisbeingmanagedorused,whilelandusereferstowhatisontheland.Anexampleoflandmanagementisatree‐dominatedsitethatisusedasaworkingforestorwoodlot.Assuch,alandownercanchangethemanagementplanforthesite—forinstance,changingitsusetoaforestreserve—withoutradicallychangingitscover.Nonetheless,evensuchchangeinusecanaffecttheamountofcarbonstoredonthesiteandinthesoils.Typically,whenaforeststandlandmanagementischangedwithoutaffectingitscovertypeitisconsideredamanagedforest,anditsaccountingprotocolsfollowthoseforforestmanagementratherthanforestablishingforests.Thusitisimportanttodetermineanddocumentboththeland‐useandland‐managementchangesthatoccuronthesite,andexplicitlyassociatethecarbonestimationapproachtoeitherestablishing/clearingforests(Section6.3)orforestmanagement(Section6.4),butnotboth.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-32

EstablishingandClearingForestversusForestManagement.Forreasonsoforderandconsistency,establishingandclearingforestisdistinguishedfrommanagement,whichisaddressedinSection6.4.Forestryoperationssuchasthinning,artificialregeneration,andharvestingareassociatedwithmanagedforestsystems.Unlessforestryactivitiesleadtoachangefromonelandusetoanotherland‐use,theseactivitiesarenottreatedusingestablishingandclearingforestaccountingprinciples.Theinitialconversionfromforesttoagriculture,forexample,wouldusetheestablishingandclearingforestrules,followedbytheapplicationofrulesforagriculture.Similarly,whenanon‐forestlandcoverisconvertedtoamanagedforesttheinitialconversionwouldbetreatedasestablishingforestandusethesemethods,butsubsequentmanagementofthestandwouldfollowforestmanagement(e.g.,forestcarbonaccountingandforestmanagement)methods.

TypesofForest.Fromastrictcarbonaccountingpointofview,theland‐coverdesignationdoesnotmatter,nordoesitschangeincovertypeaslongasonehasgoodestimatesofcarbonstocks,andcanmeasureorestimatetheirchanges.However,datausedtoestimatechangesincarbonareoftenreportedandorganizedbyforesttype,sothecompositionandstructureoftheforestoftencomesintothecomputationmethods.Moreover,toavoiddoublecounting,itisimportanttodefinewhattypeoflandscapescanbeconsideredasaforestforestablishingandclearingforest.Therearetwoelementsofadefinitionofforeststhatarewarranted.Thefirstisabasicdefinitionofaforest.Therearearangeofconditionsoftreedlandscapeswhereestablishingandclearingforestactivitiescantakeplace,frompreservedforeststowoodlotstoopenandwidelyspacedtreelandscapesandurbantreedlandscapes.Therearehundredsofvariationsofdefinitionsofforest(Lund,1999)andforeachofthesetherearesubtypes.Examiningtheimplicationsofeachvariantwouldnotbefruitful;theresultwouldbegreaterconfusion,ratherthantheclaritysought.Inastrictsense,aforestisdefinedhereusingtheU.S.‐specificdefinitionofforestland(Smithetal.,2009).Thesearelandswithtreecrowncover(orequivalentstockinglevel)ofmorethan10percent,widthofatleast120feet(36.6m),andareaof1acre(0.4ha).Treesshouldbeabletoreachaminimumheightof6.6–16.4feet(2–5m)atmaturityinsitu.Aforest‐landunitmayconsistofclosedforestformationswheretreesofvariousstoriesandundergrowthcoverahighproportionofground,oropenforestformationswithacontinuousvegetationcoverinwhichtreecrowncoverexceeds10percent.

Second,landownersmayhaveadiverselandbasethatisaffectedbydifferentforestryactivities,managedatdifferentintensities,orthathasavarietyofexistingdata.Oneofthefirststepsinpreparingentity‐wideorsub‐entityestimatesofcarbonfluxesfromforestsistoorganizetheunderlyingdataonlandconditionsintomanageableunits,referredtohereasforeststrata.Landshouldbegroupedintoforeststratausingalogicalframeworkthataggregatessimilarlandunits.Forexample,landcouldbepartitionedbyaveragetreeage,foresttype,productivityclass,andmanagementintensity.Inmanycasesforeststratawillbecontiguous,althoughthisisnotanecessarycondition.Thelandownercanselectthetypeofstratificationschemetoemploy;andthereareseveralguidesavailabletodothis.Thebetterthestratification,themoreaccurateandprecisearethecarbonestimationswiththeminimalamountofdatacollection.

Thedefinitionofaforestisusefulforconsistencyinreportingandcoversawiderangeofconditions.However,notethatthetechnicalmethodscanapplytoanytreedlandscape.Theadoptionoftheinternationalnomenclatureforforestsallowstheconsiderationofarangeofsiteconditionsandsituations.ForestsintheUnitedStatesarevaried,fromscrubwoodlandsinsemi‐aridzonestomaturedeciduousandconiferouscomplexesinthehumidzones.Inaddition,humanmanagedsystems,suchaswoodlotsandplantations,areconsideredasforests.

SimilarModalitiesandVariantsofEstablishing,Re‐establishing,andClearingForest.Thissectionrecognizesthatestablishingandclearingforestaresimilartoandindeedconceptuallyrelatedtoseveralotherland‐coverchangemodalities,whicharetreatedinotherprotocols.Theseincludebutarenotlimitedtoagro‐forestry,whichinvolvestheuseoftreesonfarms;urbanforests

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-33

andwidelyspacedtreecomplexes;treesonlandscapesoutsideofforests;woodlandsandsavannasystems;orchards;andpalmandhorticulturecomplexes.Althoughthemeasurementandestimationmethodsdescribedheremaybeeasilyadaptedtotheselandcoversandlanduses,theyarenottreatedinthissection.

6.3.2 ActivityDataCollection

Activitydataaremeasurementsorestimationsofmagnitudeofhumanactivityresultinginemissionsorremovalstakingplaceduringagivenperiodoftime.Mostoftentheareaoflandthatisconvertedfromonelandusetoanotheristhemostimportanttypeofactivitydata.Dataonareaburned,managementpractices,andlimeandfertilizeruseareotherexamplesofactivitydata.Forestablishingandclearingforest,activitydataconsistsmostlyofinformation,preferablyinmapformwithdelineatedboundaries.Forsmalllandowners,itispossibletodelineateanareaofland‐coverchangebyfootusingsimpledistancemeasurementsorwiththeaidofaGPS.Alandownermayhavedifferentactivitiesoccurringonasingleproperty,andthuseachoftheforeststratashouldbemappedandhaveseparatelydelineatedactivities.Remotesensingoraerialphotographycanbeusefulforanylandownerwithaccesstothesedata,butareespeciallyusefulforlargerlandunits.Historicalinformationonchangesintheareasoflandusesonapropertyisalsoimportant,andthesedataarefrequentlyfoundinairphotoarchivesorothermaprecords.Inadditiontotheareasandratesofclearingand/orestablishment,itisnecessarytocollectdataonspecificaspectsanddetailsoftheseactivities.Thismayincludedataontreetypes,biomass,clearingintensity,woodremovals,treeplantingdensities,andotherfactorsthatdescribedthemodalityoftheestablishingandclearingforestactivities.

6.3.2.1 EstablishingForest

Foranestablishmentactivity,itisimportanttogatherbasicinformationontheareaandlocationofeachstratumoflandusethatisbeingestablished.Forthemostpartanestablishmentactivitywillbeaplantationorsimilartypeofestablishment/forestationactivity.Thus,basicinformationonsitepreparation,speciesselection,anddensitiesofplantingscanbeusedwithaprojectionofthelong‐termplanforthesitetomakeareasonableex‐antecalculation.Ifnaturalregenerationistheprimarymeansofestablishment,estimatesofseedlingcountscanbeusedtodevelopagrowthprojection.Alternatively,regionalyieldtablesmaybeusedtoestimateprojectedstocks.Theprioruseandmanagementofthestratumorlanduseshouldalsobedocumented,sincethehistoricaluseofthelandinfluencescarbonstockandstockchangeestimates.Forinstanceestablishmentofaforeststandongrasslandwillhaveadifferentresultintermsofcarbonthanestablishmentonarowcropagriculturalfield.Onceaforestiswellestablished,forallpracticalpurposesitbecomesamanagedforestandshouldbetreatedusingthemethodsinthenextsectiononforestmanagement.Weconsidertheland‐usestratumtobeaforestwhenthecharacteristicsofthestandmeetthedefinitionofaforest.Mostoftenthiswillbewhenthesiteiswellstockedtothedefinitionalcrowncoverandheightoftrees.

6.3.2.2 ClearingForest

Themostimportantactivitydatatocollectaretheareaandratesofforestclearingforeachstratumorparcelintheprojectarea.Itisalsoimportanttoknowtheintensityofclearingandifthereareremainingtreesorothervegetationleftonsiteafterclearing.Toestimateemissions,itisnecessarytoknowalsothecharacteristicsofthestratumthatistobecleared,includingthebiomassandsoilorganicmatterofthesite.Theprocessofclearingasiteisanactivitythatcanalsobecharacterized.Informationneededincludesthefractionoftheabovegroundbiomassthatwouldbeburned,thefractionthatisleftbehindonsiteasslashanddebris,thefractionthatwouldberemovedintheformofwoodproducts,andthefractionthatisremovedintheformofotherproducts.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-34

6.3.3 EstimationMethods

Thissectionlaysouttheminimumnecessarypartsofacomputationschemeforestimatingcarbonstocksandcarbonemissionsinbiomassandsoilassociatedwithestablishingandclearingforest.Thedescriptionslaidoutherearegeneralized.Thebasicconceptbehindthemissimple:thestock,ormass,ofcarbononasitechanges,andthetaskofestimationistocomputethedifferenceinstocksbetweenthelandusebeforeandaftertheinterventionordisturbance.Whenasiteiscleared,stocksgodownandthisresultsinemissionstotheatmosphere.Whenasiteisestablished,stocksgoupandthisresultsinremovalsfromtheatmosphere.

6.3.3.1 UnitsofMeasurement

Allstockcomputationsareperformedintermsofmassofcarboninkilogramsormetrictonsperunitareainmetricsystemunits(carbonperhectareorCha−1).Ratedataarereportedintermsofchangeincarbonperhaovertime,asincarbonperhectareperyear(Cha−1year−1).Allcarbonbiomassisreferencedtoitsdryweightbasisandthefractionofbiomassincarbon.Forthepurposeofthisguidance,thefractionofdrybiomassthatiscarbonis0.5.Anexamplestockis100metrictonsCha−1,andanexamplestockchangeis100metrictonsCha−1year−1.ItisimportanttodifferentiatebetweenunitsofcarbonandCO2equivalents(CO2‐eq)andreporttheappropriateunitstothereportingentity.Forexample,somereportingprograms(e.g.,carbonmarkets)requiretheconversionofmetrictonsofcarbontometrictonsCO2‐eq.ThisconventionplacesallcarbonmassestimatesintounitsofCO2,whichcanbederivedbymultiplyingthecarbonmassby44/12.

6.3.3.2 StocksandFluxes

Thestockofcarbonistheamountofcarboninbiomassandsoilonasite.Thestockchangeisthedifferenceinthestocksfromonetimeperiodtothenext.Thischangecanbepositiveornegative,dependingonwhetherthesiteisexperiencingclearing,degradation,restoration,orestablishment.Decliningstocksovertimefromclearingordegradationresultinemissions,whileaccumulatingstocksovertimefromestablishmentorrestorationarereferredtoassequestration.

6.3.3.3 DelineatingandCharacterizingtheSiteUsedinComputation

Toestimatecarbonstocksandfluxes,itisnecessarytodefinethemappedextentandthefeaturesofthesite.Forsmallareas,suchasafarmwoodlotorforeststand,theboundariesaredefinedgeographicallyusingaGPSdevice.Ifsurveyors’reportsorotherformsofmapsandphotossuchasaerialimageryareavailable,theycanbeused.Thereareagrowingnumberofonlinetoolsthatareavailable(e.g.,GoogleMaps)thatprovidedetailedimageryoflandthatcanbeusedtodrawboundariesoftheproposedsites.Afterdefiningthepreciseboundaries,aland‐coverclassificationshouldbeperformedtodefinethevariousvegetation,cover,orsoilstratawithinthesite.Forinstance,are‐establishmentprojectwithtwozoneswithintheboundaries,oneforacommercialplantationandtheotherfornaturalregeneration,wouldbestratifiedintotwostands.Iftheprojectorpropertyistobeasinglecover,suchasanaturalregenerationforestoraplantationforest,theprojectsitecanbeasinglestratum;butotherfactorsmaybeimportant,suchaslandslopeorsoilconditions.Iftherewillbeafuturemanagementactivityassociatedwiththeproject,thisstratumshouldalsobedelineated.Inshort,anyareawithintheprojectboundarythatwouldhavedifferentcoverorcarboncharacteristicsshouldbeseparatelydelineated.Standardmappingcoordinates,projections,andgeodeticdatumsshouldbeused.

6.3.3.4 CarbonPoolsunderConsideration

Generally,IPCCandothersourcesreferencefivepoolsofcarbontomeasure—abovegroundlivebiomass,belowgroundlivebiomass,standingdeadanddowneddebris,litter,andsoilorganic

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-35

carbon.Thelandownerorprojectdevelopershouldidentifyfromthebeginningthepoolsthatwillbeaccounted.Allpoolsshouldbeincluded,unlessonecanshowthatapool’sstockchangesaresmallandunimportant—thedeminimisassumption(lessthan10percentofthetotalbaselinestock,seemorebelow)—orcanshowthatapoolwouldnothavestocklossesoremissions(e.g.,forestclearing).Inthesecases,thelandownerischoosingtobeconservativeinestimationoftheimpactoftheestablishingandclearingforestontheatmosphereforthatpool.Forinstance,inanestablishmentprojectwheretheestimationofsoilcarbonchangemaybedifficult,timeconsuming,orcostly,andthesoilcarbonchangeisassumedtobedeminimisinmagnitude,itmaybeeliminated.Or,ifitcanbedemonstratedthatthesoilpoolwillbeaccumulatingcarbon,thelandownermayselecttonotcountthatpoolandthusbeconservativeinthesequestrationpotentialoftheproject.Woodproductsthatareremovedfromthesitethroughharvestarenotbythemselvesconsideredaseparatepool,butthelandownerisadvisedtodocumentthisamountanditsfate,wherebyfatecanbe,forexamplehardwoodproducts,paperproducts,orfirewood(seeSection6.5).

6.3.3.5 InitialCarbonStockMeasurement

Thecarbonstocksinthemeasuredpoolsthataretobereportedneedtobedeterminedatthebeginningoftheprojectinordertodefineareferencecarbonamounttowhichfuturechangeswillbecompared.Whetherthesiteisaforestbeforeitsconversionoragriculturallandbeforere‐establishmentoftreecover,theinitialconditionsintermsofcarbonmustbereported.Theinitialcarbonstocksinallstrataareindividuallydeterminedfromlookuptables,satelliteimagery,orFIAdatabase,oraremeasuredandreportedaccordingtothedetailedmeasurementmethodsgivenbelow.Thereportingofthebaselinecangetcomplicatedinsomecases.Typicallythebaselineisthecurrentcarbonstocks.However,insituationswherethecarbonstocksarechanging,thebaselineiscomputedovertimeastheforwardlookingcarbonstocksthatwouldoccurintheabsenceoftheprojectorintervention.

6.3.3.6 TheEx‐AnteComputation

Onceinitialcarbonstocksaredetermined(theTypeIestimate),theprojectdeveloperneedstomakeaforwardprojectionoftheexpectedcarbonstockchanges,anditsdeviationfromwhatwouldhaveoccurredonthesitewithouttheinterventionofaprojectorland‐coverchange(TypeIIandIIIestimates).Thisissomewhatproblematicsinceitisnotpossibletopredictthefuturewithcertainty.However,anumberoftoolsandmethodsareavailabletomaketheseprojectionswithreasonablecertainty(seeTable6‐3).Animportantreasonformakingthiscomputationisthatthecarbonstockwouldchangeovertimeintheabsenceoftheproject’sintervention.Forexample,anabandonedfarmfieldcouldbeexpectedtonaturallygothroughold‐fieldsuccessionevenwithoutareestablishmentproject.Hence,theproject‐relatedcarbonchangesneedtobecomparedwiththenointervention/noactionestimateovertime,notjustfromthestartoftheproject,togetatrueaccountingofnetcarbonbenefits.Landownerswouldwanttomaketheex‐antecomputationsothattheycanevaluatearangeoffutureestablishment,clearing,ormanagementoptionstoselecttheonethatbestsuitstheircarbonandotheroutcomeneeds.

6.3.3.7 MeasurementandMonitoring

Aftertheinitiationoftheprojectintervention(e.g.,treeplanting),ongoingmeasurementsofactualcarbonstockchangesneedtooccur.Thisisoftenreferredtoasthemonitoringphaseoftheproject.Methodsforongoingmeasurementaredescribedbelow.Theprojectdevelopershouldkeeporganizedrecordsofthemeasurementsmadeoveraroutineandstandardtimeframe.Annualmeasurementsareusuallyeithernotlogisticallypossibleortootime‐consumingandexpensive.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-36

Thus,itisrecommendedthataftertheinitialmeasurement,thesemeasurementsarerepeatedevery5years.

6.3.3.8 PermanentSamplePlots

Forsmallprojectssuchasfarmwoodlots,ortreeandforeststands,acompleteinventoryofcarboninthereportingpools,strata,andprojectlandcanbeperformed.However,forlargeareas,installinganddelineatinganumberofsampleplotsisrequired.Thesesampleplotsareestablishedintheprojectareaonastratifiedbasis,laidoutrandomlyorsystematically—i.e.,eachlandcoverstratumhasanestablishednumberofsystematicallyorrandomlyplacedplots.Methodsforforestinventoryarewelldescribedandavailablefromavarietyofsourcesandwillnotbefurtherdescribedhere(e.g.,Pearsonetal.,2007).Boththenumberandlocationoftheplotsneedtobeconsidered.Itisimportanttorememberthattheplotsareestablishedforthepurposeofsamplingaforeststandorprojectstratum.Thesampleestimatewillbeasaccurateasthenumberandlocationofthesampleplotspermit.Thenumberofplotswillrelatetotheaccuracyoftheestimates;insimplestratasuchasplantations,thenumberofsampleplotscanbeextremelylow,butincomplexnaturalstandsthenumberwillhavetobegreater.Agoodstratificationwillreducethenecessarynumberofplots.Thelocationoftheplotsisimportanttocapturethespatialheterogeneityofthestand.Theplotsaretobewellmarkedandmadepermanentforrepeatmeasurementsovermanyyears.Forforestclearingcomputations,itisnotnecessarytomakepermanentplotsunlesstheprocessofclearingisselectivedegradationoveralongperiodoftime.Forforestclearing,lotsonlyneedtobemeasuredoncebeforetheinterventionandonceaftertheinterventionhasbeencompleted.

6.3.3.9 MeasurementversusEstimation

Insomecases,itwillnotbepossibletomeasuretheinitialcarbonstocksorpost‐interventioncarbondirectly.Forinstance,aforestclearingeventmayoccurwithouttheopportunitytoestablishplotsintheforest,oritmaynotbepossibletomeasurealarge‐areaestablishmentevent.Inthesecases,regionalsummaryvaluesoftheforestcarbonstocksmaybeofuse(Smithetal.,2006).

6.3.3.10 Allometry,BiomassExpansionFactors,andStandardValues

Theconventionalapproachtobiomassestimationistouseallometricequationsbasedonspecies‐specificinformation(Jenkinsetal.,2003b;2003a).AnallometricapproachcanbebasedonDBHoracombinationofDBH,canopyheight(H),andwooddensityonanindividualtreebasisfortheentirestandorfortreesinthepermanentplots.Theallometricequationpredictseithervolumeofwoodinthemainstemorwholetreebiomassorcarbon.Intheformercase,itisthennecessarytoestimateawholetreebiomassexpansionfactor(Smithetal.,2003).Alternatively,theentitycanusestandardvaluesforstocksandgrowthratesbasedonlookuptables(DOE,1992;Smithetal.,2006).Forlargeareasofforestsconvertedthroughclearing,itmaybeacceptabletousestandardvaluesforstocksperunitarea,suchasthosepublishedbyIPCC(2003;2006).

6.3.3.11 StocksversusChangeinStocksoverTime

Forestimationofforestestablishmentitisnecessarytocomputethechangeinstocksovertime,whichwillbeameasurementofnetsinksofcarbonthroughsequestration.Forestclearingcomputationisessentiallythesamebutwiththeoppositesigntoindicateemissions.Thesubtledifferenceisthatestablishmentrequiressomemeanstoestimatetheaccumulationofcarbonontheprojectsiteovertime.Thisisaccomplishedusingeitherdirectmeasuresoryieldmodels.Forforestclearing,itisnecessarytoknowtheinitialstockofcarbonintheforeststand,andhowitthenchangeswithdisturbance.Thelatterrequiresdataonthepartitioningofpost‐disturbancecarboncomponents,asremovals,andslashanddebrisleftonsite.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-37

6.3.3.12 ForestClearingRemovalsandDeadMaterialonSite

Thedifferenceofcarbonstocksbeforeandafterforestclearingisthecarbonthathasbeenremovedbyharvestaswoodproductsorotherproducts(e.g.,energyfeedstocks),andthatleftbehindonthesiteasslashanddebris(Skog,2008).Ifthesemassamountsareknown,theycanbeincludeddirectlyintothecomputations.Iftheyarenotknown,theycanbeestimatedandrepresentedasfractionsoftheoriginalstandingstockspriortodisturbance.Allremovalssuchastheseconstituteimmediateandfutureemissionsources,astheydecayoverdifferenttimescales.Therefore,itisnecessarytoassignmassamountstofourlong‐termdecaypoolswithturnovertimesof1,10,100,and1,000years.Theemissionsarecomputedalonganexponentialdecayfunctionrelatedtotheturnovertimeofthepool.Forexample,carbonlostduetoimmediateoxidationbyfireisplacedintothe1‐yearpool,andthecharcoalcomponentisplacedintothe1,000‐yearpool.Otherremovalsareplacedintothe10‐and100‐yearpools.

6.3.4 SpecificProtocolforComputation

6.3.4.1 ActualCarbonRemovalsbySinksinEstablishingForest

Thebasicapproachtoestimationofemissionsto,orremovalsfrom,theatmosphereistomultiplytheactivitydatabyemissionfactorsor,inthiscase,multiplytheland‐usechangeareabysitebiomasscarbonandsoilorganicmattercarbon.Theseproceduresdescribetherecommendedmethodofestimatingcarbon—usingallometricequationstoestimatebiomassdirectlyfromDBHusingtheequationsofJenkinsetal.(2003a).

Stratificationoftheprojectareamaybecarriedouttoimprovetheaccuracyandtheprecisionofthecarbonestimates.Whererequired,stratificationcouldbemadeaccordingtotreespecies,ageclasses,orforestmanagementpractices.Figure6‐5showsadecisiontreeindicatingwhichmethodismoreapplicableforaparticularlandowner.

Thisprotocolwillfollowthetwo‐tierapproachdescribedearlierinthedocument.Smalllandownerscanusedefaulttables(i.e.,Smithetal.,2006)andequationsfortheappropriateregionandforesttypegrouptoestimatebiomassoftheirforestsystems.Largelandownersshouldusebasicforestdatacollectedinthefieldonsampleplotswithallometricequations(Jenkinsetal.,2003a)toestimatethebiomassofindividualtreesandentirestands.Ifsmalllandownerswanttousesampleplotsandallometricequations,theyarefreetodoso.Smalllandownersshouldcontactaconsultingforesterorperhapsauniversityextensionpersontobestunderstandrequirementsforfieldsampling.

Whilemostofthefluxesfromanestablishmentprojectareremovalsfromtheatmosphere,theremaybesomeemissionsassociatedwithsomeaspectsoftheproject.TheactualnetCO2removalsbysinkscanbeestimatedusingtheequationsinthissection.Whenapplyingtheseequationsforex‐antecalculationsofnetanthropogenicCO2removalsbysinks,landownerswillprovideestimatesofthevaluesofthoseparametersthatarenotavailablebeforethestartoftheprojectperiodandcommencementofthemonitoringactivities.Participantsshouldretainaconservativeapproachinapplyingtheseestimates.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-38

Figure6‐5:DecisionTreeforEstablishing,Re‐establishing,andClearingForestsShowingMethodsAppropriateforEstimatingForestCarbonStocks

1Smalllandowners(seeSection6.2fordefinition)mayusegeneralizedlookuptablesbasedonregion,foresttype,andageclasstoestimatecarbonstocks.Largelandowners(seeSection6.2fordefinition)shouldcollectstandardforestinventorydataanduseallometricequationstoestimatelivetreebiomasscarbon(othercarbonpoolsmaybeobtainedfromlookuptables).However,largelandownerswhodonotengageinanymanagementactivitiesorplantomanagetheirholdingsmayuselookuptablesforallpools;butifactivemanagementoccurs,theinventoryapproachshouldbeused.2Jenkinsetal.(2003a).3Smithetal.(2006).

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-39

TheactualnetCO2removalsbysinksinyeartareequalto:

EstimationofCarbonStockinLivingBiomassofTreesattheStratumLevel.Thecarbonstockinlivingbiomassoftreesforstratumi(Ctrees,i,t)isestimatedusingthefollowingapproach:Themeancarbonstockinabovegroundbiomassperunitareaisestimatedbasedonfieldmeasurementsinpermanentsampleplots.

Step1:Determinebasedonmeasurements(expost),theDBHattypically4.3feet(1.3m)abovegroundlevel,andalsopreferablyheight(H),ofallthetreesabovesomeminimumDBHinthepermanentsampleplots.

Step2:Calculatetheabovegroundbiomassforeachindividualtreeofaspecies,usingallometricequationsappropriatetothetreespecies(orgroupsofthemifseveraltreespecieshavesimilargrowthhabits)inthestratum.

Step3:Estimatecarbonstockinabovegroundbiomassforeachindividualtreelofspeciesjinthesampleplotlocatedinstratumiusingtheselectedordevelopedallometricequationappliedtothe

Equation6‐1:TheActualNetCO2 RemovalsbySinksinYeart

ΔCACTUAL,t=ΔCPJ,t

Where:

ΔCACTUAL,t =ActualnetCO2removalsbysinksinyeart(metrictonsCO2eqyear−1)

ΔCPJ,t =ProjectCO2removalsbysinksinyeart(metrictonsCO2eqyear−1)

Equation6‐2:ProjectCO2RemovalsbySinksareCalculatedasFollows(betweentwodatesforatimeperiodoft)

tΔCPJ,t=ΣΔCproject,i,t×44/12

i=1

ΔCproject,i,t=[(Ctrees,i,t2–Ctrees,i,t1)/T]+ΔCsoil,i,t

Where:

ΔCPJ,t =ProjectCO2removalsbysinksinyeart(metrictonsCO2eqyear−1)

ΔCproject,i,t =AverageCO2removalsbylivingbiomassoftreesandsoilforstratumi,foryeart(metrictonscarbonyear−1)

Ctrees,i,t =Carbonstockinlivingbiomassoftreesforstratumi,inyeart(metrictonscarbon)

ΔCsoil,t =Averageannualchangeincarbonstockinsoilorganicmatterforstratumi,foryeart(metrictonscarbonyear−1)

T =Numberofyearsbetweenyearst2andt1(years)

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-40

treedimensionsresultingfromStep1,ormultiplytheresultofStep2by0.5(i.e.,thefractionofdrybiomasstocarbonconversionfactor),andsumthecarbonstocksinthesampleplot.

Step4:ConvertthecarbonstockinabovegroundbiomasstothecarbonstockinbelowgroundbiomassusingtheequationsprovidedinJenkinsetal.(2003a)orbymultiplyingtheresultofStep3by0.26(i.e.,theroot‐to‐shootratio).Sumtheabovegroundcarbonstockandbelowgroundcarbonstocks.

Step5:Calculatetotalcarbonstockinthelivingbiomassofalltreespresentinthesampleplotspinstratumiattimet.

Step6:Calculatethemeancarbonstockinlivingbiomassoftreesforeachstratum,asperEquation6‐6.

Equation6‐3:EstimateCarbonStockinAbovegroundBiomassforEachIndividualTree

Nj,sp

CAB,i,sp,j,t=ΣCFj׃j(DBH,H)t=1

Where:

CAB,i,sp,j,t =Carbonstockinabovegroundbiomassoftreesofspeciesj,onsampleplotsp,forstratumi(metrictonscarbon)

CFj =Carbonfractionofdrymatter(dm)forspeciesorgroupofspeciestypej(metrictonscarbon(metrictondm)‐1)

fj(DBH,H)=Anallometricequationlinkingabovegroundbiomassofalivingtree(metrictonsdm)toDBHandpossiblytreeheight(H)forspeciesj,inyeart(metrictonsdm)

Note:Forex‐anteestimations,meanDBHandHvaluesshouldbeestimatedforstratumi,inyeartusingagrowthmodeloryieldtablethatgivestheexpectedtreedimensionsasafunctionoftreeage.TheallometricrelationshipbetweenabovegroundbiomassandDBHandpossiblyHisafunctionofthespeciesconsidered.AlternativelythereareestimatorsandtoolsthatprojectcarbongrowthratesdirectlywithoutinputofDBH.

i=1,2,3,…MPSstrataintheprojectscenario

j=1,2,3,…SPStreespeciesintheprojectscenario

l=1,2,3,…Nj,spsequencenumberofindividualtreesofspeciesj,insampleplotsp

t=1,2,3,…t*yearselapsedsincethestartoftheprojectactivity

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-41

Equation6‐4:ConverttheCarbonStockinAbovegroundBiomasstotheCarbonStockinBelowgroundBiomass

CBB,i,sp,j,t=CAB,i,sp,j,t×Rj

Where:

CBB,i,sp,j,t =Carbonstockinbelowgroundbiomass(BB)oftreesofspeciesj,inplotsp,instratumi,foryeart(metrictonscarbon)

CAB,i,sp,j,t =Carbonstockinabovegroundbiomass(AB)oftreesofspeciesj,inplotsp,instratumi,foryeart(metrictonscarbon)

Rj =Root:shootratioappropriateforbiomassstock,forspeciesj(dimensionless)

Equation6‐5:CalculateTotalCarbonStockintheLivingBiomassofAllTreesPresentintheSamplePlot

Sps

Ctree,i,sp,t=Σ(CAB,i,sp,j,t+CBB,i,sp,j,t)

j=1

Where:

Ctree,i,sp,t =Carbonstockinlivingbiomassoftreesonplotspofstratumi,foryeart(metrictonscarbon)

CAB,i,sp,j,t =Carbonstockinabovegroundbiomass(AB)oftreesofspeciesj,inplotsp,instratumi,foryeart(metrictonscarbontree−1)

CBB,i,sp,j,t =Carbonstockinbelowgroundbiomass(BB)oftreesofspeciesj,inplotsp,instratumi,foryeart(metrictonscarbontree−1)

i =1,2,3,…MPSstrataintheprojectscenario(PS)

j =1,2,3,…SPStreespeciesintheprojectscenario(PS)

t =1,2,3,…t*yearselapsedsincethestartoftheprojectactivity

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-42

SoilOrganicCarbon.Forstratathatcontainonlymineralsoils,ex‐anteandex‐postΔCsoil,i,tchangeisestimatedfromEquation6‐7.

ThedefaultvalueofΔCforesti=0.5metrictonsCha−1year−1,andatequilibriumof20years,ishallbeused.

Changesincarbonstockinsoilorganicmatterarenotmonitoredex‐post(i.e.,measuredbeforeandaftertheequilibriumperiod),butareinsteadestimatedex‐ante(i.e.,predictedbasedonthespecifieddefaultvalueandequilibriumperiod).

OtherPools.Sampleplotsneedtobesetupinsuchawaysthatthesmallherbsandbushes,aswellasforestfloorlitterisalsomeasured.Todothis,establishseveralsmallcollectionplotsmeasuring3.3feetby3.3feet(1mby1m)ontheforestfloor.Collectallliter,herbs,andsmalldebrisinthesubplotandweighitusingafieldscale,anddrysmallsampletogetthedryweightfraction.

Equation6‐6:CalculateMeanCarbonStockinTreeBiomassforEachStratum

Pi

Ctree,i,t=(Ai/Aspi)ΣCtree,i,sp,t sp=1

Where:

Ctree,i,t =Carbonstockinlivingbiomassoftreesinstratumi,foryeart(metrictonscarbon)

Ctree,i,sp,t =Carbonstockinlivingbiomassoftreesonplotsp,ofstratumi,foryeart(metrictonscarbon)

Aspi =Totalareaofallsampleplotsinstratumi(ha)

Ai =Areaofstratumi(ha)

sp=1,2,3,… =Pisampleplotsinstratumiintheprojectscenario

i=1,2,3,… =MPSstrataintheprojectscenario(PS)

t=1,2,3,… =t*yearselapsedsincethestartoftheprojectactivity

Equation6‐7:EstimatingChangeinCarbonStocksforStrataThatContainOnlyMineralSoils

ΔCsoil,i,t=Ai*ΔCforest,ifort≤tequilibrium,i

ΔCsoil,i,t=0fort>tequilibrium,i

Where:

ΔCsoil,i,t =Averageannualchangeincarbonstockinsoilorganicmatterforstratumi,foryeart(metrictonsCyear−1)

Ai =Areaofstratumi;hectare(ha)

ΔCforest,i =Averageannualincreaseincarbonstockinsoilorganiccarbonpoolforforestsysteminstratumi(metrictonsCha−1year−1)

tequilibrium,i=Timefromstartoftheprojectactivityuntilanewequilibriumincarbonstockinsoilorganicmatterisreachedforforestsysteminstratumi(years)

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-43

Multiplytheaveragedryweightoflitterby0.37tocomputetheplotlittercarbon,andby0.5tocomputetheplotherbsandseedlingcarbon.Forsmalltreesandbushesestablishafewsmallplotsmeasuring16.4feetby16.4feet(5mby5m)inthesampleplot.Cutandweighallsmalltreesandbushes.Establishadryweightbasisandmultiplythedryweightby0.5tocomputeasubsamplecarbonvalue.Standingdeadwoodalsoneedstobeestimated.Mostpublishedstudiessuggestthispoolissmallandcanbeignored.

Non‐CO2GHGs.Non‐CO2GHGs,includingCH4andN2Oarecalculatedbasedonemissionfactorsappliedtotheparcelbiomass.Thus,theparcelbiomassismultipliedbyafactorfromdefaultvaluesforthattimeofstandorplantingactivity.Theseemissionsandremovalswillvarydependingonthemanagementpractice,e.g.,naturalsuccession,plantations,fertilization.

6.3.5 ActualGHGRemovalsandEmissionsbySourcesandSinksfromForestClearing

Theabovesuiteofequationscanbeusedtoestimatethesourcesandsinksofcarbonfromforestclearing,withtheresultshavingadifferentsignthanestablishmentandre‐establishment.ThefundamentalcomputationisinEquation6‐8.

TheprecisecomputationinEquation6‐9requiresthemeasurementorestimationofthedifferencesincarbonstocksintheforestsystemandtheland‐coversystemthatitisconvertedto.Italsorequiresanunderstandingacomputationofthepartitioningoftheproductsthatwereremovedfromthesiteorleftasslashanddebris.Formaterialleftonsiteandburned,GHGemissionsshouldbecalculatedusingtheCONSUMEmodel.Hence,Cfisestimatedfromstandardper‐areaforesttypecarbonstocksorfromplotdata.Thefractionsfyanddyareestimatedordirectlymeasured(forsimplicityitispossibletoassumethatdyisthefractionoftheturnovertime,asin1/1,1/10,1/100or1/1,000).Esisthesoilfluxthatisrepresentedinlookuptables,andbasedonthetime‐varyingrateofcarbonlossasapercentageoftheoriginalforestsoilcarbon.

Equation6‐8:ComputingEmissionsofCarbonfromaForestClearing

Ed=f(D×C/ha)

Where:

Ed =Emissionsofcarbonfromforestclearing,D(metrictonscarbonyear‐1)

D =Therateofforestclearing(hayear‐1)

C/ha =Thestockofcarbonintheforestsystempriortoclearing(metrictonscarbonha‐1)

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-44

6.3.6 LimitationsandUncertainty

Therearepublishedmethodsforformallyestimatinguncertaintyoftheestimation,generallybasedonthenumberanddistributionofthepermanentplots,andhowtheyareappliedtothewholestratum.Theseuncertaintyestimatescanbeusedaprioritoestablishthenumberofplotsneededtoachievealevelofaccuracy.Theycanalsobeusedtoattachanuncertaintyvaluetothefinalestimate.Butperhapsthemostchallengingcomponentofuncertaintyliesintheuseofvariousexpansionfactorswhereprecisefieldestimatesarenotknown.Inparticular,theestimationofnon‐CO2GHGfluxesisveryuncertain,andmustbeusedwithsomedegreeofcaution.ThisisespeciallytrueforN2OinallactivitiesandCH4incasesofforestestablishment.Considerablymoreresearchisnecessarytomaketheseestimates.

Anotheruncertaintyinmostestimatesisthefractionofstandingdeadbiomass.Basedonsomework(WoodallandMonleon,2008),itisbelievedtobesmall,butthevariationwithforesttypes,standage,conditions,andactivitiesislarge.Whenusingdefaultvaluesthismaybeachallengetothefinalestimation.Inthecasewheredirectmeasurementsaretobemadeonsite,thestandingdeadcanbemeasuredalongwithstandinglivebiomass.Thismaybeanapproachthathasspecialbenefitifthesitebeingclearedhasbeenintenselydamagedbypestsordisease.

Perhapsthemostproblematicareaisthecomputationofwholetreebiomassfromallometry.ThereisaverygoodNorthAmericanliteratureonallometryforstemvolumesandbiomassbutlessonwholetreevolumeandbiomass.Mostallometryisbasedonvolumesratherthanwholetreebiomassorcarbon.Frequentlyalimitednumberofsimpleexpansionfactorsaredeployedtoexpandthevolumeofthemainstemtothebiomassofthewholetreeincludingitsbranches.Thesemodelsneedtoberefinedtobettermaketheestimation.Thismaybeimportantsincemostlandownerswillnothavetheabilityorinteresttoconducttheirowndestructivetreesamplingtoextractlocalwholetreebiomassallometry(i.e.,aTier3approach).

Equation6‐9:ComputingthePartitioningoftheProductsThatWereRemovedfromtheSiteorLeftasSlashorDebrisin1Year

Ed=D[(Cf–Cc)×∑ ]+Es

Where:

Ed=Emissionsofcarbonfromforestclearing,D(metrictonscarbonyear‐1)

D=Therateofforestclearing(hayear‐1)

Cf=Thecarbonstockpriortoforestclearing(metrictonscarbonha‐1)

Cc=Thecarbonstockafterforestclearing(metrictonscarbonha‐1)

fy=Thefractionoforiginalcarbonstockinlong‐termdecaypooly

dy=Thedecayfunctionforthemassquantitiesindecaypooly (long‐termdecaypoolsare1‐,10‐,100‐and1,000‐yearturnovertimes)

Es=Emissionsfromsoil(metrictonscarbonyear‐1)

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-45

Table6‐3:ExamplesofForestCarbonCalculators

Developer WebsiteUSDAForestServicetoolsforcarboninventory,management,andreporting

http://www.nrs.fs.fed.us/carbon/tools/

FAOExACT http://www.fao.org/tc/exact/en/TARAM(BioCFandCATIE) http://wbcarbonfinance.org/Router.cfm?Page=DocLib&Catalog

ID=31252CO2Fix http://www.efi.int/projects/casfor/models.htmGORCAM http://www.joanneum.at/gorcam.htmCASS http://www.steverox.info/software_downloads.htmFullCam http://www.ieabioenergy‐

task38.org/workshops/canberra01/cansession1.pdfCOLE http://www.ncasi2.org/COLE/Reforestation/AfforestationProjectCarbonOnlineEstimator

http://ecoserver.env.duke.edu/RAPCOEv1/

WinrockAFOLUCalculator http://winrock.stage.datarg.net/CarbonReporting/Welcome

6.4 ForestManagement

6.4.1 Description

Forestmanagementisconcernedwithmeetinglandownerobjectivesforaforestwhilesatisfyingbiological,economic,andsocialconstraints.Forestmanagersuseawidevarietyofsilviculturaltechniquestoachievemanagementobjectives,mostofwhichwillhaveimpactsonthecarbondynamics(seeTable6‐4).Theprimaryimpactsofsilviculturalpracticesonforestcarbonincludeenhancementofforestgrowth(whichincreasestherateofcarbonsequestration)andforestharvestingpractices(whichtransferscarbonfromstandingtreesintowoodproductsandresidues,whicheventuallydecay).Someforestmanagementactivitieswillresultinacceleratedlossofforestcarbon,suchaswhensoildisturbanceincreasestheoxidationofsoilorganicmatter,orwhenprescribedburningreleasesCO2.Furthermore,someforestmanagementactivitiesresultinfossilfuelemissions(e.g.,fromtheutilizationofmechanizedequipment,transportation).However,recentevidencesuggeststheseemissionsarefairlyminor.Markewitz(2006)estimatedthatfossilemissionsfromsilviculturalactivitiesinintensivelymanagedpineplantationswereabout3MgCha−1overa25‐yearrotation.Theseemissionswereverylowrelativetothesubsequent

MethodsforForestManagement

Rangeofoptionsdependentonthesize/managementintensity/dataavailabilityoftheentity’sforestlandincluding:

− FVS‐FFEwithJenkins(2003a)allometricequations;

− Defaultlookuptablesofmanagementpracticescenarios;and

− FVSmaybeusedtodevelopasupportingproductprovidingdefaultlookuptablesofcarbonstocksovertimebyregion;foresttypecategories,includingspeciesgroup(e.g.,hardwood,softwood,mixed);regeneration(e.g.,planted,naturallyregenerated);managementintensity(e.g.,low,moderate,high,veryhigh);andsiteproductivity(e.g.,low,high).

Themethodswereselectedbecausetheyprovideaconsistentandcomparablesetofcarbonstocksovertimeundermanagementscenarioscommontotheforesttypesandmanagementintensities.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-46

sequestrationofcarbonintheforestandinwoodproducts.Côtéetal.(2002)reportemissionsfromsilviculturalactivitiestotaledabout9percentoftotalemissionsfromapulpandpaperoperationandabout4percentofgrossforestsequestration.Inalife‐cycleanalysisfromthePacificNorthwest,Johnsonetal.(2005)reportedfossilemissionsofCO2fromforestryoperationsamountedto8.02to8.12kgCO2‐eqm−3ofharvestedlogs,orlessthan1percentofthe935kgCO2‐eqcontainedinacubicmeterofaDouglas‐firlog.InthedryPonderosapineforestsofArizona,athinningtreatmentresultedinCO2emissionsfromfossilfuelsof334kgCO2‐eqha−1,about1.1percentofthe30,213kgCO2‐eqha−1offirewoodremovedinthethinningoperation(FinkralandEvans,2008).

Thissectiondescribesgeneralcategoriesofforestmanagementactivitiesandtheirimpactsoncarbonstorage.ThedetailsvarywidelyacrosstheUnitedStateswithdifferentforesttypes,ownershipobjectives,andforeststandconditions.Itisimportanttoengageprofessionalforesterswhenconsideringharvestsorothersilviculturalpractices.Animportantdistinctiontobemadeattheoutsetisbetweenplantedforests,orplantations,andforeststhathavebeennaturallyregenerated.Productivityrates,silviculturalpractices,andmanagementobjectivesmaybemarkedlydifferentforplantedversusnaturalforests.Inplantedforests,conditionsaretypicallyoptimizedforincreasedgrowth,whichincreasescarbonsequestrationoverslowergrowing,naturallyregeneratedforests.However,methodsforinventorying,monitoring,andassessingcarbonstorageinbothplantedandnaturalforestsarethesame;variabilitymaybelessinsingle‐speciesplantations,butapproachesareidentical.SmalllandownerswillusetheregionaldefaulttablestoestimatethepotentialchangesinGHGfluxesfromchangesinforestmanagement,whilelargelandownerswillusestandardforestinventorydataincombinationwiththesimulationfeatureoftheFVS‐FFEtoassesschangesinsequestrationandemissionsfromchangesinpractice.

Table6‐4:CommonForestManagementPractices

Practice Description Benefits

Standdensitymanagement

Controllingthenumbersoftreesperunitareainastandthroughavarietyoftechniques,suchasunderplanting,precommercialthinning,andcommercialthinning

Maintainsstandatatreedensitythatprovidesoptimalgrowingspacepertreeforbestutilizationofsiteresources

Allowsconcentrationofsiteresourceson“crop”trees

Sitepreparation Preparinganareaoflandforforestestablishmentbyremovingdebris,removingcompetingvegetation,and/orscarifyingsoilwhenneeded

Improvessurvivalandinitialgrowthofplantedornaturallyregeneratedseedlingsorsprouts

Enhancesregenerationofdesiredspecies Providesconditionsfavorableforplanting

ofseedlingsVegetationcontrol

Removing,throughchemicalormechanicalmeans,undesirablevegetationthatwouldcompetewiththedesiredspeciesbeingregenerated

Improvessurvivalandgrowthofdesiredtrees/species

Planting Plantingofseedlingsbyhandormachinetoestablishanewforeststand

Controlsspeciescompositionandgeneticsofnewlyestablishedstand

Controlsstocking(density)oftreesperunitareaforoptimalgrowth/survival

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-47

Practice Description Benefits

Naturalregeneration

Establishinganewforeststandbyallowing/enhancingnaturalseedingorsprouting

Resultsinmixofspecies Speciesthatsproutfromstumpsand

rootswillrapidlyrecapturethesite Lowcostrelativetoplanting Mayinvolvelesssoildisturbancethereby

reducingerosionFertilization Augmentingsitenutrientsthroughthe

applicationofnitrogen,phosphorous,orotherelementsessentialtotreegrowth

Enhancesgrowthoftrees Reducesthetimefortreestoreach

merchantablesize Eliminatesorreducesnutrient

deficienciesthatwouldimpairforestgrowth/survival

Selectionofrotationlength

Choosingthetimingoffinalharvestsoastooptimizethemixofforestproductsthatcanbeobtainedfromthestand

Controlstherelativeamountsofpulpwoodandsawtimberproducts

Allowslandownertorespondtowoodproductsmarketsbyoptimizingproductmix

Harvestingandutilization

Removaloftreesfromtheforest,andcuttingandseparatinglogsforforestproductsmarkets

Selectionofappropriateharvestingsystemscanprovidelogsformarketswhileminimizingdamagetoresidualtreesordisturbanceofsoil

Choiceofharvestingandsilviculturalcuttingsystemwillimpactsubsequentregenerationofthestand;systemscanbechosentoinfluencethespeciescompositionoftheregeneratedstand

Fireandfuelloadmanagement

Reducingtheriskoflosstowildfirebycontrollingthequantityoffuelsinaforeststandbycontrolledfireormechanicaltreatments

Reducesthedamagecausedbyseverewildfiresbyeliminatingexcessivelyhighfuelloads

Mayinfluencethespeciescompositionoftheunderstory

Reducingriskofemissionsfrompestsanddisease

Recoveringvalueoftimberafterdamagingeventsand/orpreventingfurtherdamagebyinterruptingspreadofpests/diseases

Salvageharvestsrecoversvalueindamagedtimberbyremovingitbeforeitisunusable

Sanitationharvestspreventspreadofpests/diseases

Short‐rotationwoodycrops

Producingmerchantabletreesinveryshorttimeperiodsthroughintensivemanagement(genetics,herbicide,fertilization)

Reducesthetimefortreestoreachmerchantablesize

Theremainderofthissectiondescribestheseforestmanagementpracticesandtheirimpactoncarbonstocks.

6.4.1.1 StandDensityManagement

Managementofforeststanddensity(numberoftreesperunitarea)isimportanttoachieveoptimalgrowth.Overstockedstands(toomanytrees)orunderstockedstands(toofewtrees)willgrowlessfiber,andthereforestorelesscarbon,thanmightbedesirable.Inoverstockedstands,treescompetewitheachotherforscarceresources(nutrients,water,andlight),andsuchstandsmayhavehighnumbersoftreesofpoorsizeandqualityandarehighlysusceptibletowildfireorotherreversaldisturbances.Reducingthestockinginoverstockedstandswillconcentrategrowthintreesofmore

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-48

desirablespeciesandquality.Understockedstandsdonotfullyutilizetheresourcesofthesiteandthereforedonotachievethegrowthpotentialofafullystockedstand.Standdensitymanagementseekstomaintainafullystockedstand.

Densityofanexistingforeststandmaybeincreasedbyunderplanting,whichinvolvesplantingadditionaltrees(possiblyofdifferentspecies)beneathanexistingtreecanopy.Thistreatmentmaybedesirableforstandsinwhichadequateadvancedregenerationofdesiredspeciesislacking.Underplantingisdesignedtoincreasethelikelihoodofsuccessfulregenerationfollowingtheeventualharvestoftheoverstory.Thus,whiletheimmediatecarbonimpactofthistreatmentislow,theremaybesubstantialeventualimprovementincarbonstockscomparedwithastandwithoutunderplanting.

Decreasingthedensityofaforeststandisaccomplishedthroughthinning,orcuttingsomeproportionofthetreesinastand.Thismaybedoneasprecommercialthinning,inwhichcasemostofthetreestobecutaretoosmalltoeconomicallyjustifytheirremovalfromtheforest,andtheyareleftinthestandtodecaynaturally.Whileprecommercialthinningprovidesnoimmediateeconomicbenefits,itmaybeusedtoimprovethestockinglevel,speciescomposition,andoverallhealthofastand;itrepresentsaninvestmentincreatingamorevaluable,productiveforest.Precommercialthinningandstanddensitymanagementalsocanreducetheriskofreversalfromdrought,insects,disease,andpossiblyfire.Fromacarbonstandpoint,precommercialthinningwillremovecarbonfromthelivetreepoolandincreasethecarboninthedeadwoodpool.Iftheslashisburned,theGHGemissionsshouldbeaccountedforusingtheCONSUMEmodelwhentheburnoccurred.

Iftreestobethinnedareofproperspecies,size,andquality,commercialthinningmaybeperformed.Incommercialthinning,treesaretargetedforremovalbasedontheirspecies,size,andthemanagementobjectives.Thinnedtreesareremovedfromthestandandsoldtoappropriateforestproductsmarkets.Thus,commercialthinningwillshiftcarbonfromthelivetreepoolandintodeadwoodandlitter(branches,foliage,andstumpsremaininginthestandafterharvest),andHWPpools.

6.4.1.2 SitePreparationTechniques

Regeneratingaforeststandafterharvestmayrequiretreatmentstocreatethemostdesirableconditionsfordevelopmentofthenewstand.Thismayinvolveremovingdebrisfromthepriorstand,removingundesirablecompetingvegetation,scarifyingordisturbingthesoilforenhancedregenerationofspeciesthatrequiresuchconditions,andcreatingspaceorproperconditionsforplantingtrees.

Awidevarietyoftechniquesareavailabletomeetthespecificregenerationobjectives;theyvaryconsiderablyacrossgeographicregions,topography,siteconditions,andforestspeciesundermanagement.Generalcategoriesofsitepreparationtechniquesincludemechanicalmethods,chemicalapplications,andprescribedfire.

Mechanicalmethodsdisplaceunwantedvegetation,moveorbreakdownloggingresidues,and/orcultivatethesoil(Nyland,2002).Mechanicalsitepreparationusesavarietyofmachinesandequipment,andmaybelimitedbysitefactorssuchasterrainandsoilconditions.Becausemechanicalsitepreparationinvolvessoildisturbance,thereisincreasedoxidationandemissionofCO2fromthesoilorganicmatterforaperiodoftimeaftersitepreparation.

Chemicalapplicationsinvolvetheuseofherbicidestargetedatcontrollingundesirablevegetationsothatthepreferredspeciesoftreeshaveimprovedsurvival.Chemicalsmaybeappliedthroughgroundorairsprayingorinjectionintoindividualtrees.Chemicalsitepreparationinvolveslittletonosoildisturbanceandhasminimaleffectonsoilcarbonemissions.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-49

Prescribedburningmaybeusedtoreducetheamountofdebris(limbs,tops,andfoliage)frompriorharvests,killadvancedregenerationoftreesofundesirablespecies,andcontrolpeststhatinhabitdecayingwoodleftfromthepriorstand.Somefire‐adaptedspeciesrequireburningtoopenconesanddisperseseedforthenewstand.Clearly,prescribedfireforsitepreparationwillresultincombustionandemissionofCO2fromwoodymaterialsleftonthesite,butwillavoidthesoildisturbanceofmechanicaltechniques.TheFOFEMmodelfornaturalfuelsandtheCOMSUMEmodelforactivitygeneratedfuelscanbeusedtoaddressthistypeofburningandallowsestimationofGHGemissionsandconsumption.

6.4.1.3 VegetationControl

Controlofcompetingvegetationisonemeansofenhancingthegrowthofdesirabletreesinaforest.Forexample,inapineplantation,wherepinetreesarethespeciesofprimaryinterest,growthofpinesisincreasedwhenhardwoodcompetitionisremoved.Vegetationcontrolmaybeaccomplishedmechanically(suchasgirdlingundesirabletrees)orchemically.Vegetationcontrolisespeciallyimportantattwostagesinthelifeofastand:atestablishment(plantingorregeneration)andlaterintherotationbutbeforetreesarepastthesaplingstage.

Atestablishment(e.g.,ofaplantation),theprimarycompetitionmaycomefromherbaceousvegetationthatcanquicklyoutgrowtheplantedtreesandsuppresstheirgrowthorincreasemortality.Herbicidesmaybeeffectiveatcontrollingherbaceouscompetitionandprovidingthenewlyplantedtreesachancetogrowsufficientlytocapturethesite.Mid‐rotationreleaseoftreesmayrequireanadditionalapplicationofchemicalcontroltoreducecompetitionandfocusgrowthondesirabletrees.

Vegetationcontrolhasbeenestimatedtohavecontributed35percentofthesubstantialgaininplantationproductivityrelativetounimprovedplantations(Stanturfetal.,2003).Theprimarycarbonstockimpactofvegetationcontrolisatransferofcarbonstockfromthelivetreetostandingdeadbiomasspool.Treesreleasedfromcompetitionwillusuallyexhibitagrowthresponsetobalancethelossofgrowthonthevegetationremoved(i.e.,overallforestproductivityandsequestrationwillremainunchanged).

6.4.1.4 Planting

Onepopularformofregeneratingaforeststandfollowingclearcuttingistoestablishaplantationbyplantingtreesofadesirable,fast‐growingspecies,potentiallyutilizinganimprovedgeneticsource,ataconsistentspacingselectedtooptimizegrowth.Plantationmanagementpracticesincludecombinationsoftreatmentstocontrolcompetingvegetationandmanagetreenutritionthroughfertilization,thinning,anduseofgeneticallyimprovedstock(Vanceetal.,2010).Becauseoftheseefforts,plantationsmaybeuptosixtimesmoreproductivethannaturallyregeneratedstandsofthesamespecies(CarterandFoster,2006).Successfulplantationestablishmententailscarefulselectionofspecies,genetics,andspacing(plantingdensity).

Speciesusedinplantedstandstypicallyareselectedforhighgrowthrates,lowsusceptibilitytodamagefrominsectsanddisease,andqualityandvalue.Forexample,intheU.S.South,loblollypineisthemostwidelyplantedtreespeciesbecauseitisnativetothearea,fast‐growingrelativetootherpines,andresistanttodisease(Schultz,1997).Longstandinggeneticimprovementprogramshaveledtotheproductionofimprovedgeneticsourcesforforestplantationspecies.Geneticallyimprovedseedlingsareavailablefromcommercialandstatetreenurseries;essentiallyallofthe1.2billionloblollypineseedlingsplantedannuallyintheU.S.Southaretheresultoftreeimprovementprograms(McKeandetal.,2003).InthePacificNorthwest,geneticimprovementinDouglasfirtreeshasledtoincreasesinproductivity(volumeproduction)inexcessof25percent(St.Clairetal.,2004).Finally,selectionofplantingdensity(treesperunitarea)canaffectoverallstand

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-50

productivity,necessityforthinning,abilitytoaccessthestandwithequipmenttoconductsilviculturaloperations,andtimerequireduntiltreesreachmerchantablediameters.Allofthesefactorscombinetodeterminethelikelysurvivalandgrowthratesofaforestplantation.Plantationproductivityisdirectlyrelatedtorateofforestsequestration.Anyactivityincreasingproductivitywillimprovesequestrationrates.

6.4.1.5 NaturalRegeneration

Certainforesttypesareregeneratedmostefficientlyusingnaturalregeneration,inwhichseedlingsandsproutsfromarecentlyharvestedordisturbedforestwillgrowquicklyafterremovalofaportionoralloftheforestoverstory.Inthiscase,thespecieswillbepredictablebasedonthespeciescompositionofadvancedregenerationfromthepreviousstand,orifspeciespresentinthepreviousstandareprolificinsprouting.Thespeciescanalsobepredictedbasedonpost‐harvestregenerationofseedlingsfromresidualoverstorytreesorfromsurroundingstands.Densitywillnotbecontrolledduringtheregenerationprocess;frequentlynaturalregenerationresultsinverydensevegetationthatthengoesthroughanaturalprocessofcompetition.

Becauseneitherthegeneticsourcenordensityarecontrolledduringnaturalregeneration,thesestandsarefrequentlylessproductivethanplantationsbutmaybemoredesirablebasedontheobjectivesofthelandowner(e.g.,forrecreation,wildlife,ordifferentproductsthanplantationswouldprovide).Theprocessofnaturalregenerationmayentailminimal(ifany)sitepreparationandlesssoildisturbanceandcostthanwouldplantations.Dependingonthelevelofsoildisturbancefromtheharvestofthepreviousstand,earlysoilCO2emissionsmaybelowerthaninplantedstands.

6.4.1.6 Fertilization

Fertilizationhasbeenshowntodramaticallyimprovetheproductivityofforeststandsinwhichnutrientsarelimitingplantgrowth.Forexample,intheU.S.South,nitrogenandphosphorusarecommonlydeficientinpineplantations(Foxetal.,2007).Intheseareas,phosphorusfertilizationmayincreasevolumeproductionbymorethan100percent(Jokelaetal.,1991).Nitrogenandphosphorusfertilizationhasbeenshowntoincreasegrowthby1.6tonsacre−1year−1(Foxetal.,2007).

ThetwoprimarytypesofforestfertilizationcurrentlypracticedintheSoutharephosphorus‐fertilizationondeficientsites(usuallyatorneartimeofplanting),andnitrogenandphosphorusfertilizationinmid‐rotationstands(e.g.,ages8to12).Volumegainsvary,withhighestgainswherestandsaremostnutrient‐limited.

Thedirectcarbonimpactoffertilizationofforestsistheobservableincreaseingrowthandthereforesequestration.Otherimpactshavebeennotedinagriculturalsettings,includingincreasedemissionsofotherGHGssuchasNOxandN2O.Resultsfromagriculturalfertilizerapplicationsmaynotbedirectlyapplicabletoforestryoperations.RecentresearchinwesternCanadianforestsshowedsoilGHGfluxeswereneutralfollowingfertilization(Basilikoetal.,2009).InananalysisoffertilizationofpineplantationsinthesoutheasternUnitedStates,Albaughetal.(2012)foundthatcarbonsequestrationinforestgrowthfarexceededtheemissionsassociatedwithfertilizerproduction,transport,andapplication(8.70Tgyear−1CO2sequestrationversus0.36Tgyear−1emissions).Thus,forestfertilizationwhenappliedappropriatelycandramaticallyincreasecarbonsequestrationwhencomparedtounfertilizedstands.

6.4.1.7 SelectionofRotationLength

Onesignificantdecisionthatforestmanagersmakeistheselectionoftherotationlength,ortargetageatwhicharegenerationharvest(finalharvest;oftenbutnotnecessarilyaclearcut)willoccur.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-51

Thedecisionaffectsthetimingofotherstandtreatments.Forexample,thinningsandsomefertilizationtreatmentsaretargetedforacertaintimebeforefinalharvest.Italsoaffectsthemixofforestproductsthatmightbeexpectedfromtheharvestedstand.Standsharvestedatrelativelyyoungageswillyieldprimarilytreessuitableforpulpwoodmarkets,whilelongerrotationsmayinvolvemorethinningsandwillincreasetheproportionofsawtimber‐sizedtreesinthestand.Becausethesedifferentproductshavedifferentlongevities(seeSection6.5),therotationlengthwillhaveasignificantimpactontheoverallcarbondynamicsofaforest(anditssubsequentpoolofcarboninHWPs).Furthermore,longerrotationsresultingreateraveragecarbonstorageintheforest,withresultinghigherlevelsofsequestration(StainbackandAlavalapati,2002).Itiswidelyrecognizedthatincreasingrotationsfromharvestingatfinancialmaturitytoharvestingclosertoagesatwhichstandsreachasteadystatebetweengrowthandmortalitycanbebeneficialforcarbonstorage(vanKootenetal.,1995).

Avarietyofdecisioncriteriaareavailableforidentifyingtheoptimalrotationlengthfordifferentsetsofobjectives.Ifcarbonstorageisoneoftheimportantobjectives,longerrotationswillbebeneficial(Liskietal.,2001).

6.4.1.8 HarvestingandUtilizationTechniques

Regenerationharvests(alsocalledrotationharvestsorfinalharvests)areconductedtoharvesttreesforforestproductsmarketsandtopromotetheregenerationofdesirablespeciesforthenextstand.Tomeetthetwinobjectivesofregenerationandproductionofmerchantabletimber,forestmanagersmaychoosefromawidearrayoftechniquesandoperationalapproaches.Thesilviculturalsystemwillbechosentodeterminewhichtreesaretoberemovedfromthestand,andaharvestingsystemwillbechosentodeterminethebestloggingapproachtodoso.

Thesilviculturalsystemdetermineswhatproportionoftheforeststandistoberemovedintheharvest,andwilldictatewhethertheresultingstandwillbeeven‐aged(astandoftreesofasingleageclass)oruneven‐aged(astandoftreeswiththreeormoreageclasses)(Helms,1998).Harvestsrangefromclearcuts,inwhichmostoralloftheoverstoryisremoved,toavarietyofpartialharvests.Partialharvestsincludesystemssuchasseed‐tree,shelterwood,groupselection,individualtreeselection,diameter‐limit,andothers.Harvesttechniquesthatopenmostorallofthecanopy(suchasclearcuttingorseed‐treeharvests)willpromotetheregenerationofspeciesthatthriveinsunlightanddonottolerateshade.Clearcuttingisalsothepreferredtechniquewhenthenextstandistobeestablishedbyplantingratherthannaturalregeneration.

Afterselectionofasilviculturalsystemforregeneration,forestmanagerswillselectaharvestingsystemforthefellingandextractionoftreesfromthesite.Againawidevarietyofsystemsareavailable,fromindividualtree‐fellingbychainsawwithextractionbyhorseteams,tohighlymechanizedsystemsinvolvingskidders,feller‐bunchers,forwarders,andothertypesofequipment.Whenterrainconditionspreventground‐basedvehicularextractionoffelledtrees,itmaybedoneusingcableyardingsystemsorhelicopters.Loggingsystemsthatminimizesoildisturbanceandimpactsonunharvestedtreesandunderstorymayreducetheseharvest‐associatedemissions.

Whentreesareharvestedfromaforest,theymayproduceavarietyofproductsforspecificmarkets.Forexample,large‐diametertreesofcertainspeciesarepreferredforsawtimbermarkets,whilepulpwoodmarketsacceptroundwoodwithsmallerdiametersorevenchips.Thus,aharvestingoperationwillofteninvolvemerchandising—thesorting,cutting,andseparatingoflogsfordeliverytodifferentmarkets.Dependingonthesilviculturalsystemchosen,treeswithoutmarketvalue(e.g.,toosmall,poorform,orundesirablespecies)maybecutandleftonsitetodecay.Inaddition,agreatdealoflogging“slash”maybeproduced;thismaterialmayconsistofbranches,portionsoftreesbeyondmerchantabilitylimits(tops),roots,andfoliage.Wherebiomassenergymarketsexist,someofthismaterialmayberemovedandusedtoreplacefossilenergyGHGsources;

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-52

otherwiseitmaybeleftonsitetodecayorbeburnedduringsitepreparationwithassociatedGHGemissions.Theproportionofwoodymaterialremovedfromaharvestingoperationistermedutilization;highlevelsofutilizationmeanmorewoodybiomassisremovedandlessremainsonsite.

Therearemanycarbonconsequencestotheselectionofasilviculturalandharvestsystem.Partialharvestswillleavesubstantialcarboninlivetreesonthesite,whereasclearcutharvestwillleaveverylittle.Oncertainsoils,mechanizedsystemsforfellingandextractingtreeswillresultinmoresoildisturbanceandsubsequentCO2emissionsthanlow‐impactsystems(Naveetal.,2010).Theharvestingimpactonsoilcarbonisgreaterfortheforestfloorthanforcarboninthemineralsoil,buttheseeffectsareshorterlivedandmaybemodestoverlongertimeintervals(Naveetal.,2010).Theavailabilityofmarketsforsmaller‐diametermaterialortreesofnonmerchantablespecieswillaffecthowmuchresidue(slash)isleftonthesite.Availabilityofstrongmarketswillgenerallyleadtohigherutilizationandlessresidue.Itisimportanttokeepaccountingboundariesinmindtoensurethatthereisnoomissionordoublecountingofemissionsorremovals.TheIPCCmethodologieshaveadoptedtheconventionthatemissionsfromburningbiomassforenergyshouldnotbeaccountedintheenergysector,butshouldbeaccountedintheland‐usesector.Weconformtothisconvention.If,forexample,forestresiduesareburnedforenergy,theCO2emissionsarenotcountedintheenergysector,andthereshouldbeareductionintheamountoffossilfuelburned.ButtheCO2emissionsfromtheburnedresiduewillbeaccountedasadecreaseincarbonstocksintheland‐usesector,andemissionswillbenodifferentthaniftheresidueshadbeenpiledandburnedintheforest.Thatis,acompleteaccountingofemissionswhenresiduesareburnedforenergywillshowemissionssavedintheenergysectorbutnochangeintheland‐usesector.

6.4.1.9 FireandFuelLoadManagement

Manyforesttypeshaveanaturaldependenceondisturbancefromfire.Asmentionedpreviously,itmayplayaroleinnaturalregeneration,butithasmanyotherfunctionsincludingnutrientrelease,naturalthinningandpruning,aswellasmodifyingfuelstructureandloading.Withoutprescribedfire,manyforesttypesmaybeatamuchhigherriskofreversalofgrowingcarbonstock.Inregionsofthecountrywherewildfireisaconcern,forestmanagersmaytakeamoreactiveroleinmanagingthelevelsofpotentialfuelsinaforest.Fuelmanagementcannotpreventignitionsofwildfires,butcandecreaselevelsofintensity,severity,andspread.Twocommonapproachestofuelloadmanagementareprescribedburningandmechanicalfueltreatments.

Prescribedfireisanyfireintentionallyignitedbymanagementunderanapprovedplantomeetspecificobjectives.Whenforestfuelsareburnedundercarefullyselectedconditions(weather,fuel,moisture,etc.),fuelscanbereducedtolevelsthatdecreasetheriskofdamagingwildfires.Otherobjectivesforuseoffireandcontrolledburnmaybetoreducethreatfromnon‐nativeinvasivespeciesandmaintenanceofmanyendangeredspeciesthroughouttheUnitedStates.

Mechanicalfueltreatmentsaresimilartoharvestingoperations,inthatspecificclassesoftreesarecutandremoved.Forexample,alltreesbelowathresholddiametermayberemovedinathinning(Johnsonetal.,2007).Theresultshouldbedecreasedavailabilityoffuelsthatwouldincreasewildfireseverity.

Thecarbonimpactoffueltreatmentsistwo‐fold.First,itinevitablyresultsinemissionsofCO2fromthematerialremovedorburned.However,second,itsgoalistoreducethepotentialformuchlargerfutureemissions(andincreasedenvironmentaldamage)fromwildfiresinareaswheretheyareathreat.Awildfirecouldresultinareversalofthepreviousgainsincarbononthesite.Wildfireintensityandresultantlossofcarbonishighlyvariableanddependsuponsitespecificconditionsandeffects.Wildfirecanoccuratlowtomoderateintensity,whichlikeaprescribedfiremayresultinamoreresilientandproductivesiteoverthelongterm.ThechallengeisthattheimmediateCO2

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-53

emissionsfromawildfireorprescribedfire/controlburnarereadilyquantifiable,whereastheavoidedemissionsfrompotentialwildfiresarenotand,becausetreatmentsmaynottakeplaceintheareaswherewildfireoccurs,theycouldcreateextraemissionsthatwouldnototherwisehavehappened.Recentresearchindicatesthatprescribedburninghasaminimalimpactonforestcarbonbudgets,especiallyintheeasternUnitedStates.Impactsobservedfrommechanicalandfiretreatmentswerealsofairlyshort‐lived(Boerneretal.,2008).DispositionofremovedmaterialsisakeyfactortoconsiderwhenassessingtheGHGimplicationsoffuelmanagementtreatments.Prescribedfirecanhavesignificanteffectsonreducingtheriskofreversalthatcouldresultfromawildfire.

6.4.1.10 ReducingRiskofEmissionsfromPestsandDisease

Silviculturalinterventionmayalsobecalledforwhenforestsaredamagedbyweather,insects,ordisease.Forexample,wheninsectoutbreakssuchaspinebeetleinfestationskillpatchesoftrees,removaloftreesatorneartheinfestationsitemaypreventpopulationsofharmfulinsectsfromspreadingfurther.Whenharvestsaredesignedtorespondtopestanddiseaseproblems,theymaybecalledsanitationharvests.

Whenweathereventssuchasicestorms,hurricanes,orseverewinds(orawildfire)causeextensivedamagetoforeststands,quickremovalofthedownedtimbermayprovideanopportunitytorecoversomeofthefinancialvalueofthetimberandmaypreventthebuildupofverylargefuelloads.Wheneconomicvalueiscapturedfromaharvestofdamagedtimber,itistermedasalvageharvest.

Bothsalvageandsanitationharvestsremovetrees,sometimeswithmarketvalueandsometimeswithout.Thecarbonimpactsarereflectedintheamountofwoodymaterialremovedfromtheforestandwhetherthematerialremovedentersmarketsforwoodproductsorforenergy.Similartowildfiretreatments,inbothsanitationandsalvageharvests,however,theremovalofbiomassmaybecomparedwiththealternativeofleavingthematerialintheforesttodecayorburn,resultinginCO2emissions.Forsomecarbonaccountingsystems,thisdifferenceiscrucial;theassumptionthatemissionswouldhaveoccurredwithouttheactivityaffectsbaselineassumptionsagainstwhichcarbonsequestrationismeasured.

6.4.1.11 Short‐RotationWoodyCrops

Short‐rotationwoodycrops,alsocalledbiomassplantationsorbiomassenergyplantations,aretreeplantationsmanagedwithaveryhighintensitytoproducefibercropsinarelativelyshorttimeframe(e.g.,5–10years).Theseplantationsaremorelikeagriculturalcropsinthelevelofintensityoftreatments(e.g.,fertilization,weedcontrol,andsometimesirrigation).Woodgrowninthismannerisusuallysuitableforusebybiomassenergyfacilitiesorpossiblypulpmills,butthecosttoproducethiswoodisveryhighcomparedwithtraditionalplantations.Forsomespecies,itispossibletoregeneratethesestandsbycoppicing,orcuttingtopromotesproutingfromintactrootsystems,whichavoidsthecostofplantingnewtrees.Regenerationbysproutscanresultindensestandsexhibitingveryfastgrowth.

Thecarbondynamicsinashort‐rotationwoodycropsystemaresimilartoconventionalplantations,exceptfortheacceleratedgrowthandreducedrotationlength.Insomeshort‐rotationwoodycropsystems,covercropsmaybegrowntopreventerosionandmaintainsoilfertility.Covercropswouldalsoservetoincreasecarbonstorageonsite.

6.4.2 ActivityData

Carbonstoragefromforestmanagementactivitiesisestimatedapplyingthreedifferenttypesofestimates.EstimateTypeIfocusesontheeffectsofmanagementactivitiesoncarbonstocksfora

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-54

givenyear.EstimateTypeIIfocusesontheeffectsofmanagementactivitiesoncarbonstocksoveraperiodofyearsinthefutureandmustbebasedonprojections.EstimateTypeIIIexaminesthedifferenceinprojectedcarbonstocksbetweensetsofalternativescenariosofpotentialmanagement.Thissectionwilldiscusstheactivitydataneedsforeachofthetypesofestimatesforthevariousforestmanagementactivities.Ingeneral,however,theestimationapproachesanddataneedswillbeoftwotypes:(1)forestinventorydata;and(2)standprojectionmodels.

ForTypeI,incaseswhereamanagementactivityhasalteredthecarbonstockinspecificpools,thebestestimatesmaybeobtainedbyhavingforestinventorydatabeforeandafterthetreatment,suchthatthedifferencecanbeattributedtothemanagementactivity.Forestinventorydatashouldincludemeasurementsobtainedintheforestataseriesofplots,withlistsofthetreesineachplot.Usuallyforeachtreeitisnecessarytoknowthespecies,diameter,andsometimesheight.Fromthesemeasurements,stand‐levelestimatesoftreedensity(treesperunitarea),basalarea(cross‐sectionalboleareaat4.5feet(1.4m)fromtheground),speciescomposition,andtreevolumeandbiomasscanbecomputed.

Anotherapproach,usedforTypeIIandTypeIIIestimates,requirestheuseofstandprojectionmodelstoestimatetheresponsesoftheforesttomanagementactivities.Suchmodelshavebeencreatedforawidevarietyofforesttypesandtreatments;anexampleistheFVSfamilyofmodelsdiscussedearlier.Projectionmodelsforforecastingforestconditions(andcarbonstocks)typicallyrequiremeasuresorindicesofforestproductivity.Acommonlyusedmeasureofforestproductivityissiteindex,whichrepresentstheheightthattreesonasitewillreachbyacertainbaseage.Forexample,onlandwithasiteindexof65(baseage25),theaverageheightofdominantandco‐dominanttreesinastandwillbe65feet(19.8m)whenthetreesreachage25.

ThemostaccurateTypeIIandTypeIIIestimatesarefrommodelsdevelopedspecificallyforagivenplantationspeciesornarrowlydefinedforesttype.Forexample,therearemanymodelsavailabletoestimateeffectsofmanagementoncommonlyplantedandhighlyresearchedspeciessuchasDouglasfirorloblollypine(e.g.,AmateisandBurkhart,2005;Burkhart,2008;Carlsonetal.,2008;Lietal.,2007;Sucreetal.,2008).Atthistime,theFVSfamilyofmodelsistherecommendedmethodforestimatingforestcarbonstocks.Inincorporatingthismethodintoanysoftwaretool,adataportalthatallowstheusertoloadtheirexistingstanddataandmanagementactivitydatafortranslationintotheFVSformatisrecommendedandwouldproveuseful.Futuredevelopmentmayalsopermitcustommodelstointerfacewithanestimationtool.Atthistime,however,suchcapabilityisnotavailable.Incaseswheresuchmodelsarenotavailable,itmaybenecessarytogeneralizebyaggregatingforesttypesandmanagementactivitiesandperformprojectionsbasedoncategoriesofmanagementintensityforgeneralforesttypes.ManagementintensitycategoriesaredefinedinSection6.4.3.

Theremainderofthissectionisorganizedasfollows:

StandDensityManagement

SitePreparationTechniques

VegetationControl

Planting

NaturalRegeneration

Fertilization

SelectionofRotationLength

HarvestingandUtilizationTechniques

FireandFuelLoadManagement

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-55

ReducingRiskofEmissionsfromPestsandDisease

Short‐RotationWoodyCrops

6.4.2.1 StandDensityManagement

Standdensitymanagementactivitiesincludeunderplanting,precommercialthinning,andcommercialthinning.Ineachcase,theprimarydatarequirementsforTypeIestimatesaretreeinventoriesbeforeandafterthetreatment,whichcanindicatethechangeinstockinglevelsandthequantityofbiomassremovedduringthinnings.Inthecaseofthinnings,itisimportanttoknowthevolumeorbiomassdirectedtodifferentwoodproductsmarkets(e.g.,pulpwood,sawtimber,orenergy)toproperlyaccountforthecarboninHWPs.

ForTypeIIandIIIestimatesofthefuturecarbondynamicsofthestandafterthesetreatments,standprojectionmodelswillrequireameasureofsiteindexinadditiontotheinventoryinformationcollectedforTypeIestimates.

6.4.2.2 SitePreparation

Theprimaryinformationrequirementforestimatesofstockchangesduetositepreparationiswhethersoildisturbancehasoccurredduringsitepreparation.Mechanicalsitepreparationtechniquesthatinvolvesoildisturbancewillbeassumedtoleadtoashort‐termlossofsoilcarbonstoragefollowedbyarecovery.Chemicalorothertreatmentsthatdon’tinvolvesoildisturbancewillnotresultinsoilCO2emissionsbeyondwhatmayhaveoccurredduringharvesting.ForTypeIIandIIIestimates,thesitepreparationtechniqueshouldberecordedintheeventthatmodelsmaydifferentiatebetweengrowthratescorrespondingtovarioussitepreparationtechniques.

6.4.2.3 VegetationControl

ForTypeIestimates,itisnecessarytohaveinventoryinformationbeforeandaftervegetationcontroltreatmentsifthevegetationcontrolinvolveswoodymaterial.(Carbonstocksarenotexpectedtobesubstantiallydifferentforherbaceouscontroltreatmentsneartimeofplanting.)Whenvegetationiskilledbutnotremoved,thecarbonstockimpactsinvolveprimarilytheredirectionofstockfromonepool(livetrees)toanother(standingdeadtrees).

ForTypeIIandIIIestimates,somemodelsmayprojectstandgrowthdifferentlyifcompetingvegetationisremoved.Insuchcases,similarinventoryinformationbeforeandaftertreatmentwillbenecessary.

6.4.2.4 Planting

Theactofplantingitselfinvolvesanegligiblecarbonstockchangefortheyearofplanting.Thus,aTypeIestimatewouldshownocarbonstockchangefollowingaplanting.

Forallsubsequentyears,however,criticalparametersarethespeciesplanted,theoriginalplantingdensity(treesperacre),andthesurvivalrate(inpercent)afteronegrowingseason.Becausemostearlymortalityoccurswithinoneyearofplanting,thepercentageoftreessurvivingatyearoneprovidesarobustestimateofstanddensityforgrowthprojections.ItwillalsobeimportantforTypeIIandIIIestimatestorecordthegeneticstockused(e.g.,firstgeneration,open‐pollinated,mass‐controlledpollinated,clonal)intheeventthatprojectionmodelsaredevelopedforspecificgeneticsources.Somemeasureofsiteproductivity(e.g.,siteindex)willbeneededaswell.

6.4.2.5 NaturalRegeneration

Asinthecaseofplantationestablishment,carbonstockchangesatthetimeofnaturalregenerationarenegligible.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-56

TypeIIandIIIestimateswillrequireinformationonspeciesmix,standdensity,andsomeinformationonstandproductivity.Incasesinwhichstandproductivitycannotbemeasureddirectly(bymeasuringexistingtreesforsiteindex),someestimatescanbederivedfromsoilsdatabasessuchasSSURGO,orfromfieldcharacterizationofsoilseriesandreferencetosoilmapsandmanuals.

6.4.2.6 Fertilization

TypeIestimateswillshownoimmediatecarbonstockchangesrelativetofertilizationfortheyearinwhichtheactivityoccurred.N2Oemissionswilloccurattimeoffertilization;activitydatashouldincludenumberofacresfertilized,applicationrate,andtypeofnitrogenapplied.

TypeIIandIIIestimatesinvolvingstandprojectionmaymakeuseofmodelswhichincorporateinformationaboutthefertilizationtreatment.Applicationrates(poundsperacre)andelementalcomposition(nitrogen,phosphorus,potassium)shouldberecorded.

6.4.2.7 SelectionofRotationLength

TypeIestimatesarenotapplicabletoselectionofrotationlength.TypeIIandIIIestimatesmayentailexperimentationwithrotationlengthsinmodelingexercisestotestthecarbonstockimplicationsofdifferentrotationlengthstrategies.Suchexperimentationwillsimplyinvolvethecomparisonofmodelsrunwithallparametersheldconstantexceptforrotationlength.

6.4.2.8 HarvestingandUtilizationTechniques

Harvestinghasthelargestimmediateimpactonforestcarbonstocks.Consequently,forTypeIestimates,thelandownerneedstocollectaccurateandsufficientlydetailedforestinventoryinformationbeforeharvestandafterharvestinthecaseofpartialcutting.Becauseongoingsequestrationofcarbonstocksfollowsdifferentpathwaysfordifferentforestproducts,thedispositionoftheharvestedmaterialintodifferentproductpools(e.g.,pulpwood,sawtimber)needstoberecorded.Thisinformationshouldbereadilyavailableaspartofsalesrecords.Defaultfactorsareavailabletoestimatecarboninharvestingresidues(slash).

Inthecaseofpartialharvests(wherethereisaresidualstandtoproject),orprojectionsofimpactsofdifferentharvestingorsilviculturalsystems,completeinventorydataandproductivityestimates(e.g.,siteindex)forthestandareneeded.

6.4.2.9 FireandFuelLoadManagement

ForTypeIestimates,pre‐treatmentdataonfuelloadingwithfocusonthematerialtoberemovedinthetreatmentneedstobecollected.AnexampleofdatacollectionprotocolsforfueldatacanbefoundinBrown(1974).Post‐treatmentassessmentofresidualmaterialwillindicatetheamountremovedinthetreatment.Thetypeoftreatment(burnormechanical)andthedispositionoffuel(consumed,leftonsite,removed)shouldberecorded.Ifconsumed,FOFEMorCONSUMEcanbeusedtocalculatetheGHGemissionsfromaprescribedburn.

TypeIIandIIIestimatesofthecarbonstockimpactsoffueltreatmentswillrequirespecializedfiremodelsthatcouldindicatelikelyoutcomesofthefueltreatmentrelativetonotreatmentandasubsequentwildfire;availabletoolsincludemodelssuchasCONSUME(JointFireScienceProgram,2009)andtheFVS‐FFEmodule(ReinhardtandCrookston,2003).SeeTable6‐13wherealow‐severityfirecouldbecomparedtothecrownfireeffectbasedonFOFEMoutputs.

6.4.2.10 ReducingRiskofEmissionsfromPestsandDisease

Forestimatesofcarbonstockimpactsofsanitationandsalvageharvests,pretreatmentandpost‐

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-57

treatmentinventoriesarerequired.Inthepretreatmentinventory,theextentandnatureofdamageareneededtoestimatethecarbonstockthathasshiftedfromlivetodeadbiomasspriortotreatment.

ModelingforTypeIIandIIIestimatesmayentailsimplyprojectingtheresidual(post‐treatment)stand.Tofullyevaluatethecarbonstockimpactsofthetreatment,modelsorassumptionsareneededforestimatingthespreadoftheinsectordiseaseabsentthetreatment.Toolsforsuchmodelingorassumptionsmaybehardtoobtain.

6.4.2.11 Short‐RotationWoodyCrops

Estimationofcarbonstockimpactsfromplantationsofshort‐rotationwoodycropswouldfollowthesamegeneralprocedureasotherplantationestimates.Nostockchangeswouldbeexpectedattimeofplanting(carboninseedlingsorplantingstockisnegligible).ProjectionsforTypeIIandIIIestimatesrequiretheavailabilityofmodelstoprojectgrowthandyieldofthespeciesplantedunderthemanagementscenariosenvisioned.

6.4.3 ManagementIntensityCategories

Intheprevioussection,theuseofmodelstopredictforestresponsestomanagementactivitieswasdiscussed.Manysuchmodelsareavailableforspecificmanagementpracticesinplantationsofcertainspeciesorinspecificforesttypes.Thesemodelsarevariedintheirinputrequirementsandtheirapplications.Todevelopanationallyconsistentapproach,theinfinitecombinationsofsequencesofspecificmanagementactivitiesandforesttypesneedtobegeneralized.Usingasinglemodelingframework,suchasFVS(Dixon,2002)andcategoriesofmanagementintensities,allowsforthesimulationofsuitesofmanagementactivitiesinawidevarietyofforesttypesandconditionswithasinglesetofinputs.ThisapproachtodefiningmanagementintensitycategoriesissimilartothatusedbySiry(2002).

Therefore,inthissectioncategoriesofforesttypesandmanagementintensitiesthatrepresentbroadcombinationsofcommonlyappliedactivitiesintheforesttypesoftheUnitedStatesaredefined.Defaulttablesofcarbonstocksforthesecategoriescouldthenbedevelopedtoprovideconsistentandusefulinformationaboutlikelycarbonstockimplicationsofforestmanagementactivitiesacrossthecountry.

6.4.3.1 DefiningForestTypeCategories

Thefirstdistinctionindefiningmanagementintensitycategoriesistheidentificationofthebroadspeciesgrouping:hardwood,softwood,ormixed.Hardwoodforesttypesaredominatedbyhardwoodtreespeciessuchasoak,maple,cottonwood,birch.Softwoodtypesaredominatedbysoftwoodtreespeciessuchaspine,spruce,orDouglasfir.Mixedtypesexhibitnocleardominanceofonespeciesgroup.Thesecondmajordistinctioniswhetherthestandwasplantedornaturallyregenerated.Certainmanagementactivitiesarefarmorelikelytobeappliedtoplantationsthannaturalstands.Mostplantationsaresoftwoods,withtheexceptionofsomeshort‐rotationwoodycropsofhardwoodtypessuchascottonwood,willow,hybridpoplar,oraspen.

6.4.3.2 DefiningCategoriesofManagementIntensity

Fourcategoriesofmanagementintensityaredefinedbasedoncommonlyencounteredpractices.Forexample,almostallforestfertilizationisappliedtoplantationsratherthannaturallyregeneratedstands,sofertilizationwillbeconsideredpartofmanagementintensitiesrelatedonlytoplantations.Similarly,standsthatarefertilizedareusuallyalsotreatedwithherbicidetocontrolcompetingvegetationsothatthefertilizationbenefitaccruestothedesiredcropspecies.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-58

Thefourcategoriesofmanagementintensityarelow,moderate,high,andveryhigh.Lowintensitygenerallyreferstominimalmanagementintervention(e.g.,naturalregenerationoroldersoftwoodplantationswithoutgeneticallyimprovedstock).Moderateintensityincorporatessomelevelofactivemanagementsuchasintermediateharvests(e.g.,thinnings).Highintensityappliesonlytoplantationsandincorporatestheuseofsuperiorgeneticstockandvegetationcontrol.Veryhighintensitymanagementappliestoaggressivelymanagedsoftwoodorhardwoodplantationsinwhichsubstantialeffortismadetomaximizegrowthusinggenetics,vegetationcontrol,andfertilization.Theresultingcombinationsofforesttypes,intensities,andmanagementpracticesaresummarizedinTable6‐5.

Table6‐5:ManagementIntensityCategories

ForestTypea/ManagementIntensityb 

StandDensityMgmt 

Planting SuperiorGenetics 

VegetationControl 

Fertilization

Hardwood/low 

Hardwood/moderate  X Mixed/low  Mixed/moderate  X Softwood(Nat)/low  Softwood(Nat)/moderate  X Softwood(Plt)/low  X Softwood(Plt)/moderate X X X Softwood(Plt)/high  X X X XSoftwood(Plt)/veryhigh  X X X X XHardwood(Plt)/veryhighc  X X X X XaForesttypereferstothecombinationofspeciesgroupandregeneration(Nat=naturallyregenerated;Plt=Planted).bAnXindicatesthatthepracticeindicatedisappliedforthemanagementintensitycategory.cVeryhighintensityhardwoodplantationsareusuallyencounteredinthecontextofshort‐rotationwoodcropsorbiomassplantations.

Figure6‐6showsthespecificregions(e.g.,PacificNorthwest,West;PacificNorthwest,East;PacificSouthwest;RockyMountainNorth;RockyMountainSouth;GreatPlains;NorthernLakeStates;Central;SouthCentral;Northeast;andSoutheast)forwhichsilviculturaloptionsbythemostcommonlymanagedforesttypeweredeveloped.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-59

Figure6‐6:MapofSpecificRegionsofForestManagement

ForthemanagementintensitycategoriesillustratedinTable6‐5,commonsilviculturaloptionsbythemostcommonlymanagedforesttypesforspecificregionsofforestmanagement(seeTable6‐6)aredescribed.Thislistisnotexhaustive,sincesilviculturalprescriptionsmayoftenbetailoredtositespecificconditions;however,thelistprovidesthepracticesfrequentlyappliedincommonlymanagedforesttypes.Themanagementobjectivemaynotnecessarilybetimberproduction;insomeregionsandtypeshabitatrestoration,rangelands,orforesthealthmaybetheprimarymanagementobjectives.Table6‐6providesalistofcommonlyusedsilviculturalprescriptionsforcommonforesttypesineachregion.

Table6‐6:CommonSilviculturalOptionsbyMostCommonlyManagedForestType

Region ForestType GeneralizedPractice

Northeasta

Northernhardwoods:beech,sugarmaple,yellowbirch,andassociates

Singletreeselection:harvest40–50ft2peracreevery20yearsacrossarangeofsizeclassesinstandswith120–130ft2basalarea(BA)Clearcut:when120–130ft2,thencommercialthinningCommercialthin:Atage90–100(120ft2)thinto70–80ft2

Standardshelterwood:Harvest40–50ft2frombelow,leaving80ft2inoverstory;removeoverstoryin10–15years

Spruce–fir:red/whitespruce,balsamfir

Shelterwood:Harvest60ft2 frombelow(leave100ft2);harvestremainderin10–15yearsSingletreeselection:At160ft2,remove50ft2inallsizes,every20years

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-60

Region ForestType GeneralizedPractice

Commercialthinning:Atage50–60,thinfrom150downto100ft2

Centralb

Oak–hickory

ClearcutShelterwood: followinglocalguidelinesGroupselectionwithcommercialthinningtoB‐levelstockingonGingrichGuide(Gingrich,1967)Precommercial/commercialthinningtoB‐levelstockingonGingrichGuideDiameterlimitcut:To12inchesDBHPrescribedfire:topromoteoakregenerationorwoodlandrestoration

Elm–ash–cottonwoodClearcutIndividualtreeselection: followinglocalguidanceDiameterlimitcut:To12inchesDBH

Maple–beech–birch

ClearcutShelterwood: followinglocalguidanceGroupselectionwithcommercialthinningtoB‐levelstockingonGingrichGuideIndividualtreeselection:CommercialthinningtoB‐levelstockingonGingrichGuideDiameterlimitcut:To12inchesDBH

Oak–pine

Clearcut:Shelterwood:GroupselectionwithcommercialthinningtoB‐levelstockingonGingrichGuideDiameterlimitcut:To12inchesDBHPrescribedfire:Topromote woodlandrestoration

RockyMountainSouthc

Drymontane:ponderosapine,Douglasfir

Selectioncutting:Harvest20–30ft2peracreevery20–30yearsacrosssizeclassesinstandsto40–80ft2BACommercialthinning:Atage60–80thinto50–60ft2 BAShelterwood:Harvest60–80ft2 BAfrombelow;leave30ft2inoverstory;removeoverstoryin5–10years

Aspen Coppice: Atage100Lodgepolepine Clearcut: Atage120–150

Spruce–firSingletreeselection:Harvest20–30ft2peracreevery20–30yearsacrosssizeclassesinstandsto80–120ft2BA

Woodlandtypes:pinyon–juniper,Gambreloak Selectioncutting:Harvestto40–60ft2BA

Southeastd

UplandhardwoodClearcut:Atage35–50Singletreeselection:Harvest40–60ft2peracreinstandswith100–140ft2peracre

BottomlandhardwoodSingletreeselection:Harvest40–60ft2peracreinstandswith100–140ft2peracre

Pineplantation–lowintensity

Plantwithnon‐improvedseedlings600–700peracre,thinto60–70ft2peracreatage18–24,clearcutatage25–35

Pineplantation–mediumintensity

Plantwithimprovedseedlings600–700peracre,thinto60–70ft2peracreatage18–22,fertilizeafterthinningwithnitrogenandphosphorus(ifneeded),clearcut5–7yearsafterthinning

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-61

Region ForestType GeneralizedPractice

Pineplantation–highintensity

Plantwithimprovedseedlings600–700peracre,herbaceousweedcontrolage2–4,thinto60–70ft2peracreatage16–20,fertilizeafterthinningwithnitrogenandphosphorus(ifneeded),clearcut5–7yearsafterthinning

SouthCentrald

UplandhardwoodClearcut:Atage35–50Singletreeselection:Harvest40–60ft2peracreinstandswith100–140ft2peracre

Bottomlandhardwood Singletreeselection:Harvest40–60ft2peracreinstandswith100–140ft2peracre

Pineplantation–lowintensity

Plantwithnon‐improvedseedlings450–700peracre, onlowerqualitysites,thinto60–70ft2peracreatage18–20;onhigherqualitysites,thinto60–70ft2peracreatage12–16,onhigherqualitysites,thinagainatage20–24,clearcut5–7yearsafterthinning

Pineplantation–mediumintensity

Plantwithimprovedseedlings600–700peracre,onlowerqualitysites,thinto60–70ft2peracreatage18–20;onhigherqualitysites,thinto60–70ft2peracreatage12–16,fertilizeafterthinningwithnitrogenandphosphorus(ifneeded),onhigherqualitysites,thinagainage20–24,clearcut5–7yearsafterthinning

Pineplantation–highintensity

Plantwithimprovedseedlings600–700peracre,herbaceousweedcontrolage2–4,onlowerqualitysites,thinto60–70ft2peracreatage18–20;onhigherqualitysites,thinto60–70ft2peracreatage12–16,fertilizeafterthinningwithnitrogenandphosphorus(ifneeded),onhigherqualitysites,thinagainatage20–24,clearcut5–7yearsafterthinning

NorthernLakeStatese

Aspen–birch

Clearcut:50–60yearrotationShelterwood:Whenbirchismaincomponent:twocutsystem,commercialthinningatage40–50onhighqualitysites

NorthernhardwoodsShelterwood:twostage;firstcut20yearspriortorotationage;commercialthinningasrequiredSingletree/groupselectionwith10–20yearcuttingcycle

Oak

Clearcut:Onlowerqualitysites,andonhighqualitysiteswhereadequateadvancedregenerationispresent;commercialthinningasrequiredShelterwood:Onhighqualitysiteswhenadequateadvancedregenerationisnotpresent;commercialthinningasrequired

JackpineClearcut:50–60yearrotation (notethatjackpinemanagedforKirtland’swarblerhabitatwillhaveadditionalmanagementrequirements)

Redpine

Clearcut:Commonlyfollowedbysitepreparationandplanting900peracre,commercialthinningbeginningatage25–40Shelterwood:Wherediseaseriskislow;oftenusedwithprescribedfire;commercialthinningbeginningatage25–40

WhitepineShelterwood:Twostagesystem;commercialthinningbeginningatage40

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-62

Region ForestType GeneralizedPractice

Whitespruce/balsamfirClearcut:WhenadequateregenerationispresentShelterwood:Twostagesystem,whenadequateregenerationisnotpresent

Lowlandconifer

Clearcut:Whenadequateregenerationispresent; patchandstripclearcutsmaybeusedinsomecasesShelterwood:Twostagesystem,whenadequateregenerationisnotpresent

GreatPlainsf Ponderosapine

Two‐cutShelterwood:reducebasalareatobelow60ft2peracre,thenremoveremainingoverstoryafteradequateregenerationispresentPrecommercialthinningasnecessarytomaintaindesireddensitiesArtificialregenerationmayberequiredaftercatastrophicdisturbancesortoestablishforestsonpreviouslyunforestedland;thismaybedonethroughbroadcastseedingorplanting

RockyMountainNorthg

PonderosapinePlant400–500trees peracre,precommercialthinto200–300treesperacre,commercialthinto150–200treesperacreatage30–40;clearcutharvestatage60–80

LodgepolepineSitepreparetoexposemineralsoilseedbed,naturalregenerationbyseeding,precommercialthinto200–400treesperacre,patchclearcutharvestatage80–100

PacificSouthwesth

Mixedconifer:ponderosapine,sugarpine,Douglasfir,incensecedar,whitefir,Jeffreypine,andCaliforniablackoak

Commercialthin:Startingatagesnear40andcontinuingatvariousperiodiccyclesuntilregeneration;post‐thinningstockinggenerallyrangesbetween150–250ft2;variablerotationlength,dependingonobjectivesCommercialthinningwithbothpatchregenerationandreservedareas:Similartoabove,butwithhigherlevelsofvariationinpost‐thinningstockinglevels,smallpatchesofregeneration,primarilytoincreasepinespecies,andsmallareasreservedfromharvest,maintaininglarger/oldertreesprovidingrelativelyuniquewildlifehabitats;variablerotationlength,dependingonobjectives

PacificNorthwest,Easti

Douglasfir/Ponderosapine–lowintensity

Sitepreparationbysitescarificationinsmallspots,naturalregeneration,precommercialthinatage20–25yearsto100–250treesperacre,patchclearcutorseed‐treeharvestatage50–70

Douglasfir/Ponderosapine–mediumintensity(onmoreproductivesites)

Mechanicalsitepreparationtoscarifysoilandremovecompetingvegetation,plantwithimprovedseedlingsatapprox.400–500peracre,precommercialthinatage15–20,commercialthinatage30–40,patchclearcutorseed‐treeharvestatage50–70

PacificNorthwest,Westj

Douglasfir

Sitepreparestandwithpre‐emergentherbicides,plantwithimprovedseedlingsatapprox.450peracre,commercialthinningasneededatage20–30,fertilizeasneededatage30–40,clearcutharvestatage40–50

DBH=DiameteratbreastheightaPersonalcommunication:BillLeak.bPersonalcommunication:SteveShifley.cPersonalcommunication:JamesYoutz,JimThinnes.dPersonalcommunication:StevePrisley.ePlanningdocumentsandsilvicultureguides,andpersonalcommunicationwithstaffontheHuron‐Manistee,Ottawa,and

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-63

HiawathaNationalForests.fSeeShepperdandBattaglia(2002).gSeeYoungblood(2005).hPersonalcommunication:JoeSherlock.iSeeBriggs(2007).jSeeHanleyandBaumgartner(2005).

6.4.3.3 ApplyingDefaultTablesofManagementPracticeScenarios

Oncethegeneralcategoriesofforesttypesandmanagementintensitiesaredefined,amodelingframeworksuchasFVScouldbeusedtodevelopsetsofdefaulttablesofcarbonstocksinvariouspoolsovertimeundermanagementscenarioscommontotheforesttypesandmanagementintensities.Notethatatthistime,theselookuptablesarenotavailable;developingdefaultcarbonstockvaluesforforestmanagementpracticesisataskrequiringasignificantleveloftimeandeffort.Intheabsenceofsuchtables,smalllandownerswishingtoestimatetheeffectsofchangingmanagementpractices(aTypeIIIestimate)willneedtousethemethodsdescribedforlargelandowners.

Table6‐7showsanunpopulatedexampleforthedefaultlookuptablesofmanagementpracticescenarios.Thedefaulttableswouldprovideregionalestimatesoftimbervolumeandcarbonstocksforaspecificforesttypegroup(e.g.,loblolly‐shortleafpinestands)underaspecific(e.g.,Softwood(planted)/veryhigh)managementintensityonforestlandafterclearcutharvestinaspecificregion(e.g.,theSoutheast)forlowproductivityandhighproductivitysites.

Table6‐7:RegionalEstimatesofTimberVolumeandCarbonStocksforaSpecificForestTypeGroup(e.g.,Loblolly‐ShortleafPineStands)UnderaSpecific(e.g.,Softwood(Planted)/VeryHigh)ManagementIntensityonForestLandafterClearcutHarvestinaSpecificRegion(e.g.,theSoutheast)forLowProductivityandHighProductivitySites

Note:Atthistime,populatedtablesarenotavailable;developmentofsuchtablesisnotcertain.

AgeMeanVolume

MeanCarbonDensity

LiveTree StandingDeadTree

DownDeadWood

ForestFloororLitter

TotalNonsoil

Years m3ha−1 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐MetricTonsCha−1(LowProductivity)‐‐‐‐‐‐‐‐‐‐‐‐‐0 ‐ ‐ ‐ ‐ ‐ ‐5 ‐ ‐ ‐ ‐ ‐ ‐10 ‐ ‐ ‐ ‐ ‐ ‐15 ‐ ‐ ‐ ‐ ‐ ‐20 ‐ ‐ ‐ ‐ ‐ ‐25 ‐ ‐ ‐ ‐ ‐ ‐30 ‐ ‐ ‐ ‐ ‐ ‐35 ‐ ‐ ‐ ‐ ‐ ‐40 ‐ ‐ ‐ ‐ ‐ ‐45 ‐ ‐ ‐ ‐ ‐ ‐50 ‐ ‐ ‐ ‐ ‐ ‐55 ‐ ‐ ‐ ‐ ‐ ‐60 ‐ ‐ ‐ ‐ ‐ ‐65 ‐ ‐ ‐ ‐ ‐ ‐70 ‐ ‐ ‐ ‐ ‐ ‐75 ‐ ‐ ‐ ‐ ‐ ‐80 ‐ ‐ ‐ ‐ ‐ ‐85 ‐ ‐ ‐ ‐ ‐ ‐90 ‐ ‐ ‐ ‐ ‐ ‐

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-64

AgeMeanVolume

MeanCarbonDensity

LiveTree StandingDeadTree

DownDeadWood

ForestFloororLitter

TotalNonsoil

Years m3ha−1 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐MetrictonsCha−1(highproductivity)‐‐‐‐‐‐‐‐‐‐‐‐ 0 ‐ ‐ ‐ ‐ ‐ ‐5 ‐ ‐ ‐ ‐ ‐ ‐10 ‐ ‐ ‐ ‐ ‐ ‐15 ‐ ‐ ‐ ‐ ‐ ‐20 ‐ ‐ ‐ ‐ ‐ ‐25 ‐ ‐ ‐ ‐ ‐ ‐30 ‐ ‐ ‐ ‐ ‐ ‐35 ‐ ‐ ‐ ‐ ‐ ‐40 ‐ ‐ ‐ ‐ ‐ ‐45 ‐ ‐ ‐ ‐ ‐ ‐50 ‐ ‐ ‐ ‐ ‐ ‐55 ‐ ‐ ‐ ‐ ‐ ‐60 ‐ ‐ ‐ ‐ ‐ ‐65 ‐ ‐ ‐ ‐ ‐ ‐70 ‐ ‐ ‐ ‐ ‐ ‐75 ‐ ‐ ‐ ‐ ‐ ‐80 ‐ ‐ ‐ ‐ ‐ ‐85 ‐ ‐ ‐ ‐ ‐ ‐90 ‐ ‐ ‐ ‐ ‐ ‐

6.4.4 EstimationMethods

6.4.4.1 StandDensityManagement

TypeIestimatesmaybedevelopedforstanddensitymanagement.Forunderplanting,carbonstocksareessentiallyunchangedimmediatelyafterthetreatment.Forprecommercialthinnings,carbonismovedfromthelivetreepooltothestandingdeadpooland/orforestfloorpool;quantitieswillbelowandessentiallyjustacceleratethenaturalmortalityofthesesmallertrees,thusaccountingforthisactivitymaybeunnecessary.Forcommercialthinning,thelivetreecarbonstockisreducedandcarbonismovedintoHWPs,sothesepoolsneedtobeestimatedusingproceduresoutlinedinSection6.2andSection6.5.

TypeIIandIIIestimatesmaybedevelopedusingforestgrowthmodels(i.e.,FVS)specifictotheforesttypeandpracticesused.

6.4.4.2 SitePreparationTechniques

Carbonstockchangesthatareduetomechanicalsitepreparationtechniqueswillconsistofsomeoxidationofsoilorganiccarbonthatwillbereplacedovertimebyforestgrowth.Forlong‐termmonitoring,itmaybeassumedthatsoilcarbonstockswillbestableundersustainableforestmanagement(Smithetal.,2006).Thus,TypeIestimatescouldreflectshort‐termlossesofsoilcarbonstocksbasedonassumptionsappropriatetotheforesttypeandregion.

6.4.4.3 VegetationControl

Controlofwoodyvegetationwillexhibitpatternssimilartoprecommercialthinning:transferofcarbonstocksfromlivetreetodeadtreepools.Quantitieswilllikelybesmallandtheeffectofshortduration;henceaccountingfortheseimpactsusingTypeIestimatesmaybeunnecessary.

ForTypeIIandIIIestimates,vegetationcontrolmaybeexpectedtohaveabeneficialimpactonthe

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-65

growthoftheresidualstandthatshouldbemodeledaccordingly.

6.4.4.4 Planting

Negligiblecarbonstockchangesareexpectedatthetimeofestablishmentofanewplantation,soTypeIestimateswillshownostockchanges.ForTypeIIandIIIestimates,theplantationactivityestablishesanewstandthatcanthenbemodeledbasedonspecies,siteindex,andinitialstocking(plantingdensitytimesyear1survivalpercent).

6.4.4.5 NaturalRegeneration

Asinthecaseofplantationestablishment,carbonstockchangesatthetimeofnaturalregenerationarenegligible.ForTypeIIandIIIestimatesinvolvingprojectionsofstandgrowthovertime,initialstocking,speciesmix,andsiteproductivitywilldefinethestandparametersforgrowthprojections.

6.4.4.6 HarvestingandUtilization

Dependingontheharvestingandsilviculturalsystemused,multiplestockchangesoccurwitharotationharvest.Livetreebiomassstocksarereducedbytheamountofharvestedwood(upto100percentofthelivetreebiomasspool).TheseremovalsshouldbebalancedbyadditionstoHWPpoolsandslash/residueintheforestflooranddeadwoodpools.Becauselossestosoilorganiccarbonpoolsfromdisturbancebymechanizedharvestingsystemsareofrelativelyshortduration,itiscommontoconsiderthelossandrecaptureasasteadystate(e.g.,Smithetal.,2006),thoughthismaydifferdependingonsoilcharacteristics.

Inthecaseofpartialharvests,thereisaresidualstandforwhichcarbonstocksremaintobeprojectedovertime.Post‐harvestinventoryinformationprovidesthecriticalstandparameterstobeinputintogrowthmodels.Intheabsenceofapost‐harvestinventory,pre‐harvestinventorydatacanbeadjustedtoreflectthelossoftreesremovedbytheharvest(e.g.,bydecreasingthenumbersoftreesbyspeciesanddiameterclassbasedonharvestrecords).

6.4.4.7 FireandFuelLoadManagement

TypeIestimatesofcarbonstockchangesduetofueltreatmentsorprescribedfireshouldreflectlossestolivetreebiomassaccordingtothematerialburned,killed,orremoved(frompreandpost‐treatmentinventorydata).Foraprescribedfire,emissionscanbecalculatedusingFOFEM.Ifslashisleftfromthefueltreatment,CONSUMEmayalsobeused.

TypeIIandIIIestimatessimplyinvolveprojectingthestandbasedoninformationfromthepost‐treatmentinventory.

6.4.4.8 ReducingRiskofEmissionsfromPestsandDisease

TypeIcarbonstockestimateswillinvolvecomputationoflossestolivetreebiomassfromthesanitationorsalvageharvest,withadditionstoHWPpoolsasappropriate.

TypeIIandIIIestimatessimplyinvolveprojectingthestandbasedoninformationfromthepost‐treatmentinventory.

6.4.4.9 Short‐RotationWoodyCrops

Negligiblecarbonstockchangesareexpectedatthetimeofestablishmentofanewplantation,soTypeIestimateswillshownostockchanges.ForTypeIIandIIIestimates,theplantationactivityestablishesanewstandthatcanthenbemodeledbasedonspecies,siteindex,andinitialstocking(plantingdensitytimesyear1survivalpercent).

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-66

6.4.5 LimitationsandUncertainty

6.4.5.1 MeasurementUncertainties

Forestinventorydata,fromwhichmostestimatesinthissectionarederived,containuncertaintyasaresultofsamplingandmeasurementerror.Furthermore,equationsareusedtoestimatebiomassfromtreemeasurements(species,diameters,heights),andtheseequationsintroduceadditionalerrors.Theseuncertainties,however,arewelldocumentedandcanbequantified.

6.4.5.2 ModelUncertainties

ForthedevelopmentofTypeIIandTypeIIIestimates,modelsareusedtoprojectcurrentconditionsintothefuture.Thesetypesofestimatesarebasedinitiallyoninventorydataandaresubjecttothemeasurementuncertaintiesdiscussedabove,butarealsosubjecttomodelingerror.Modelingerrorcanbedocumentedinpartbasedonthediagnosticsreported(ifany)fromthemodeldevelopmentprocess.Greateruncertaintiesareintroducedwhenmodelsareappliedbeyondtheconditionsforwhichtheyweredeveloped(e.g.,biomassequationsappliedtospeciesforwhichnobiomassdatawerecollected,forestgrowthmodelsappliedtostandsreceivingdifferentmanagementthanthestandsusedformodeldevelopment,etc.).Modeluncertaintiesalsoincreasewiththeprojectionperiod(thedistanceintothefutureforwhichestimatesareobtained).Someofthemodeluncertaintiesarecancelledoutwhenresultsfromtwosimilarmodelrunsarecompared(i.e.,aTypeIIIestimate).Forexample,ifamodelslightlyoverestimatescarbonstockinaforestwithandwithoutsometreatment,thedifferencebetweenthetwomodelestimatesmaybeaccurateeveniftheindividualestimatesarenot.

6.4.5.3 GeneralizationUncertainties

ForthepurposeofapplyingnationallyconsistentestimationmethodstoTypeIIandIIIestimates,itisnecessarytogeneralizesituationsintobroadforesttypesandmanagementintensities.Thus,someprecisionislostinapplyingageneralized,aggregatedestimatetoaparticularsetofmanagementactivities.

6.5 HarvestedWoodProducts

6.5.1 GeneralAccountingIssues

Whenforestlandownersharvestwoodforproducts,aportionofthewoodcarbonendsupinsolidwoodorpaperproductsinenduses,andeventuallyinlandfills,andcanremainstoredforyearsordecades.Thisreportsuggestsaspecificmeasure,alongwithestimationmethods,that

MethodforHarvestedWoodProducts

MethodusesU.S.‐specificHWPstables.

TheHWPstablesarebasedonWOODCARBIImodelusedtoestimateannualchangeincarbonstoredinproductsandlandfills(Skog,2008).

TheentityusesthesetablestoestimatetheaverageamountofHWPcarbonfromthecurrentyear’sharvestthatremainsstoredinendusesandlandfillsoverthenext100years.

Thismethodwasselectedbecauseitissuitabletorepresenttheamountofcarbonstoredinproductsinuseandinlandfills.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-67

forestlandownerscanusetoreportcarbonadditionstothestockofHWPsfromwoodtheyharvest.TheaccountingframeworkusedtotrackHWPcarbonissimilartotheframeworkthattheUnitedStatesusestoreportnational‐levelannualchangesinHWPcarbonstocksunderUNFCCC.

Thenationalaccountingframeworkandthesemethodsadopttheproductionapproach,whichentailsthefollowing:(1)estimatingtheannualcarbonadditionstoandremovalsfromthestockofcarbonheldinwoodproductsinuseandinlandfills,(2)trackingonlycarboninwoodthatwasharvestedintheUnitedStates(U.S.EPA,2011),and(3)providingestimatesthattrackwoodcarbonheldinproducts,evenifistheproductsareexportedtoothercountries.

EstimatesoftheannualcontributionofHWPstocarbonstocksmaybemadeforTypeI,TypeII,andTypeIIIestimatesofforestcarbonchangeasoutlinedinSection6.2:

ForTypeIestimates,thefocusisonestimatingtheannualcontributionofHWPstocarbonstocksforagivencurrentyearorrecentpastyears.

ForTypeIIestimates,thefocusisonestimatingtheannualcontributionofHWPstocarbonstocksforaprojectedperiodofyearsinthefuture.

ForTypeIIIestimates,thefocusisonestimatingthechangeintheannualcontributionofHWPstocarbonstocksbetween:(1)abasecasewithonescenarioforforestmanagement(andharvest);and(2)asecondscenarioforforestmanagement(andharvest)thatisintendedtochangecarbonflux.

ForeachoftheTypeI,II,orIIIestimates,thesemethodsrecommendthatforestlandownersreporttheannualcontributionofHWPstocarbonstocksusingaspecificmeasureintendedtoapproximatetheclimatemitigationbenefitassociatedwithstoringcarboninHWPsovertime.TherecommendedmeasureistheestimatedaverageamountofHWPcarbonfromthecurrentyear’sharvestthatremainsstoredinendusesandlandfillsoverthesubsequent100years.

Theintentofthismeasureistoapproximatetheaverageannualclimatebenefitofwithholdingcarbonfromtheatmospherebyacertainamounteachyearfor100yearsasdescribedbya“decay”curve.Thisaveragebenefitisonethatcanbecreditedintheyearofharvest.ThisestimateofaverageeffectisconceptuallysimilartothemeasureoftheradiativeforcingimpactofacurrentyearemissionofCO2,CH4,orotherGHG.OnetonofCO2emissions—inGHGaccounting—isequatedtotheradiativeforcingitcausesoverthe100yearsfollowingtheemission.Theradiativeforcingcausedineachyearisweightedthesameovereachofthe100years.Wearesuggestingthesameconventioninweightingthecarbonstorageinwoodproductsequallyforeachof100years.

AnestimateofaveragefractionofHWPcarbonstoredover100years(averageamountstoredover100yearsdividedbytheoriginalproductcarbonproduced)isnotexactlythesameasthefractionofradiativeforcingavoidedbystoringwoodproductscarbon(andemittingcarbonslowly)over100years.FordecaycurveswhereaconstantfractionofremainingHWPcarbonisemittedeachyearthefractionofradiativeforcingavoidedover100yearscanbe0to14percentlessthantheaveragefractionofHWPcarbonstoredover100yearsdependingonthedecayrate.8Estimatesofthefractionofradiativeforcingavoidedover100yearscouldbeusedinplaceoftheaveragecarbonstorage.Giventheuncertaintyindecayratesasaninfluenceonestimatesandthegreatercomplexityoftheradiativeforcingmeasure,werecommendthemeasureofaveragecarbonstoredasanadequateproxyfortheeffectofwoodproductsproducedinthecurrentyearandstoredover

8Thefractionofradiativeforcingavoidedover100yearswasestimated(andcomparedtoaveragecarbonstoredover100years)assumingarangeofdecayratesforfirstorderdecaycurvesforwoodproductsandusingtheCO2radiativeforcingresponsecurvefromtheIPCCWorkingI4thAssessmentReport(footnotea,p.213)(IPCC,2007).

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-68

100years.

Themeasure—averagecarbonstoredinHWPover100years(withvariationsonhowlandfillcarbonisincluded)—isusedintheClimateActionReserve(2010)ForestProjectProtocolsadoptedbytheCaliforniaAirResourcesBoard.Theprotocolsindicatehowtocalculatethelevelofannualcarboncreditsthatmaybesoldbyforestlandownerswhoentercarboncontracts.

Notethatuseoftheproductionapproachtoaccountingisnotalife‐cycleassessmentaccountingapproachthatcouldtakeintoaccounthowcarbonemissionsfromincreasedwoodburningorincreaseduseofwoodproductsmightoffsetfossilfuelemissionsoremissionsfrommakingnon‐woodproductsovertime.TheestimatesofannualchangeincarboninHWPsarenotintendedtoindicatethetotalimpactonGHGlevelsintheatmosphereofusingHWPs(includinguseofwoodforenergy),noraretheyintendedtoindicatethattheemissiontotheatmospheretookplaceintheUnitedStatesversusothercountrieswhereproductswereexported.EstimationofTypeIIIsecondaryGHGreductioneffectsofsubstitutionofwoodforfossilfuelsornon‐woodconstructionproductsarecomplexandwouldrequirespecificationofabaselinefromwhichchangeismeasuredandotherassumptionsthatarebeyondthescopeofthesemethods.

Theproductionapproachisusedtoacknowledgethatharvestingofforestsdoesnotimmediatelyreleaseallofthecontainedcarbontotheatmosphere;theaccountingcountsonlythecarbonchangeinHWPsinordertoallowannualcarbonchangesinHWPstobedeductedoraddedtoannualemissionsintheenergyandmanufacturingsectorsandcarbonchangesinforests,sotherewillbenoomissionordoublecountingofsequestrationoremissionstotheatmosphere.Inthenationalaccountingframework,theannualemissionsfromwoodenergyareaccountedforaspartoftheaggregatedannualchangeinforestplusHWPcarbon.

6.5.2 EstimationMethods

6.5.2.1 WoodProductsFate/Longevity

ToallowforestlandownerstoestimatecarbonadditionstoHWPstocks—usingaveragecarbonstoredinHWPover100years—lookuptablesareprovidedthatgiveestimatesofcarbonremainingstoredafterharvestoutto100years.

Therearetwotypesoflookuptables:a“roundwood”typeanda“primaryproduct”type.

Fortheroundwoodtype,thelandownerneedsestimatesofthecarboninharvestedamountsofindustrialroundwood:hardwood(HW)orsoftwood(SW),sawlogs(SL),orpulpwood(PW).Industrialroundwoodiswoodusedforsolidwoodorpaperproductsandexcludesbarkandfuelwood.Thelandownercanbeginwithestimatesincubicunitsandconvertthemtocarbonweightorwoodweightunitsthenconvertthemtocarbonweight(assuming0.5metrictonscarbonpermetrictondrywood).Separatelookup“decay”tablesareprovidedbymajorU.S.regionandroundwoodtype(HWorSW,SL,orPW)thatshowthefractionofcarboninwoodtypicallystoredinwoodproductsinuseandinlandfills,outto100yearsaftertheyearofharvest,andtheaveragefractionstoredover100years.

Fortheprimaryproducttypeoflookuptables,thelandownerneedsestimatesoftheprimarywoodproductsmadefromthewoodharvested;i.e.,SWorHWlumber,SWorHWplywood,orientedstrandboard,orpaper(inconventionalproductunits).Thelandownerthenconvertstheseamountstocarbonweight.Foreachprimaryproduct,thelookup“decay”tablesshowthefractionofwoodcarbonthatistypicallystoredinwoodproductsinuseandinlandfills,fromtheyearofharvestoutto100years,andtheaveragefractionofcarbonstoredover100years.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-69

6.5.3 ActivityDataCollection

6.5.3.1 PrimaryProductDecayTables

Inordertoconstructtheprimaryproducttypedecaytables,dataareusedforeachU.S.regionon:

Thedispositionofeachprimaryproduct(e.g.,lumber,structuralpanels)tomajorenduses(e.g.,percentageofproductgoingtoresidentialhousing,non‐residentialhousing,manufacturing(furniture)),andpercentagegoingtoexports;

Thedecayfunctionsindicatinghowquicklyproductsgooutofuseforeachenduse;

Thefractionofmaterialgoingoutofusethatgoestolandfills;and

Thefractionofmaterialinlandfillsthatdoesnotdecay,andthedecayrateformaterialinlandfillsthatdoesdecay.

ItisassumedthatthereisanationalmarketforprimaryproductsandthepercentageofprimaryproductsgoingtoeachendusewillbethesameforeachU.S.region.ItisalsoassumedthatprimaryproductsexportedfromtheUnitedStatesareusedinthesamewayasdomesticproducts.Thatis,thereisanationalmarketforeachoftheprimarywoodandpaperproducts.Dataforitems(1)through(4)comefromtheWOODCARBIImodelusedtoestimateannualchangeincarbonstoredinproductsandlandfillsfortheU.S.InventoryofGHGEmissionsandSinksreport(Skog,2008;U.S.EPA,2010).

Ifalandownerknowsthetraditionalnumberofunitsofprimaryproducts(e.g.,thousandboardfeetoflumber)thatweremadefromthetimberharvestedfromtheirlandinagivenyear,theycanuseTables6‐A‐1,6‐A‐2,and6‐A‐3toestimatethecarboncontentsintheseproducts(Table6‐A‐1)andestimatetheamountofcarbonstoredintheseproducts(inuseandinlandfills)outto100yearsandtheaverageamountofcarbonstoredover100years(Table6‐A‐2[inuse]andTable6‐A‐3[inlandfills]).

Theaverageamountofcarbonstoredover100yearsforaparticularprimaryproductisthetotaloftheaveragesforproductsinuseandproductsinlandfillsshowninTables6‐A‐2(inuse)andTable6‐A‐3(inlandfills).

6.5.3.2 RoundwoodDecayTables

Inordertoconstructtheroundwoodtypeofdecaytables,dataareneededforeachregiononthepercentageofHWorSW,SL,orPWthatgoestovariousprimarywoodproducts;forexample,thefractionofSWSLsintheSouththatgoestolumber,panels,andpaper.Aftertheamountsofprimarywoodproductsareestimated,theprimaryproductstypedecaytablescanbeusedtoconstructroundwooddecaytables.DataneededtodivideroundwoodintoprimaryproductsforeachregionincludeForestServiceFIAtimberproductoutputdataandnationaldataonprimarywoodproductsproduction(Howard,2012;Smithetal.,2007).

Ifalandownerknowsthecubicfeetofroundwood,intheformofHWorSWSLsorPWthatisharvestedfromtheirlandinagivenyear,theycanuseTable6‐A‐4and6‐A‐5to(1)estimatetheweightofwoodharvested;(2)convertweightofwoodtocarbonbymultiplyingby0.5(i.e.,thefractionofdrybiomasstocarbonconversionfactor);and(3)estimatethetotalamountofcarbonstoredintheproducts(thesumofamountsinuseandinlandfills)eachyearoutto100years,andtheaveragestoredover100years.

Ifthelandownerknowstheweightofroundwoodharvestedratherthancubicfeet,itwouldusesteps2and3above.

AnnualHWPcarbon(averagestoredover100years)isgivenforeachregionandroundwoodtype

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-70

inTable6‐A‐5.

Ifthelandownerismakingforestgrowthandharvestprojections(TypeIIandTypeIIIestimates)andonlyknowsthecubicfeet(orweight)ofgrowingstockofHWandSWSLsandPWthatwillbeharvestedingivenfutureyears,thenTable6‐A‐6canbeusedtoestimatethetotalamountofroundwoodthatcanexpectedtobeharvested(growingstockandnon‐growingstock).Thesetotalamountsofroundwood(HWandSWSLsandPWmaythenconvertedtocarbonandtocarbonstored(andaveragecarbonstoredover100years)usingTable6‐A‐4andTable6‐A‐5,asdiscussedabove.Toconvert1cubicfootofdrywoodtopoundsmultiplydensityby62.4lbsft−3.Toconvert1cubicfoottokilogramsmultiplydensityby28.3kgft−3.

Aspreadsheetisavailableshowingalltheparametersandcalculationsthatproducethecarbonstoragetablesthatstartwithprimaryproductsorroundwoodharvest(Skog,2013).

6.5.4 Limitations,Uncertainty,andResearchGaps

6.5.4.1 UncertaintyinCchangeestimate

Generalestimatesofuncertainty,givenasthe95percentconfidenceintervals,canbemadeforHWPmeasureusedinTypeIcarbonchangeestimates(currentyearorrecentpastyears).Theseestimatesofuncertaintycouldbeprovidedwitheachofthetwotypesoflookuptables,andcanbemadeusingMonteCarlosimulationsandassumptionsaboutHWPuncertaintythatareusedfortheInventoryofU.S.GreenhouseGasEmissionsandSinksreport(U.S.EPA,2011).Uncertaintycouldbespecifiedforkeyvariablesincluding:(1)fractionsofSLsPWgoingtovariousprimaryproducts;(2)fractionsofprimaryproductsgoingtovariousenduses;(3)rateatwhichproductsarediscardedfromeachenduse;(4)fractionofdiscardedwoodorpaperthatgoestolandfills;(5)fractionofwoodorpapersettolandfillsthatissubjecttodecay;and(6)rateofdecayinlandfillsofdegradablewood/papercarbon.

AspreadsheetisavailablethecouldbeusedasabasisforMonteCarlosimulationstoestimateoveralluncertaintyforestimatesofaveragecarbonstoredover100years(Skog,2013).

ItwouldbepossiblebutmorecomplextomakeuncertaintyestimatesforTypeIIandTypeIIIcarbonchangeestimatesbyaddingestimatesofuncertaintyinparametersusedtomakeprojectionsofharvest.

Additionalresearchisneededtoimprovedifferentiationofthevariousratesatwhichsolidwoodproductsarediscardedfromusessuchaspallets,railroad,railcars,andfurniturethatarecurrentlygroupedintoonecategory.Thisfurtherdifferentiationwouldrefineestimatesofaveragecarbonstoredwhenthelandownerknowswhichprimarywoodproductsaremadefromthewoodthatisharvestedontheirland.Alternatecurvesfordiscardratesfromenduses,particularlydiscardsfromhousing,ifempiricallyverified,couldimproveestimatesofaveragecarbonstored.Estimatesofuncertaintyinparametersover100yearprojectionsareneededtogiveasoundestimateoftheuncertaintyinaveragecarbonstoredover100years.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-71

6.6 UrbanForests

6.6.1 Description

6.6.1.1 DefiningUrbanAreasandForests

Urbanforestsarecomposedofapopulationofalltreeswithinanurbanarea.Todelimittheextentofanurbanforest,theboundariesoftheurbanareamustbedrawn.Thisboundaryissuecanbeproblematic,aspeoplemayconceiveordefine“urban”differently.TodelimiturbanareasintheUnitedStates,U.S.Censusbureaudefinitionsareused.ThesedefinitionsdifferfromthoseusedintheNationalResourcesInventory,whichaimstoidentifyareasthatareremovedfromtherurallandbaseandincludeslandusessuchastransportationcorridors.

TheU.S.CensusBureau(2007)definesurbanasallterritory,population,andhousingunitslocatedwithinurbanizedareasorurbanclusters.Urbanizedareaandurbanclusterboundariesencompassdenselysettledterritories,whicharedescribedbyoneofthefollowing:(1)oneormoreblockgroupsorcensusblockswithapopulationdensityofatleast386.1peoplekm−2

Figure6‐7:UrbanandCommunityLandinConnecticut

Source:U.S.CensusBureau(2007).

MethodsforUrbanForests

Rangeofoptionsdependsondataavailabilityoftheentity’surbanforestland.

Theseoptionsuse:

− i‐TreeEcomodel(http://www.itreetools.org)toassesscarbonfromfielddataontreepopulations;and

− i‐TreeCanopymodel(http://www.itreetools.org/canopy/index.php)toassesstreecoverfromaerialimagesandlookuptablestoassesscarbon.

Quantitativemethodsarealsodescribedformaintenanceemissionsandalteredbuildingenergyuseandincludedforinformationpurposesonly.

Themethodswereselectedbecausetheyprovidearangeofoptionsdependentonthedataavailabilityfortheentity'surbanforestland.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-72

(1,000peoplemile−2);(2)surroundingblockgroupsandcensusblockswithapopulationdensityof193.1peoplekm−2(500peoplemile−2);and(3)lessdenselysettledblocksthatformenclavesorindentationsorareusedtoconnectdiscontinuousareas.Morespecifically,urbanizedareasconsistofterritoriesof50,000ormorepeople.Urbanclusters,aconceptnewtothe2000Census,consistofterritorieswithatleast2,500peoplebutfewerthan50,000people.

Inadditiontourbanland,theCensusBureaudesignatesplacesthatdelimitpopulationconcentrationsbasedonincorporatedorunincorporatedplaces,suchasacity,town,village,andcensus‐designatedplace.Theseplaces,or“communities,”alsodefineareaswherepeoplereside,butoftenwithalowerpopulationdensity.Thegeographicareasofurbanandcommunitiesoverlap(seeFigure6‐7),andeitherorbothcouldbeusedtodefineurbanforests.Theurbanlanddesignationdelimitshigherpopulationdensities,butdoesnotfollowtheboundariesofcitiesortownsthatmostpeoplecanrelateto.Theplaceorcommunityboundariesfollowthesepoliticalboundaries,butoftenincludebothruralandurbanland.

Urbanlandisdefinedbasedonpopulationdensity,andcommunitylandisoftenbasedonpoliticalboundaries.Thus,urbanforestlandoverlapswithforestlands.Thatis,forestedstandsthataremeasuredaspartofotherprogramscanexistwithinurbanorcommunityboundaries.Assessmentsofurbanforesteffectsthushavethepotentialtodouble‐counteffectsfoundinforestswithinregionalornationalscaleassessments.Theamountofthisoverlapisestimatedas13.8percentofurbanareaor1.5percentofforestareaintheconterminousUnitedStates(Nowaketal.,2013)andisanimportantconsiderationforlargerscaleassessments.ThissectionfocusesonassessingthecarboneffectsofurbanorcommunitytreesandforestsintheUnitedStates.

Urbanorcommunityforests(hereafterreferredtoasurbanforests)affectthecarboncyclebydirectlystoringatmosphericcarbonwithinthewoodyvegetation,butalsobyaffectingthelocalclimateandtherebyalteringcarbonemissionsaffectedbylocalclimaticconditions.Urbantreemaintenanceactivitiesalsoaffectcarbonemissionsinurbanareas.Foratrueaccountingofcarboneffects,allofthesefactorsneedtobeconsidered.Thisreportfocusesontrees(definedaswoodyvegetationwithadiameterofatleast1inch(2.5cm)DBH),butsimilaraccountingcouldbeconductedforallurbanvegetation.

6.6.1.2 AccountingforPrimaryUrbanForestCarbonEffects

Treessequesterandstorecarbonintheirtissueatdifferingratesandamounts,basedonsuchfactorsastreesize,lifespan,andgrowthrate.Afteratreeisremoved,thetreecandecomposewiththecarbonstoredinthattreeemittedbacktotheatmosphere,orthecarbonmaybestoredinwoodproductsorthesoil.Thus,inordertoaccountforthetotalcarboninthesystematonetime,oneneedstounderstandhowmanytreesthereareinthesystemalongwithinformationsuchasspeciesandsize(e.g.,NowakandCrane,2002).Toaccountforhowthecarbonstockwillchangethroughtime,onemustalsoaccountforgrowthrates,treemortalityandremovals,andthedispositionofthewoodafterremoval(e.g.,chipping,burning,products),whichaffectdecompositionratesandcarbonemissions.Inaddition,thenumberofnewtreesenteringthesystemthroughtreeplantingandnaturalregenerationmustbeconsidered.

6.6.1.3 AccountingforSecondaryEffects

Inadditiontothecarbonstoredintrees,theurbanforesthassecondaryimpactsonatmosphericcarbonbyaffectingcarbonemissionsfromurbanareas.Treecareandmaintenancepracticesoftenreleasecarbonbacktotheatmosphereviafossil‐fuelemissionsfrommaintenanceequipment(e.g.,chainsaws,trucks,chippers).Thus,someofthecarbongainsfromtreegrowthareoffsetbycarbonlossestotheatmosphereviafossilfuelsusedinmaintenanceactivities(Nowaketal.,2002).Treesstrategicallylocatedaroundbuildingscanreducebuildingenergyuse(e.g.,Heisler,1986),and

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-73

consequentlyreducecarbonemissionsfromfossil‐fuel‐burningpowerplants.Theseenergyeffectsarecausedprimarilybytreetranspiration(loweringofairtemperatures),blockingofwinds,andshadingofbuildingsandothersurfaces.Treestypicallylowerbuildingenergyuseinsummer,butcaneitherlowerorincreasebuildingenergyuseinthewinterdependinguponthetree’slocationrelativetoabuilding.

“Alteredbuildingenergyuse”and“maintenanceemissions”forurbantreesaredescribedinSection6.6.3.1.However,whilequantitativemethodsaredescribedforestimatingalteredbuildingenergyuseandmaintenanceemissionsforurbanforestry,theyareincludedforinformationpurposesonly,sincetheyhavealreadybeendevelopedaspartofthei‐Treesoftwaresuite.However,aspreviouslymentionedinChapter1,thescopeofthisguidancedoesnotincludeotherenergy‐relatedsourcecategoriesthatareassociatedwithmanagementactivitiesrelatedtocertainagricultureandforestryactivities(e.g.,transportation,fueluse,heatingfueluse).

6.6.2 ActivityDataCollection

Toestimatecarbonstorage,annualsequestration,andlong‐termcarbonchanges,twogeneralapproachescouldbeused.Thefirstmethodisbasedoncollectingdataontreesintheurbanareaofinterest;thesecondmethodinvolvescollectingaerialdataontreecoverinthearea,andusingtablestoestimateeffectsbasedonfielddatafromotherareas.Thefirstmethod,usinglocalfielddata,willproducethemostaccurateestimatesforthelocalarea,butatincreasedcostsandtimespentbythelandowner.Thesecondmethodismorecost‐effectiveandmorestraightforward,butitsaccuracyismorelimited(seeTable6‐8).

Table6‐8:Comparisonofthe“FieldData”and“Aerial”MethodsforEstimatingtheChangesinCarbonStocksforUrbanForests

FieldDataMethod AerialMethod

Requiressignificanttimecommitmenttotakefieldmeasurements

Requireslesstimetoextractnecessaryaerialdatafromanexistingdatabase

Requiresaccesstoseveralsampleplotsacrossanarea

Doesnotrequirefieldmeasurements,onlyacomputerwithinternetaccess

Increasesspecificityandaccuracy ReturnsamoreapproximateestimateProvidesavarietyofoutputdataincludingcurrentcarbonstock,annualcarbonsequestration,andlongtermeffects

Providesonlyinformationontotalcarbonstoredandannualcarbonsequestration

Theoutputdatafromthefielddatamethodincludescurrentcarbonstock(existingcarbonstorage),annualcarbonsequestrationbytrees,andlongtermeffectsoftheforest(accountingforchangesintreepopulationanddispositionofcarbonfromtrees).Forthefielddatamethod(orforproducingthedefaulttablesthatareusedintheaerialapproach)thefollowingitemsneedtobemeasuredandinputbythelandowner:

CurrentStock:

− Numberoftreesbyspeciesandsizeclass(species,DBH,height,condition,competitionfactor)

AnnualSequestration:

− Numberoftreesbyspeciesandsizeclass(species,DBH,height,condition,competitionfactor)

− Annualgrowthratesforeachtreebasedontreeandsiteconditions(inchesperyear)

LongTermEffects:

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-74

− Numberoftreesbyspeciesandsizeclass(species,DBH,height,condition,competitionfactor)

− Annualgrowthratesforeachtreebasedontreeandsiteconditions(inchesperyear)

− Changesintreepopulationduetotreedeathandremovals,andnewtreesplantedornaturallyregenerated(numbersoftreesdyingbyspeciesandsizeclass,numberofnewtreesbyspeciesandsizeclass)(numberperyear)

Proportionofremovedtreebiomassthatis:

− Chipped/mulched

− Burned

− Burnedtoproduceenergy(e.g.,heatbuildings)

− Belowthegroundinroots

− Usedforlong‐termwoodproducts

− Leftonthegroundtodecomposenaturally

− Putinlandfills

Decomposed;decompositionratesforwoodfromremovedtrees:

− Percentageofbiomassperyeardecomposedperremovalclassabove

MaintenanceEmissions:

− Amount(numberandhoursperyear)ofmaintenanceequipmentused(e.g.,vehicles,chippers,chainsaws)forvegetationmaintenance(e.g.,planting,maintenance,treeremoval)

− Emissionfactors(gChr−1)foreachmaintenanceequipmentused

AlteredBuildingEnergyUse:

− Numberoftreesbyspeciesandsizeclasswithin60feet(18.3m)ofresidentialbuildingbycardinalandordinaldirection

Forestimatingtreecoverusingtheaerialapproach,onewouldneedtoknowtheextent(ha)oftheurbanareaandthepercentageoftreecoverwithinthearea,anduseadefaulttableofvaluestoconverthaoftreecovertoprimaryandsecondarytreeeffectsinacity.Toestimatechangeinthepopulation,thetreecoverwouldneedtobere‐measuredthroughtime.

Aspreviouslymentioned,alteredbuildingenergyuseandmaintenanceemissionsforurbantreesaredescribedinSection6.6.3.1.However,whilequantitativemethodsaredescribedforestimatingalteredbuildingenergyuseandmaintenanceemissionsforurbanforestry,theyareincludedforinformationpurposesonly,astheyarepartofthei‐Treesoftwaresuiteorcanbecalculatedfromi‐Treedata.

6.6.3 EstimationMethods

Themethodsforestimatingcarboneffectsinanurbanforestwillbedetailedforthefielddataandaerialapproachesseparately.ThefielddatamethodandaerialmethodforurbanforestsaredescribedinSection6.6.3.1andSection6.6.3.2.Figure6‐8showsadecisiontreeindicatingwhichmethodismoreapplicableforeachtypeofactivitydata.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-75

Figure6‐8:DecisionTreeforUrbanForestsShowingMethodsAppropriateforEstimatingUrbanForestCarbonStocks

1TheU.S.CensusBureau(2007)definesurbanasallterritory,population,andhousingunitslocatedwithinurbanizedareasorurbanclusters.Urbanizedareaandurbanclusterboundariesencompassdenselysettledterritories,whicharedescribedbyoneofthefollowing:(1)oneormoreblockgroupsorcensusblockswithapopulationdensityofatleast386.1peoplekm−1(1,000peoplemile−2);(2)surroundingblockgroupsandcensusblockswithapopulationdensityof193.1peoplekm−2(500peoplemile−2);and(3)lessdenselysettledblocksthatformenclavesorindentations,orareusedtoconnectdiscontinuousareas.Morespecifically,urbanizedareasconsistofterritoriesof50,000ormorepeople.Urbanclusters,aconceptnewtothe2000Census,consistofterritorywithatleast2,500peoplebutfewerthan50,000people.

6.6.3.1 FieldDataMethodforEstimatingCarbonStorageandAnnualSequestration

Thefielddatamethodinvolvesusingfieldmeasurementsofurbantrees(i.e.,a“treelist”)tobuildatailored,accurateestimateofcarbonstorageandsequestrationinanurbanforest.Thevariousstepsforestimatingcarbon(andalteredbuildingenergyuse)effectsfromanurbanforestare:

(1)Delimitboundaryofurbanareatobeanalyzed.Thisinformationisessentialtosettheboundaryoftheanalysis.U.S.Censusboundaryfilesofurbanareasorplacescanbeusedtodelimittheboundaries(U.S.CensusBureau,2011).Informationontheseboundariescanbeusedtodetermineareasofpotentialoverlapwithothercarbonestimates(e.g.,non‐urbanforests),andtohelpsetupa

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-76

samplingdesigntocollectnecessaryfielddataasdesiredbythelandowner.

(2)Measurealltreeswithintheurbanareaorsamplethetreepopulation.Withinthedefinedgeography,alltreescanbemeasured,orarandomdistributionoffieldplotscanbemeasuredtoquantifytheurbantreepopulationasdesiredbythelandowner.Toconductthisfieldsamplingandanalysis,thei‐TreeEcomodel(formerlyUFOREmodel)isavailablefreeofchargeatwww.itreetools.org.Fieldmanualsexistonhowtorandomlyselectplotslocationsandcollecttheneededfielddata(http://www.itreetools.org/resources/manuals.php).Detailsonmodelmethodsalsoexist(e.g.,NowakandCrane,2002;Nowaketal.,2008).

Thebasicfielddataprocedureistorecordinformationonalltreeswithinthefieldplots.Thisinformationincludes:

Treespecies

DBH

Treeheight

Dieback

Crownlightexposure

Distanceanddirectiontobuildings

Thesevariablesareneededtoassesscarboneffects,butothertreevariables(e.g.,crownwidth,percentageofcrownmissing)canalsobecollectedtoassessotherecosystemservices(e.g.,airpollutionremoval,volatileorganiccompoundemissions,effectsonbuildingenergyuse,rainfallinterception,andrunoff).

(3)Enterdataintoi‐Treeandrunanalyses.Afterfielddataarecollected(viapaperformsoronamobiledevice),dataareenteredintoi‐Tree,andtheprogramproducesstandardtables,graphs,andreportsthatdetailcarbonandotherecosystemserviceinformation.Inrelationtocarbon,resultsalongwithsamplingstandarderrorsarespecificallyproducedbyspeciesandlanduseregarding:

Carbonstorage:amountofcarboncurrentlyintheexistingtreestock;

Grossannualcarbonsequestration:one‐yearestimateassequestrationbasedonestimatedannualtreegrowth,whichvariesbylocation,treecondition,andcrowncompetition;and

Netannualcarbonsequestration:grosssequestrationminusestimatedcarbonlostfromdeadorremovedtreesduetodecomposition.

AlteredBuildingEnergyUse.Inadditiontothecarboneffectsestimatedbythefielddatamethod,thei‐TreeprogramcanestimatetreeeffectsonresidentialbuildingenergyuseandconsequentcarbonemissionsusingmethodsdetailedinMcPhersonandSimpson(1999).

MaintenanceEmissions.Forestimatingmaintenanceemissioneffects,thefollowingstepsaresuggested:

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-77

(1)Determinevehicleuserelatedtotreemaintenance.Determinethenumberofmilesdrivenbyvariousvehicletypes.

(2)Calculatecarbonemissionsfromvehicles.Toestimatecarbonemissionsfromvehicles,thelatestfuelefficiencyinformation(mpg)willbeneededforeachvehicleclass.Dividethemilesdrivenbythevehicleclassmpgtodeterminethetotalgallonsofgasoline(orotherfuel)used.Multiplytotalgallons(orotherunits)usedbytheemissionsfactorinTable6‐9toestimatecarbonemissionsfromvehicleuse(Nowaketal.,2002).

Table6‐9:EmissionFactorsforCommonTransportationFuels

Fuel Emissions(lbsCO2perunitvolume)

B20biodiesel 17.71 pergallonB10biodiesel 19.93 pergallonDieselfuel(No.1andNo.2) 22.15 pergallonE85ethanol 2.9 pergallonE10ethanol 17.41 pergallonGasoline 19.36 pergallonNaturalgas 119.90 perMcfPropane 5.74 pergallonSource:Table1.D.1,U.S.DOE(2007).

(3)Determinemaintenanceequipmentuse.Estimatethenumberofrunhoursusedforallfossil‐fuel‐basedmaintenanceequipmentusedontrees(e.g.,chainsaws,chippers,aeriallifts,backhoes,andstumpgrinders).EstimatesofruntimeforvariouspruningandremovalequipmentaregiveninTable6‐10.

Table6‐10:TotalHoursofEquipmentRun‐TimebyDBHClassforTreePruningandRemoval

DBH

Pruning Removal2.3hp

3.7hp

BucketChipperb

2.3hp

3.7hp

7.5hp

BucketChipperb

Stump

Saw Saw Trucka Saw Saw Saw Trucka Grinderb

1–6 0.05 NA NA 0.05 0.3 NA NA 0.2 0.1 0.257–12 0.1 NA 0.2 0.1 0.3 0.2 NA 0.4 0.25 0.3313–18 0.2 NA 0.5 0.2 0.5 0.5 0.1 0.75 0.4 0.519–24 0.5 NA 1.0 0.3 1.5 1.0 0.5 2.2 0.75 0.725–30 1.0 NA 2.0 0.35 1.8 1.5 0.8 3.0 1.0 1.031–36 1.5 0.2 3.0 0.4 2.2 1.8 1.0 5.5 2.0 1.5+36+ 1.5 0.2 4.0 0.4 2.2 2.3 1.5 7.5 2.5 2.0

Note:TableisbasedonACRTdata(WadeandDubish,1995)andassumesthatcrewsworkefficientlyandequipmentisnotrunidle(Nowaketal.,2002).hp = Horsepower DBH = Diameter at breast height a Mean hp = 43 (U.S. EPA, 1991) b Mean hp = 99 (U.S. EPA, 1991)

(4)Calculatecarbonemissionsfrommaintenanceequipment.Calculationsforemissionsfromequipmentarebasedontheformula:

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-78

TypicalloadfactorsandaveragecarbonemissionsforequipmentaregiveninTable6‐11.

Table6‐11:TypicalLoadFactors(U.S.EPA,1991),AverageCarbonEmissions,andTotalCarbonEmissionsforVariousMaintenanceEquipment(fromNowaketal.,2002)

Equipment TypicalLoadFactora

Average CarbonEmission

(ghp−1hr−1)b

TotalCarbonEmission(kghr−1)c

Aeriallift 0.505 147.2 3.2dBackhoe 0.465 147.3 5.3eChainsaw<4hp 0.500 1,264.4 1.5fChainsaw>4hp 0.500 847.5 3.2gChipper/stumpgrinder 0.370 146.4 5.4h

aAveragevaluefromtwoinventories(conservativeloadfactorof0.5frominventoryBwasusedforchainsaws>4hpduetodisparateinventoryestimates;inventoryaverageforthischainsawtypewas0.71).bCalculatedfromestimatesofcarbonmonoxide(U.S.EPA,1991),hydrocarboncrankcaseandexhaust(U.S.EPA,1991),andcarbondioxideemissions(Charmley,1995),adjustedforin‐useeffects.Totalcarbonemissionswerecalculatedbasedontheproportionofcarbonofthetotalatomicweightofthechemicalemission.Multiplyby0.0022toconverttolbshp−1hr−1.cMultiplyby2.2toconverttolbshr−1.dMeanhp=43(U.S.EPA,1991).eMeanhp=77(U.S.EPA,1991).fhp=2.3.ghp=7.5.hMeanhp=99(U.S.EPA,1991).

(5)Calculatetotalmaintenancecarbonemissions.Addresultsofcarbonemissionsfromvehiclesandmaintenanceequipment.

CombinedCarbonSequestration,AlteredBuildingEnergyUse,andMaintenanceEmissions.Todeterminecurrentnetannualurbanforesteffectoncarbon,thecarbonemissionsfromtreemaintenanceshouldbecontrastedtonetcarbonsequestrationfromtreesandalteredcarbonemissionsfromalteredbuildingenergyuseeffects.

ChangesinCarbonSequestration,AlteredBuildingEnergyUse,andMaintenanceEmissions.Todeterminehowtreeandmaintenanceeffectsoncarbonchangethroughtime,thefieldplotsortreesinventoriedcanbere‐measured,andresultsbetweentheyearscontrastedtoestimatechangesincarbonstock,netannualcarboneffects,andalteredbuildingenergyuseeffects.In

Equation6‐10:CalculateCarbon EmissionsfromMaintenanceEquipment

C=N×HRS×HP×LF×E

Where:

C =Carbonemissions(g)

N =Numberofunits(dimensionless)

HRS =Hoursused(hr)

HP =Averageratedhorsepower(hp)

LF =Typicalloadfactor(dimensionless)

E =Averagecarbonemissionsperunitofuse(ghp−1hr−1)(U.S.EPA1991)

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-79

addition,maintenanceactivityestimatesshouldbeupdatedwhenthere‐measurementoccurs.

6.6.3.2 AerialDataMethod

Theaerialdatamethodusesaerialtreecoverestimatesandlookuptablestoprovideamoreapproximate(i.e.,higherdegreeofuncertainty),butlessresourceintensiveestimateofannualcarbonsequestrationinanurbanforestcomparedtothefielddatamethod.Thevariousstepsforestimatingcarboneffectsfromanurbanforestare:

(1)Delimitboundaryofurbanareatobeanalyzed.Thisinformationisessentialtosettheboundaryoftheanalysis.U.S.Censusboundaryfilesofurbanorplacescanbeusedtodelimittheboundaries(U.S.CensusBureau,2011).Informationontheseboundariescanbeusedtodetermineareasofpotentialoverlapwithothercarbonestimates(e.g.,non‐urbanforests).

(2)Conductphotointerpretationoftreecoverinurbanarea.Todeterminepercentageoftreecover,theurbanareacanbephotointerpretedusingi‐TreeCanopy(http://www.itreetools.org/canopy/index.php).Thiswebtoolallowsuserstoimportashapefileof,ormanuallydelimittheirarea,andthenrandomlylocatepointswithintheareaonGoogle®aerialimagery.Theuserthenclassifieseachpointaccordingtoitscoverclass(e.g.,treeornon‐tree).Theprogramproducesestimatesofpercentagecoverandassociatedstandarderrorforthecoverclasses.ThissametypeofanalysiscouldalsobeperformedwithdigitalaerialimagesusingaGeographicInformationSystem.

(3)Estimatetotaltreecoverinurbanarea.Multiplythepercentageoftreecoverandstandarderrorbyurbanarea(ha)toproduceanestimateoftotaltreecoverandstandarderror(ha).Notethati‐TreeCanopywillmakethesecalculations.

(4)Estimatecarboneffects.Multiplytotaltreecover(ha)byaveragecarbonstorageorannualsequestrationperhaoftreecoverinplacesorurbanareas(Table6‐12).i‐TreeCanopywillmakethesecalculationsbasedonaveragestateornationaldata.

Notethattoestimateeffectsformaintenanceemissionsandalteredbuildingenergyusebasedontotaltreecover,atablesimilartoTable6‐12wouldneedtobedevelopedcontainingemissionratesforthesesourcecategories.

Table6‐12:MetricTonsCarbonStorageandAnnualSequestrationperHectareofTreeCoverinSelectedCitiesandUrbanAreasofSelectedStates(fromNowaketal.,2013)

City,StateStorage Sequestration

MetrictonsCha−2 StandardError

MetrictonsCha−2year−1

StandardError

Arlington,TXa 63.7 7.3 2.9 0.28Atlanta,GAa 66.3 5.4 2.3 0.17Baltimore,MDa 87.6 10.9 2.8 0.36Boston,MAa 70.2 9.6 2.3 0.25Casper,WYb 69.7 15.0 2.2 0.39Chicago,ILc 60.3 6.4 2.1 0.21Freehold,NJa 115.0 17.8 3.1 0.45Gainesville,FLd 63.3 9.9 2.2 0.32Golden,COa 58.8 13.3 2.3 0.45Hartford,CTa 108.9 16.2 3.3 0.46JerseyCity,NJa 43.7 8.8 1.8 0.34Lincoln,NEa 106.4 17.4 4.1 0.63LosAngeles,CAe 45.9 5.1 1.8 0.17Milwaukee,WIa 72.6 11.8 2.6 0.33

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-80

City,StateStorage Sequestration

MetrictonsCha−2 StandardError

MetrictonsCha−2year−1

StandardError

Minneapolis,MNf 44.1 7.4 1.6 0.23Moorestown,NJa 99.5 9.3 3.2 0.30Morgantown,WVg 95.2 11.6 3.0 0.37NewYork,NYh 73.3 10.1 2.3 0.29Oakland,CAi 52.4 1.9 na naOmaha,NEa 141.4 22.9 5.1 0.81Philadelphia,PAj 67.7 9.0 2.1 0.27Roanoke,VIa 92.0 13.3 4.0 0.58Sacramento,CAk 78.2 15.7 3.8 0.64SanFrancisco,CAl 91.8 22.5 2.4 0.50Scranton,PAm 92.4 12.8 4.0 0.52Syracuse,NYa 85.9 10.4 2.9 0.30Washington,DCn 85.2 10.4 2.6 0.30Woodbridge,NJa 81.9 8.2 2.9 0.28Indianao 88.0 26.8 2.9 0.77Kansasp 74.2 13.0 2.8 0.48Nebraskap 66.7 18.6 2.7 0.74NorthDakotap 77.8 24.7 2.8 0.79SouthDakotap 30.6 6.6 1.3 0.26Tennesseeq 64.7 5.0 3.4 0.21Average 76.9 13.6 2.8 0.45aUnpublisheddataanalyzedusingtheUFOREmodel.bNowaketal.(2006a).cNowaketal.(2011).dEscobedoetal.(2009).eNowaketal.(2011).fNowaketal.(2006c).gNowaketal.(2012c).hNowaketal.(2007d).iNowak(1991).

j Nowaketal.(2007c).kNowaketal.(Inreview).lNowaketal.(2007b).mNowaketal.(2010).nNowaketal.(2006b).oNowaketal.(2007a).pNowaketal.(2012b).qNowaketal(2012a).

CombinedCarbonSequestration,AlteredBuildingEnergyUse,andMaintenanceEmissions.Todeterminecurrentnetannualurbanforesteffectoncarbon,thecarbonemissionsfromtreemaintenance,ifavailable,shouldbecontrastedtothenetcarbonsequestrationfromtreesandalteredcarbonemissionsfromalteredbuildingenergyuseeffects.

ChangesinCarbonSequestration,AlteredBuildingEnergyUse,andMaintenanceEmissions.Todeterminetreeeffectsoncarbonchangethroughtime,thephoto‐interpretationpointscanbere‐measuredwhennewerphotosbecomeavailabletoassesschangeintreecover(e.g.,NowakandGreenfield,2012).Thei‐TreeCanopyprogramsavesthegeographiccoordinatesofeachpointsothepointscanbere‐measuredinthefuture.Changesintreecoverandassociatedcarboneffectsbetweentheyearscanbecontrastedtoestimatechangesincarbonstockandnetannualcarboneffects.Changesinalteredbuildingenergyuseeffectsandmaintenanceeffectscouldalsobeestimatediftheappropriatetablesaredeveloped.

6.6.4 LimitationsandUncertainty

Fielddatacollectionestimateshavefewerlimitationsthantheaerialapproach,butsomelimitationsexist(Nowaketal.,2008).Themainadvantageofcarbonestimationusingthefielddata

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-81

approachandi‐Treeishavingaccurateestimatesofthetreepopulation(e.g.,species,size,distribution)withacalculatedlevelofprecision.Themodeledcarbonvaluesareestimatesbasedonforest‐derivedallometricequations(Nowak,1994;NowakandCrane,2002).Thecarbonestimatesyieldastandarderroroftheestimatebasedonsamplingerror,ratherthanerrorofestimation.Estimationerrorisunknown,andlikelylargerthanthereportedsamplingerror.Estimationerrorincludestheuncertaintyofusingbiomassequationsandconversionfactors,whichmaybelarge,aswellasmeasurementerror,whichistypicallysmall.Thestandardizedcarbonvalues(e.g.,kgCha−1orlbsC(acreoftreecover)−1)fallinlinewithvaluesforforests(BirdseyandHeath,1995),butvaluesforcities(places)canbehigher(Table6‐12),likelyduetoalargerproportionoflargetreesincityenvironmentsandrelativelyfastgrowthratesduetoamoreopenurbanforeststructure(NowakandCrane,2002).

Therearevariousmeanstohelpimprovethecarbonstorageandsequestrationestimatesforurbantrees.Carbonestimatesforopen‐grownurbantreesareadjusteddownwardbasedonfieldmeasurementsoftreesintheChicagoarea(Nowak,1994).Thisadjustmentmayleadtoconservativeestimatesofcarbon.Moreresearchisneededontheapplicabilityofforest‐derivedequationstourbantrees.Inaddition,moreurbantreegrowthdataareneededtobetterunderstandregionalvariabilityofurbantreegrowthunderdifferingsiteconditions(e.g.,treecompetition)forbetterannualsequestrationestimates.Averageregionalgrowthestimatesareusedbasedonlimitedmeasuredurbantreegrowthdatastandardizedtolengthofgrowingseasonandcrowncompetition.

Therearecurrentlyaverylimitednumberofbiomassequationsfortropicaltreesini‐Tree.Themodelneedstobeupdatedwithtropicaltreebiomassequationsformoreaccurateestimatesintropicalcities.Futureresearchisneededtoobtainbiomassequationsforurbanorornamentaltreespecies.Estimatesoftreedecayandnetannualsequestrationini‐Treearequiterudimentary(Nowaketal.,2010),andcanbeimprovedwithfutureresearch.Thedegreeofuncertaintyofthenetcarbonsequestrationestimatesisunknown.

Estimatesofmaintenanceemissionsandalteredbuildingenergyuseeffectsarealsorathercrude.Accuratemaintenanceemissionsestimatesrequiregoodestimatesofvehicleandmaintenanceequipmentuse;thentheyrelyonanaveragemultiplierforemissionsfromtheliterature.Energyeffectsestimatesarebasedonsamplingproximityoftreesnearbuildingswithinvarioustreesize,distance,anddirectionclassesfromabuilding.Energyfactors,convertedtocarbonemissionfactorsbasedonstateaverageenergydistribution(e.g.,electricity,oil)areappliedtotreesineachbuildinglocationclassbasedonU.S.climatezoneandaveragebuildingtypesinastatetoestimateenergyeffects(seeMcPhersonandSimpson,1999).Thoughtheseestimatesarecrude,withanunknowncertainty,theyarebasedonreasonableapproachesthatprovidefirst‐orderestimatesofeffects.Itshouldbenotedthatemissionreductionsfromalteredbuildingenergyuseeffectsmightalsobeimplicitlyincludedinanyemissionestimationanentitymightperformbasedonactualenergyusedata(e.g.,meterreadings)forthebuildinginquestion.

Estimatesbasedonaerialtreecanopyeffectshavethesamelimitationsasfielddataapproaches,plussomeadditionallimitationsandadvantages.Theadvantagesincludeasimple,quick,andaccuratemeanstoassesstheamountofcanopycoverinanarea,withmeasuresthatarerepeatablethroughtime.Thedisadvantagesarethattheusermustusealookupvaluefromatable(e.g.,meanvalueperunitofcanopycover)toestimatecarboneffects.Thoughthetreecoverestimatewillbeaccuratewithknownuncertainty(i.e.,standarderror),thecarbonmultipliersmaybeoffdependingupontheurbanforestcharacteristics.Ifaveragemultipliersareused,theaccuracyofthoseestimateswilldeclineasthedifferenceincreasesbetweenthelocalurbancharacteristicsandthevaluesoftheaveragemultipliers.Iflocalfielddataarenotcollected,thenthediscrepancybetweentheurbanforest’scharacteristicsandthoseofaveragevaluesisunknown.Iftheaveragevaluesin

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-82

Table6‐12trulyrepresentaverages,theestimatesoveralargepopulationofurbanareasshouldbereliable.However,localestimatesmaybeinaccuratedependingupontheextenttowhichcharacteristicsofthelocalurbanforestdivergefromtheaveragevalues.

Bothapproachescanprovidecarbonestimatesforurbanareas,withdifferingdegreesofuncertaintyandworkrequired.Bothapproachescanalsobeimprovedwithmorefielddatacollectioninurbanareas,andwithmodelandmethodimprovementsrelatedtocarbonestimation.

6.7 NaturalDisturbance–WildfireandPrescribedFire

6.7.1 Description

FireproducesGHGemissionsdirectlythroughfuelconsumption.Emissionsproducedaredirectlyproportionaltofuelconsumed.Fuelconsumptionisinturninfluencedbyfuelquantityandfuelcharacteristicssuchassize,moisturecontent,fireweather,andfireseverity.Algorithmsexistforestimatingfuelconsumptionforavarietyoffueltypesandconditions.Fireandotherdisturbancesalsoconvertlivevegetationtodead,alteringsubsequentcarbondynamicsonthesitebyreducingcarboncapturedbyphotosynthesisintheshortrunduetoreducedvegetativecover,andincreasingemissionsfromdecompositionofdeadvegetation.Fireseverity,whichisdrivenbytheonsitefactorsthatdriveconsumptionaswellasotherphysicalfactors,willdrivethesubsequentcarbondynamicsandareawherereversalofcarbonretentionmayoccur.

6.7.2 ActivityDataCollection

Foralldisturbances,keyactivitydataistheareaaffected.Asimpledescriptorisusedtocharacterizetheseverityoftheevent.Forbothwildfireandprescribedfire/controlburns,descriptorsofseverityincludecrownfire,stand‐replacementunderburn,mixed‐severityunderburn(sometreemortality),andlow‐severityunderburn.Typicallywildfirewillbemoreweightedtowardscrownfireandhigherseverityversuslowerseverityfromprescribedfire.Forotherdisturbances,thepercentageoflivetreeskilled(orpercentagebasalareamortality)andthepercentageofkilledtreesthatarestillstandingaswascoveredpreviouslyinSection6.4.2.10andSection6.4.4.8areused.

6.7.3 EstimationMethods

FOFEM9(Reinhardtetal.,1997)isrecommendedforestimatingGHGemissions,becauseitisapplicablenationally,computercodeisavailablethatcanbelinkedtoorincorporatedintoother

9http://www.firelab.org/science‐applications/fire‐fuel/111‐fofem

MethodsforEmissionsfromNaturalDisturbances

Rangeofoptionsdependsonthedataavailabilityoftheentity’sforestlandincluding:

− FOFEMmodelenteringmeasuredbiomass;and

− FOFEMmodelusingdefaultvaluesgeneratedbyvegetationtype.

TheseoptionsuseReinhardtetal.(1997).

Themethodswereselectedbecausetheyprovidearangeofoptionsdependentonthedataavailabilityoftheentity'sdisturbedforestland.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-83

code,andinputsaredefinedsothatmeasuredbiomasscanbeenteredordefaultvaluesgeneratedbyvegetationtype.FOFEMproducesdirectestimatesoftotalCO2,CO,CH4,andNOxemitted,aswellasestimatesoffuelconsumptionbycomponent,whichcanbeusedtodetermineresidualfuelquantitiesforestimatingsubsequentdecomposition.FOFEMand/orCONSUME(JointFireScienceProgram,2009)canalsobeuseddirectlytocomputeemissionsandconsumptionfromfire.FOFEMalgorithmscanalsobeusedtocomputetreemortalityinordertoupdateestimatesofliveanddeadbiomass.AlthoughanotheroptionistouseFVS‐FFE10(Rebain,2010;ReinhardtandCrookston,2003),itisnottherecommendedapproachforwildfireGHGcalculation.FVS‐FFEusesmanyofthesameinternalalgorithmsforestimatingtreemortality,fuelconsumption,andemissionsasFOFEM,butalsosimulatesstand,fuel,andcarbondynamicsovertime.Itisamorepowerfulpredictivetool,butsubstantiallymoreworkisinvolvedinunderstandingthemodelingframework,settingupmodelrunsanddatapreparation.Alternatively,lookuptablescanbebuiltusingthesetoolsforarangeofvegetationtypes,fuelloadingsfromnaturaland/ormanagementprocesses,andfireseverities,orasimplifiedalgorithmcanbedevelopedasinthe2006IPCCGuidelinesforNationalGHGInventories(IPCC,2006).

10http://www.fs.fed.us/fmsc/fvs/whatis/index.shtml

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-84

Figure6‐9:DecisionTreeforNaturalDisturbancesShowingMethodsAppropriateforEstimatingEmissionsfromForestFiresDependingontheDataAvailable

6.7.3.1 EstimationofGreenhouseGasEmissionsfromFire

ThecalculationofGHGemissionsfromfirescanbeseeninEquation6‐11below.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-85

Inordertousethisalgorithm,anestimateofAbyfireseverityisused.ForMB,theunderstory,DDW,andforestfloorareassumedtobeavailableforcombustion.Inaddition,anestimateofwhatportionofthelivetreebiomassisavailableforcombustion(typicallyonlyfoliageandfinebranchwood)isused.ForCf,IPCC(2006)protocolsuse0.45fortemperateforests.SeparatevaluesforCfforbiomasspoolsforcrownfire,stand‐replacementunderburn,mixed‐severityunderburn,andlow‐severityunderburn,byforesttype,usingFOFEMareprovided(seeTable6‐13).ForGefemissionfactorsfromUrbanskietal.(2009)arerecommended:1619g(kgdrymatterburntforCO2)−1,89.6g(kgdrymatterburntforCO)−1,3.4g(kgdrymatterburntforCH4)−1,andfromAkagietal.(2011),2.5g(kgdrymatterburntforNOx)−1.Notethatnotallbiomassisavailableforcombustion;inparticular,standinglivetreebolesarenotavailable.

Forsubsequenteffects,theGHGestimationmethodsadoptedshouldmatchascloselyaspossiblethoseusedinothersections(e.g.,HWPs).Decompositionofdeadmaterialovertimewillbeprojectedusingafixedannuallossrate.Theconversionofstandingdeadtodead‐and‐downshouldalsobeprojectedusingafixedrateandapproximatingthemethodsinFVS‐FFE.

GHGemissionsfromnaturaldisturbancewildfiresandprescribedfiresusedforsitemaintenanceandrestorationshouldbereportedseparatelyfromemissionsresultingfrommanagement(siteswiththinningslash,machineorhandpiles,orloggingslash)tofacilitatetheuseoftheestimatesindecisionmakingregardingmanagementpractices.

Table6‐13showsanexampleforthedefaultlookuptablesforconsumptionfraction(Cf).RegionsarethoseshowninTable6‐13,withtheexceptionoftheWestregion,whichrepresentsanaverageofallwesternregions.

Table6‐13:CfConsumptionFraction

Region ForestTypeCfCrownFire

Cf StandReplacementUnderburn

CfMixedSeverity

Cf LowSeverity

Underburn

%

Northeast

Aspen–birch 84 69 59 45Elm–ash–cottonwood 74 47 35 20Maple–beech–birch 77 60 44 35Oak–hickory 63 49 41 32Oak–pine 80 61 50 38Spruce–fir 73 73 69 62White–red–jackpine 55 45 37 26

Equation6‐11:CalculateGHGEmissionsfromFire

Lfire=A×MB×Cf×Gef×10−3

Where:

Lfire =Amountofgreenhousegasemissionsfromfire(metrictonsofeachGHG,i.e.,CH4,N2O,etc.)

A =Areaburned(ha)

MB =Massoffuelavailableforcombustion(metrictonsha−1)

Cf =Combustionfactor(dimensionless)

Gef =Emissionfactor(g(kgdrymatterburnt)−1)

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-86

Region ForestTypeCfCrownFire

Cf StandReplacementUnderburn

CfMixedSeverity

Cf LowSeverity

Underburn

%

NorthernLakeStates

Aspen–birch 84 69 59 45Elm–ash–cottonwood 74 47 35 20Maple–beech–birch 77 60 44 35Oak–hickory 80 61 50 38Spruce–fir 73 73 69 62White–red–jackpine 55 45 37 26

NorthernPrairieStates

Elm–ash–cottonwood 74 47 35 20Maple–beech–birch 77 60 44 35Oak–hickory 80 61 50 38Ponderosapine 60 53 47 37

PacificNorthwest,East

Douglasfir 85 79 72 60Fir–spruce–m.hemlock 67 64 58 44Lodgepolepine 77 72 64 52Ponderosapine 78 53 41 27

PacificNorthwest,West

Alder–maple 82 67 48 42Douglasfir 71 62 55 43Fir–spruce–m.hemlock 67 64 58 44Hemlock–Sitkaspruce 85 77 69 55

PacificSouthwest

Mixedconifer 79 69 50 46Douglasfir 66 42 30 17Fir–spruce–m.hemlock 67 64 58 44PonderosaPine 78 53 41 27Redwood 82 76 69 56

RockyMountain,NorthandSouth

Aspen–birch 80 61 50 35Douglasfir 85 79 72 60Fir–spruce–m.hemlock 67 64 58 44Lodgepolepine 77 72 64 52Ponderosapine 78 53 41 27Mixedconifer 79 69 50 46

Southeast

Elm–ash–cottonwood 76 45 29 19Loblolly–shortleafpine 66 52 44 35Oak–hickory 61 50 44 36Oak–pine 62 55 51 45

SouthCentral

Elm–ash–cottonwood 76 45 29 19Loblolly–shortleafpine 66 52 44 35Longleaf–slashpine 69 63 57 47Oak–hickory 61 50 44 36Oak–pine 62 55 51 45

Westa

Pinyon–juniper 64 55 49 41Tanoak–laurel 70 52 43 32Westernlarch 76 68 60 47Westernoak 65 62 56 48Westernwhitepine 68 56 47 33

aRepresentsanaverageoverallwesternregionsforthespecifiedforesttypes(PNW‐W,PNW‐E,PSW,RMN,RMS).

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-87

6.7.3.2 EstimationofGreenhouseGasEmissionsfromOtherDisturbances

Forotherdisturbances,theprimaryeffectsareindirect:byconvertinglivebiomasstodead—andinsomecasesstandingtreestodead,downtrees—decompositionisaccelerated.Currentlygroupingnon‐firedisturbanceintotwocategoriesissuggested:disturbancesthatleavedeadtreesstanding(insectanddisease‐causedmortality)anddisturbancethatleavesthetreesontheground(windoricestorms).Thelandownerwillhavetoestimatemortality(Section6.7.2);thenasindecompositionoffire‐killedtrees,afixeddecompositionrate(defaultvalue0.015)willbeusedtosimulatesubsequentdecomposition.

Forinsectorpathogen‐causedmortality,thetreesareassumedtobeinitiallystandingafterdeath.Conversionofstandingdeadtodead‐and‐downwillbeprojectedusingafixedrateandapproximatingthemethodsinFVS‐FEE.Oncedown,thedefaultdecompositionratefromFVS‐FFEof0.015fordeadanddownwoodwillbeusedtosimulatedecomposition.Forblowdownsoricestorms,theimpactedtreesareassumedtobedeadanddown.Inthiscasedecompositionbeginsimmediately.

6.7.4 LimitationsandUncertainty

Amajorsourceofuncertaintyinpredictingfireemissionsisthepreburnfuelquantities.Iflandownersaredoingsomekindofinventoryofliveanddeadbiomass(seeSection6.7.2)theywillhaverelativelyrobustestimatesofavailablefuel.Iftheyareusinglookuptablevaluesbyforesttype,therewillbemoreuncertaintyassociatedwiththeestimatessincefuelquantitiesvarygreatlywithinforesttype.

Arelatedchallengeisdeterminingtheappropriatedegreeofspecificityfortrackingbiomassbypools(e.g.,live,dead).Anykindofmanagementordisturbancechangesbiomassatthetimeofoccurrence,andalsothesubsequenttrajectory.Subsequentmanagementordisturbanceshouldbeappliedtothechangedandchangingvalues,nottheoriginalvalues.ThiscanresultinacomplicatedsimulationmodellikeFVS,ratherthanacalculator.Sinceprefirefuelquantityisthestrongestpredictoroffuelconsumption,determiningtheappropriatedegreeofspecificityfortrackingbiomassbypoolsisnotacompletelyacademicquestion.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-88

Appendix6‐A:HarvestedWoodProductsLookupTables

Table6‐A‐1:FactorstoConvertPrimaryWoodProductstoCarbonMassfromtheUnitsCharacteristicofEachProduct

SolidwoodProductorPaper UnitFactortoConvertUnitstoTons(2,000lbs)C

FactortoConvertUnitstoMetricTonsC

Softwoodlumber/laminatedveneerlumber/glulamlumber/I‐joists

Thousandboardfeet 0.488 0.443

Hardwoodlumber Thousandboardfeet 0.844 0.765

Softwoodplywood Thousandsquarefeet,3/8‐inchbasis

0.260 0.236

Orientedstrandboard Thousandsquarefeet,3/8‐inchbasis

0.303 0.275

Non‐structuralpanels(average)Thousandsquarefeet,3/8‐inchbasis 0.319 0.289

Hardwoodveneer/plywoodThousandsquarefeet,3/8‐inchbasis 0.315 0.286

Particleboard/mediumdensityfiberboard

Thousandsquarefeet,3/4‐inchbasis 0.647 0.587

HardboardThousandsquarefeet,1/8‐inchbasis

0.152 0.138

InsulationboardThousandsquarefeet,1/2‐inchbasis

0.242 0.220

Otherindustrialproducts Thousandcubicfeet 8.250 7.484Paper Tons,airdry 0.450 0.496

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-89

Table6‐A‐2:FractionofCarboninPrimaryWoodProductsRemaininginEndUsesupto100YearsAfterProduction(year0indicatesfractionattimeofproduction)

YearafterProduction

SoftwoodLumber

HardwoodLumber

SoftwoodPlywood

OrientedStrandboard

Non‐StructuralPanels

Misc.Products Paper

0 1.000 1.000 1.000 1.000 1.000 1.000 1.0001 0.908 0.909 0.908 0.908 0.908 0.903 0.8802 0.892 0.893 0.893 0.896 0.892 0.887 0.7753 0.877 0.877 0.878 0.884 0.876 0.871 0.6824 0.863 0.861 0.863 0.872 0.861 0.855 0.6005 0.848 0.845 0.848 0.860 0.845 0.840 0.5286 0.834 0.830 0.834 0.848 0.830 0.825 0.4657 0.820 0.815 0.820 0.837 0.816 0.810 0.3548 0.806 0.801 0.807 0.826 0.801 0.795 0.2699 0.793 0.786 0.794 0.815 0.787 0.781 0.20510 0.780 0.772 0.781 0.804 0.774 0.767 0.15615 0.718 0.705 0.719 0.753 0.708 0.700 0.04020 0.662 0.644 0.663 0.706 0.649 0.639 0.01025 0.611 0.589 0.613 0.662 0.595 0.583 0.00330 0.565 0.538 0.567 0.622 0.546 0.532 0.00135 0.523 0.492 0.525 0.585 0.501 0.486 0.00040 0.485 0.450 0.487 0.551 0.460 0.444 0.00045 0.450 0.411 0.452 0.519 0.423 0.405 0.00050 0.418 0.376 0.420 0.490 0.389 0.370 0.00055 0.389 0.344 0.391 0.462 0.358 0.338 0.00060 0.362 0.315 0.364 0.437 0.329 0.308 0.00065 0.338 0.288 0.340 0.413 0.303 0.281 0.00070 0.315 0.264 0.317 0.391 0.280 0.257 0.00075 0.294 0.242 0.296 0.370 0.258 0.234 0.00080 0.276 0.221 0.277 0.351 0.238 0.214 0.00085 0.258 0.203 0.260 0.333 0.220 0.195 0.00090 0.242 0.186 0.244 0.316 0.203 0.178 0.00095 0.227 0.170 0.229 0.300 0.188 0.163 0.000100 0.213 0.156 0.215 0.285 0.174 0.149 0.000Average 0.466 0.430 0.468 0.526 0.441 0.424 0.059

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-90

Table6‐A‐3:FractionofCarboninPrimaryWoodProductsRemaininginLandfillsupto100YearsafterProduction(year0indicatesfractionattimeofproduction)

YearafterProductio

n

Softwood

Lumber

HardwoodLumber

SoftwoodPlywood

OrientedStrandboar

d

Non‐StructuralPanels

Misc.Products Paper

0 0.000 0.000 0.000 0.000 0.000 0.000 0.0001 0.061 0.060 0.061 0.061 0.061 0.064 0.0402 0.071 0.070 0.071 0.068 0.071 0.074 0.0733 0.080 0.080 0.080 0.076 0.081 0.084 0.1024 0.089 0.090 0.089 0.083 0.090 0.094 0.1275 0.098 0.099 0.097 0.090 0.099 0.103 0.1476 0.106 0.109 0.106 0.097 0.108 0.112 0.1647 0.114 0.117 0.114 0.103 0.117 0.121 0.1978 0.122 0.126 0.122 0.110 0.125 0.129 0.2209 0.130 0.134 0.130 0.116 0.134 0.138 0.23610 0.138 0.143 0.137 0.122 0.142 0.146 0.24715 0.173 0.181 0.172 0.151 0.179 0.184 0.25620 0.203 0.214 0.202 0.176 0.211 0.217 0.24125 0.230 0.243 0.229 0.199 0.239 0.246 0.22330 0.253 0.269 0.252 0.220 0.265 0.272 0.20735 0.274 0.292 0.273 0.238 0.287 0.296 0.19540 0.293 0.313 0.292 0.255 0.307 0.316 0.18545 0.310 0.332 0.308 0.271 0.325 0.335 0.17750 0.325 0.348 0.324 0.285 0.341 0.352 0.17155 0.338 0.363 0.337 0.298 0.356 0.367 0.16660 0.351 0.377 0.349 0.310 0.369 0.380 0.16365 0.362 0.389 0.361 0.321 0.381 0.393 0.16070 0.372 0.400 0.371 0.331 0.391 0.404 0.15875 0.381 0.410 0.380 0.341 0.401 0.414 0.15680 0.390 0.419 0.389 0.350 0.410 0.423 0.15485 0.398 0.427 0.397 0.359 0.418 0.431 0.15390 0.405 0.435 0.404 0.366 0.426 0.439 0.15395 0.412 0.442 0.411 0.374 0.432 0.446 0.152100 0.418 0.448 0.417 0.381 0.438 0.452 0.151Average 0.297 0.317 0.296 0.264 0.311 0.321 0.178

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-91

Table6‐A‐4:DensityofSoftwoodandHardwoodSawlogs/VeneerLogsandPulpwoodbyRegionandForestTypeGroupa

Region ForesttypeSpecific Gravitydof

SoftwoodsSpecificGravitydof

Hardwoods

Northeast

Aspen–birch 0.353 0.428Elm–ash–cottonwood 0.358 0.470Maple–beech–birch 0.369 0.518Oak–hickory 0.388 0.534Oak–pine 0.371 0.516Spruce–fir 0.353 0.481White–red–jackpine 0.361 0.510

NorthernLakeStates

Aspen–birch 0.351 0.397Elm–ash–cottonwood 0.335 0.460Maple–beech–birch 0.356 0.496Oak–hickory 0.369 0.534Spruce–fir 0.344 0.444White–red–jackpine 0.389 0.473

NorthernPrairieStates

Elm–ash–cottonwood 0.424 0.453Loblolly–shortleafpine 0.468 0.544Maple–beech–birch 0.437 0.508Oak–hickory 0.448 0.565Oak–pine 0.451 0.566Ponderosapine 0.381 0.473

PacificNorthwest,East

Douglasfir 0.429 0.391Fir–spruce–m.hemlock 0.370 0.361Lodgepolepine 0.380 0.345Ponderosapine 0.385 0.513

PacificNorthwest,West

Alder–maple 0.402 0.385Douglasfir 0.440 0.426Fir–spruce–m.hemlock 0.399 0.417Hemlock–Sitkaspruce 0.405 0.380

PacificSouthwest

Mixedconifer 0.394 0.521Douglasfir 0.429 0.483Fir–spruce–m.hemlock 0.372 0.510PonderosaPine 0.380 0.510Redwood 0.376 0.449

RockyMountain,North

Douglasfir 0.428 0.370Fir–spruce–m.hemlock 0.355 0.457Hemlock–sitkaspruce 0.375 0.441Lodgepolepine 0.383 0.391Ponderosapine 0.391 0.374

RockyMountain,South

Aspen–birch 0.355 0.350Douglasfir 0.431 0.350Fir–spruce–m.hemlock 0.342 0.350Lodgepolepine 0.377 0.350Ponderosapine 0.383 0.386

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-92

Region ForesttypeSpecific Gravitydof

SoftwoodsSpecificGravitydof

Hardwoods

Southeast

Elm–ash–cottonwood 0.433 0.499Loblolly–shortleafpine 0.469 0.494Longleaf–slashpine 0.536 0.503Oak–gum–cypress 0.441 0.484Oak–hickory 0.438 0.524Oak–pine 0.462 0.516

SouthCentral

Elm–ash–cottonwood 0.427 0.494Loblolly–shortleafpine 0.470 0.516Longleaf–slashpine 0.531 0.504Oak–gum–cypress 0.440 0.513Oak–hickory 0.451 0.544Oak–pine 0.467 0.537

Weste

Pinyon–juniper 0.422 0.620Tanoak–laurel 0.430 0.459Westernlarch 0.433 0.430Westernoak 0.416 0.590Westernwhitepine 0.376 ‐‐

‐‐=Nohardwoodtreesinthistypeinthisregion.aEstimatesbasedonsurveydatafortheconterminousUnitedStatesfromUSDAForestService,FIAProgram’sdatabaseofforestsurveys(FIADB)(USDAForestService,2005)andincludegrowingstockontimberlandstandsclassifiedasmedium‐orlarge‐diameterstands.Proportionsarebasedonvolumeofgrowingstocktrees.dAveragewoodspecificgravityisthedensityofwooddividedbythedensityofwaterbasedonwooddrymassassociatedwithgreentreevolume.eWestrepresentsanaverageoverallwesternregionsfortheseforesttypes.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-93

Table6‐A‐5:AverageDispositionPatternsofCarbon asFractions inRoundwoodby RegionandRoundwoodCategory;FactorsAssumeNoBarkonRoundwoodandExcludeFuelwood

YearafterProduction

Northeast,Softwood

InUse

SawlogTotal

Emissions InUse

PulpwoodTotal

EmissionsInLandfills

TotalStored

InLandfills

TotalStored

0 0.569 0.000 0.569 0.431 0.513 0.000 0.513 0.4871 0.521 0.029 0.550 0.450 0.452 0.021 0.473 0.5272 0.505 0.037 0.542 0.458 0.400 0.038 0.438 0.5623 0.491 0.044 0.535 0.465 0.355 0.052 0.407 0.5934 0.478 0.050 0.528 0.472 0.315 0.064 0.379 0.6215 0.465 0.056 0.522 0.478 0.279 0.074 0.354 0.6466 0.453 0.062 0.516 0.484 0.248 0.083 0.331 0.6697 0.438 0.069 0.507 0.493 0.193 0.099 0.293 0.7078 0.425 0.075 0.500 0.500 0.152 0.111 0.263 0.7379 0.414 0.080 0.494 0.506 0.120 0.119 0.239 0.76110 0.403 0.085 0.489 0.511 0.096 0.124 0.220 0.78015 0.363 0.105 0.468 0.532 0.038 0.130 0.168 0.83220 0.332 0.121 0.453 0.547 0.022 0.124 0.146 0.85425 0.306 0.134 0.440 0.560 0.017 0.116 0.133 0.86730 0.282 0.146 0.428 0.572 0.015 0.109 0.124 0.87635 0.260 0.156 0.417 0.583 0.014 0.103 0.117 0.88340 0.240 0.166 0.406 0.594 0.013 0.099 0.111 0.88945 0.222 0.174 0.397 0.603 0.012 0.095 0.107 0.89350 0.206 0.182 0.388 0.612 0.011 0.093 0.104 0.89655 0.191 0.189 0.380 0.620 0.010 0.091 0.101 0.89960 0.177 0.195 0.372 0.628 0.009 0.089 0.099 0.90165 0.165 0.201 0.365 0.635 0.009 0.088 0.097 0.90370 0.153 0.206 0.359 0.641 0.008 0.087 0.095 0.90575 0.143 0.210 0.353 0.647 0.008 0.086 0.094 0.90680 0.133 0.214 0.347 0.653 0.007 0.086 0.093 0.90785 0.124 0.218 0.342 0.658 0.007 0.085 0.092 0.90890 0.116 0.221 0.337 0.663 0.006 0.085 0.091 0.90995 0.108 0.224 0.332 0.668 0.006 0.085 0.091 0.909100 0.101 0.227 0.328 0.672 0.006 0.085 0.090 0.910Average 0.235 0.166 0.402 0.041 0.095 0.136

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-94

Table6‐A‐5—continued

YearafterProduction

Northeast,Hardwood

InUseSawlog

TotalEmissions

InUse

PulpwoodTotal

EmissionsInLandfills

TotalStored

InLandfills

TotalStored

0 0.614 0.000 0.614 0.386 0.650 0.000 0.650 0.3501 0.559 0.034 0.594 0.406 0.580 0.032 0.613 0.3872 0.544 0.042 0.586 0.414 0.540 0.046 0.586 0.4143 0.530 0.049 0.579 0.421 0.503 0.059 0.562 0.4384 0.516 0.056 0.573 0.427 0.471 0.070 0.541 0.4595 0.504 0.063 0.567 0.433 0.443 0.079 0.522 0.4786 0.491 0.069 0.561 0.439 0.417 0.087 0.504 0.4967 0.477 0.076 0.553 0.447 0.374 0.101 0.475 0.5258 0.463 0.083 0.546 0.454 0.341 0.111 0.453 0.5479 0.452 0.089 0.540 0.460 0.316 0.119 0.434 0.56610 0.441 0.094 0.535 0.465 0.295 0.125 0.420 0.58015 0.397 0.117 0.514 0.486 0.239 0.137 0.376 0.62420 0.361 0.136 0.497 0.503 0.215 0.140 0.355 0.64525 0.330 0.152 0.482 0.518 0.199 0.141 0.340 0.66030 0.301 0.167 0.468 0.532 0.186 0.142 0.328 0.67235 0.275 0.180 0.455 0.545 0.175 0.144 0.319 0.68140 0.252 0.192 0.444 0.556 0.164 0.146 0.310 0.69045 0.230 0.202 0.432 0.568 0.155 0.148 0.302 0.69850 0.211 0.211 0.422 0.578 0.146 0.150 0.296 0.70455 0.193 0.220 0.412 0.588 0.138 0.152 0.290 0.71060 0.176 0.227 0.403 0.597 0.130 0.154 0.285 0.71565 0.162 0.234 0.395 0.605 0.123 0.157 0.280 0.72070 0.148 0.240 0.388 0.612 0.116 0.159 0.275 0.72575 0.136 0.245 0.380 0.620 0.110 0.161 0.271 0.72980 0.124 0.250 0.374 0.626 0.104 0.163 0.268 0.73285 0.114 0.254 0.368 0.632 0.099 0.165 0.264 0.73690 0.104 0.258 0.362 0.638 0.094 0.167 0.261 0.73995 0.096 0.261 0.357 0.643 0.089 0.169 0.258 0.742100 0.088 0.264 0.352 0.648 0.085 0.171 0.255 0.745Average 0.244 0.192 0.437 0.178 0.145 0.323

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-95

Table6‐A‐5—continued

YearafterProduction

NorthCentral,Softwood

InUse

Sawlog

TotalEmissions

InUse

Pulpwood

TotalEmissionsIn

LandfillsTotalStored

InLandfills

TotalStored

0 0.630 0.000 0.630 0.370 0.514 0.000 0.514 0.4861 0.579 0.031 0.610 0.390 0.454 0.021 0.475 0.5252 0.561 0.039 0.601 0.399 0.402 0.038 0.440 0.5603 0.545 0.047 0.592 0.408 0.357 0.052 0.409 0.5914 0.530 0.055 0.585 0.415 0.317 0.064 0.381 0.6195 0.516 0.062 0.577 0.423 0.281 0.074 0.356 0.6446 0.502 0.068 0.570 0.430 0.250 0.083 0.333 0.6677 0.485 0.076 0.561 0.439 0.196 0.099 0.295 0.7058 0.470 0.083 0.553 0.447 0.154 0.111 0.265 0.7359 0.457 0.089 0.546 0.454 0.123 0.119 0.241 0.75910 0.446 0.094 0.540 0.460 0.098 0.124 0.223 0.77715 0.401 0.116 0.517 0.483 0.041 0.130 0.171 0.82920 0.366 0.133 0.500 0.500 0.025 0.124 0.148 0.85225 0.336 0.148 0.485 0.515 0.020 0.116 0.135 0.86530 0.310 0.162 0.471 0.529 0.018 0.109 0.126 0.87435 0.286 0.173 0.459 0.541 0.016 0.103 0.120 0.88040 0.264 0.184 0.447 0.553 0.015 0.099 0.114 0.88645 0.243 0.193 0.437 0.563 0.014 0.096 0.110 0.89050 0.225 0.202 0.427 0.573 0.013 0.093 0.106 0.89455 0.208 0.209 0.418 0.582 0.012 0.091 0.103 0.89760 0.193 0.216 0.409 0.591 0.012 0.089 0.101 0.89965 0.179 0.222 0.401 0.599 0.011 0.088 0.099 0.90170 0.166 0.228 0.394 0.606 0.010 0.087 0.098 0.90275 0.154 0.233 0.387 0.613 0.010 0.087 0.097 0.90380 0.144 0.237 0.381 0.619 0.009 0.086 0.095 0.90585 0.134 0.242 0.375 0.625 0.009 0.086 0.095 0.90590 0.125 0.245 0.370 0.630 0.008 0.086 0.094 0.90695 0.116 0.249 0.365 0.635 0.008 0.086 0.093 0.907100 0.108 0.252 0.360 0.640 0.007 0.086 0.093 0.907Average 0.258 0.184 0.442 0.043 0.095 0.138

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-96

Table6‐A‐5—continued

YearafterProduction

NorthCentral,Hardwood

InUseSawlog

TotalEmissions

InUse

PulpwoodTotal

EmissionsInLandfills

TotalStored

InLandfills

TotalStored

0 0.585 0.000 0.585 0.415 0.685 0.000 0.685 0.3151 0.533 0.032 0.565 0.435 0.613 0.035 0.648 0.3522 0.518 0.040 0.558 0.442 0.575 0.049 0.624 0.3763 0.504 0.047 0.550 0.450 0.541 0.061 0.602 0.3984 0.490 0.054 0.544 0.456 0.511 0.071 0.582 0.4185 0.477 0.060 0.537 0.463 0.484 0.080 0.565 0.4356 0.465 0.066 0.531 0.469 0.460 0.089 0.548 0.4527 0.450 0.073 0.523 0.477 0.421 0.101 0.522 0.4788 0.437 0.080 0.517 0.483 0.390 0.111 0.501 0.4999 0.425 0.085 0.511 0.489 0.365 0.119 0.484 0.51610 0.415 0.090 0.505 0.495 0.346 0.125 0.471 0.52915 0.372 0.112 0.484 0.516 0.290 0.139 0.429 0.57120 0.339 0.130 0.468 0.532 0.263 0.144 0.408 0.59225 0.309 0.145 0.454 0.546 0.245 0.148 0.393 0.60730 0.282 0.158 0.441 0.559 0.229 0.151 0.380 0.62035 0.258 0.170 0.428 0.572 0.216 0.154 0.370 0.63040 0.236 0.181 0.417 0.583 0.203 0.158 0.360 0.64045 0.216 0.191 0.407 0.593 0.191 0.161 0.352 0.64850 0.197 0.199 0.397 0.603 0.180 0.165 0.345 0.65555 0.181 0.207 0.388 0.612 0.170 0.168 0.338 0.66260 0.165 0.214 0.379 0.621 0.160 0.171 0.332 0.66865 0.151 0.220 0.372 0.628 0.152 0.174 0.326 0.67470 0.138 0.226 0.364 0.636 0.143 0.178 0.321 0.67975 0.127 0.231 0.358 0.642 0.136 0.180 0.316 0.68480 0.116 0.235 0.351 0.649 0.129 0.183 0.312 0.68885 0.106 0.239 0.346 0.654 0.122 0.186 0.308 0.69290 0.098 0.243 0.340 0.660 0.116 0.188 0.304 0.69695 0.089 0.246 0.336 0.664 0.110 0.191 0.300 0.700100 0.082 0.249 0.331 0.669 0.104 0.193 0.297 0.703Average 0.229 0.182 0.411 0.212 0.158 0.370

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-97

Table6‐A‐5—continued

YearafterProduction

PacificNorthwest,East,Softwood

InUse

AllTotal

Emissions

InLandfills

TotalStored

0 0.637 0.000 0.637 0.363 1 0.574 0.036 0.610 0.390 2 0.551 0.046 0.597 0.403 3 0.530 0.055 0.585 0.415 4 0.511 0.063 0.574 0.426 5 0.494 0.070 0.564 0.436 6 0.478 0.077 0.555 0.445 7 0.455 0.086 0.541 0.459 8 0.436 0.093 0.529 0.471 9 0.420 0.100 0.520 0.480 10 0.406 0.105 0.512 0.488 15 0.359 0.125 0.484 0.516 20 0.327 0.139 0.466 0.534 25 0.301 0.150 0.451 0.549 30 0.278 0.160 0.438 0.562 35 0.258 0.169 0.427 0.573 40 0.239 0.177 0.416 0.584 45 0.222 0.185 0.406 0.594 50 0.206 0.191 0.397 0.603 55 0.191 0.198 0.389 0.611 60 0.178 0.203 0.381 0.619 65 0.166 0.208 0.374 0.626 70 0.155 0.213 0.368 0.632 75 0.145 0.217 0.362 0.638 80 0.136 0.221 0.356 0.644 85 0.127 0.224 0.351 0.649 90 0.119 0.227 0.347 0.653 95 0.112 0.230 0.342 0.658 100 0.105 0.233 0.338 0.662 Average 0.238 0.177 0.415

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-98

Table6‐A‐5—continued

YearafterProduction

PacificNorthwest,West,Softwoods

InUse

SawlogTotal

Emissions InUse

PulpwoodTotal

EmissionsInLandfills

TotalStored

InLandfills

TotalStored

0 0.740 0.000 0.740 0.260 0.500 0.000 0.500 0.500

1 0.674 0.039 0.713 0.287 0.440 0.020 0.460 0.540

2 0.652 0.049 0.702 0.298 0.387 0.037 0.424 0.576

3 0.632 0.059 0.691 0.309 0.341 0.051 0.392 0.608

4 0.613 0.068 0.681 0.319 0.300 0.063 0.364 0.636

5 0.596 0.076 0.672 0.328 0.264 0.074 0.338 0.662

6 0.579 0.083 0.663 0.337 0.233 0.082 0.315 0.685

7 0.558 0.093 0.651 0.349 0.177 0.099 0.276 0.724

8 0.539 0.101 0.640 0.360 0.134 0.111 0.245 0.755

9 0.524 0.108 0.631 0.369 0.102 0.119 0.221 0.779

10 0.510 0.114 0.624 0.376 0.078 0.124 0.202 0.798

15 0.457 0.139 0.596 0.404 0.020 0.129 0.149 0.851

20 0.418 0.158 0.576 0.424 0.005 0.122 0.127 0.873

25 0.384 0.174 0.558 0.442 0.001 0.113 0.114 0.886

30 0.355 0.188 0.543 0.457 0 0.105 0.105 0.895

35 0.328 0.201 0.529 0.471 0 0.098 0.099 0.901

40 0.303 0.213 0.516 0.484 0 0.093 0.093 0.907

45 0.281 0.223 0.504 0.496 0 0.090 0.090 0.910

50 0.260 0.232 0.493 0.507 0 0.086 0.086 0.914

55 0.242 0.241 0.482 0.518 0 0.084 0.084 0.916

60 0.224 0.248 0.473 0.527 0 0.082 0.082 0.918

65 0.209 0.255 0.464 0.536 0 0.080 0.080 0.920

70 0.194 0.261 0.456 0.544 0 0.079 0.079 0.921

75 0.181 0.267 0.448 0.552 0 0.078 0.078 0.922

80 0.169 0.272 0.441 0.559 0 0.078 0.078 0.922

85 0.158 0.276 0.434 0.566 0 0.077 0.077 0.923

90 0.148 0.281 0.428 0.572 0 0.077 0.077 0.923

95 0.138 0.285 0.423 0.577 0 0.076 0.076 0.924

100 0.129 0.288 0.417 0.583 0 0.076 0.076 0.924

Average 0.298 0.213 0.511 0.030 0.090 0.119

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-99

Table6‐A‐5—continued

YearafterProduction

PacificNorthwest,West,Hardwood PacificSouthwest,Softwood

InUseAll

TotalEmissions

InUse

AllTotal

EmissionsInLandfills

TotalStored

InLandfills

TotalStored

0 0.531 0.000 0.531 0.469 0.675 0.000 0.675 0.325

1 0.476 0.027 0.503 0.497 0.611 0.036 0.647 0.353

2 0.447 0.038 0.485 0.515 0.587 0.047 0.634 0.366

3 0.421 0.048 0.469 0.531 0.566 0.056 0.622 0.378

4 0.397 0.057 0.454 0.546 0.546 0.065 0.611 0.389

5 0.376 0.064 0.440 0.560 0.528 0.072 0.600 0.400

6 0.357 0.071 0.428 0.572 0.511 0.080 0.591 0.409

7 0.327 0.081 0.408 0.592 0.488 0.089 0.577 0.423

8 0.303 0.089 0.393 0.607 0.468 0.097 0.565 0.435

9 0.284 0.096 0.380 0.620 0.451 0.104 0.555 0.445

10 0.269 0.101 0.369 0.631 0.437 0.110 0.547 0.453

15 0.222 0.115 0.337 0.663 0.387 0.131 0.518 0.482

20 0.197 0.122 0.319 0.681 0.353 0.146 0.499 0.501

25 0.179 0.127 0.306 0.694 0.324 0.159 0.483 0.517

30 0.164 0.132 0.295 0.705 0.299 0.170 0.469 0.531

35 0.150 0.136 0.286 0.714 0.276 0.180 0.457 0.543

40 0.137 0.140 0.278 0.722 0.256 0.190 0.445 0.555

45 0.126 0.144 0.270 0.730 0.237 0.198 0.435 0.565

50 0.115 0.148 0.263 0.737 0.220 0.205 0.425 0.575

55 0.106 0.151 0.257 0.743 0.204 0.212 0.416 0.584

60 0.097 0.155 0.252 0.748 0.189 0.218 0.408 0.592

65 0.089 0.157 0.247 0.753 0.176 0.224 0.400 0.600

70 0.082 0.160 0.242 0.758 0.164 0.229 0.393 0.607

75 0.075 0.163 0.238 0.762 0.153 0.233 0.387 0.613

80 0.069 0.165 0.234 0.766 0.143 0.238 0.381 0.619

85 0.064 0.167 0.231 0.769 0.133 0.241 0.375 0.625

90 0.059 0.169 0.227 0.773 0.125 0.245 0.370 0.630

95 0.054 0.171 0.224 0.776 0.117 0.248 0.365 0.635

100 0.050 0.172 0.222 0.778 0.109 0.251 0.361 0.639

Average 0.145 0.139 0.284 0.254 0.190 0.444

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-100

Table6‐A‐5—continued

YearafterProduction

RockyMountain,Softwood

InUse

All Total

Emissions

In

LandfillsTotalStored

0 0.704 0.000 0.704 0.296 1 0.640 0.037 0.677 0.323 2 0.615 0.048 0.663 0.337 3 0.592 0.057 0.650 0.350 4 0.572 0.066 0.638 0.362 5 0.552 0.075 0.627 0.373 6 0.535 0.082 0.617 0.383 7 0.510 0.092 0.602 0.398 8 0.489 0.101 0.590 0.410 9 0.472 0.108 0.579 0.421 10 0.457 0.114 0.571 0.429 15 0.404 0.136 0.540 0.460 20 0.368 0.152 0.520 0.480 25 0.338 0.166 0.504 0.496 30 0.312 0.177 0.489 0.511 35 0.288 0.188 0.476 0.524 40 0.266 0.198 0.464 0.536 45 0.247 0.206 0.453 0.547 50 0.229 0.214 0.443 0.557 55 0.212 0.221 0.433 0.567 60 0.197 0.228 0.425 0.575 65 0.183 0.234 0.417 0.583 70 0.170 0.239 0.409 0.591 75 0.159 0.244 0.403 0.597 80 0.148 0.248 0.396 0.604 85 0.138 0.252 0.390 0.610 90 0.129 0.256 0.385 0.615 95 0.121 0.259 0.380 0.620 100 0.113 0.262 0.375 0.625 Average 0.265 0.198 0.463

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-101

Table6‐A‐5—continued

YearafterProduction

Southeast,Softwood

InUseSawlog

TotalEmissions

InUse

PulpwoodTotal

EmissionsInLandfills

TotalStored

InLandfills

TotalStored

0 0.636 0.000 0.636 0.364 0.553 0.000 0.553 0.447

1 0.578 0.034 0.612 0.388 0.490 0.024 0.514 0.486

2 0.557 0.043 0.600 0.400 0.442 0.040 0.482 0.518

3 0.537 0.052 0.589 0.411 0.399 0.054 0.453 0.547

4 0.519 0.060 0.578 0.422 0.361 0.066 0.427 0.573

5 0.502 0.067 0.569 0.431 0.328 0.076 0.403 0.597

6 0.486 0.074 0.560 0.440 0.298 0.084 0.382 0.618

7 0.465 0.083 0.547 0.453 0.247 0.100 0.347 0.653

8 0.447 0.090 0.537 0.463 0.208 0.111 0.319 0.681

9 0.432 0.096 0.528 0.472 0.178 0.119 0.297 0.703

10 0.418 0.102 0.520 0.480 0.155 0.124 0.279 0.721

15 0.371 0.122 0.494 0.506 0.098 0.132 0.230 0.770

20 0.339 0.137 0.476 0.524 0.079 0.128 0.208 0.792

25 0.311 0.150 0.461 0.539 0.071 0.123 0.194 0.806

30 0.287 0.161 0.448 0.552 0.066 0.118 0.184 0.816

35 0.265 0.171 0.436 0.564 0.062 0.115 0.177 0.823

40 0.245 0.180 0.425 0.575 0.058 0.112 0.170 0.830

45 0.227 0.188 0.415 0.585 0.055 0.110 0.165 0.835

50 0.210 0.195 0.405 0.595 0.052 0.109 0.161 0.839

55 0.195 0.202 0.397 0.603 0.049 0.108 0.157 0.843

60 0.181 0.208 0.389 0.611 0.046 0.108 0.154 0.846

65 0.169 0.213 0.382 0.618 0.044 0.108 0.151 0.849

70 0.157 0.218 0.375 0.625 0.041 0.108 0.149 0.851

75 0.146 0.222 0.369 0.631 0.039 0.108 0.147 0.853

80 0.137 0.226 0.363 0.637 0.037 0.108 0.145 0.855

85 0.127 0.230 0.358 0.642 0.035 0.108 0.143 0.857

90 0.119 0.233 0.353 0.647 0.033 0.109 0.142 0.858

95 0.111 0.236 0.348 0.652 0.031 0.109 0.141 0.859

100 0.104 0.239 0.344 0.656 0.030 0.110 0.140 0.860

Average 0.243 0.180 0.423 0.082 0.109 0.191

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-102

Table6‐A‐5—continued

YearafterProduction

Southeast,Hardwood

InUse

SawlogTotal

Emissions InUse

PulpwoodTotal

EmissionsInLandfills

TotalStored

InLandfills

TotalStored

0 0.609 0.000 0.609 0.391 0.591 0.000 0.591 0.409

1 0.552 0.035 0.587 0.413 0.525 0.027 0.552 0.448

2 0.534 0.043 0.577 0.423 0.480 0.043 0.522 0.478

3 0.518 0.051 0.569 0.431 0.439 0.056 0.495 0.505

4 0.503 0.058 0.561 0.439 0.404 0.067 0.471 0.529

5 0.488 0.065 0.553 0.447 0.372 0.077 0.449 0.551

6 0.475 0.071 0.546 0.454 0.344 0.085 0.430 0.570

7 0.457 0.079 0.537 0.463 0.296 0.100 0.397 0.603

8 0.442 0.086 0.528 0.472 0.260 0.111 0.371 0.629

9 0.429 0.092 0.521 0.479 0.231 0.119 0.350 0.650

10 0.418 0.097 0.515 0.485 0.209 0.124 0.334 0.666

15 0.373 0.119 0.492 0.508 0.153 0.134 0.287 0.713

20 0.338 0.136 0.475 0.525 0.132 0.133 0.265 0.735

25 0.309 0.151 0.460 0.540 0.121 0.130 0.251 0.749

30 0.282 0.164 0.446 0.554 0.113 0.127 0.240 0.760

35 0.258 0.176 0.434 0.566 0.106 0.126 0.232 0.768

40 0.236 0.186 0.422 0.578 0.100 0.125 0.225 0.775

45 0.216 0.196 0.412 0.588 0.094 0.125 0.218 0.782

50 0.198 0.204 0.402 0.598 0.089 0.125 0.213 0.787

55 0.181 0.212 0.393 0.607 0.084 0.125 0.209 0.791

60 0.166 0.218 0.384 0.616 0.079 0.126 0.205 0.795

65 0.152 0.224 0.376 0.624 0.075 0.126 0.201 0.799

70 0.139 0.230 0.369 0.631 0.071 0.127 0.198 0.802

75 0.127 0.235 0.362 0.638 0.067 0.128 0.195 0.805

80 0.117 0.239 0.356 0.644 0.063 0.129 0.193 0.807

85 0.107 0.243 0.350 0.650 0.060 0.130 0.190 0.810

90 0.098 0.247 0.345 0.655 0.057 0.131 0.188 0.812

95 0.090 0.250 0.340 0.660 0.054 0.132 0.186 0.814

100 0.083 0.253 0.336 0.664 0.051 0.133 0.185 0.815

Average 0.231 0.187 0.417 0.119 0.123 0.242

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-103

Table6‐A‐5—continued

YearafterProduction

SouthCentral,Softwood

InUseSawlog

TotalEmissions

InUse

PulpwoodTotal

EmissionsInLandfills

TotalStored

InLandfills

TotalStored

0 0.629 0.000 0.629 0.371 0.570 0.000 0.570 0.430

1 0.569 0.035 0.603 0.397 0.506 0.026 0.532 0.468

2 0.547 0.044 0.591 0.409 0.459 0.041 0.500 0.500

3 0.527 0.053 0.580 0.420 0.417 0.055 0.472 0.528

4 0.509 0.061 0.569 0.431 0.380 0.066 0.447 0.553

5 0.492 0.068 0.560 0.440 0.348 0.076 0.424 0.576

6 0.477 0.075 0.551 0.449 0.319 0.085 0.404 0.596

7 0.455 0.083 0.538 0.462 0.270 0.100 0.370 0.630

8 0.437 0.091 0.527 0.473 0.232 0.111 0.343 0.657

9 0.421 0.097 0.518 0.482 0.202 0.119 0.321 0.679

10 0.408 0.102 0.510 0.490 0.180 0.124 0.304 0.696

15 0.362 0.122 0.484 0.516 0.123 0.133 0.256 0.744

20 0.330 0.136 0.466 0.534 0.103 0.130 0.234 0.766

25 0.303 0.148 0.451 0.549 0.094 0.126 0.220 0.780

30 0.280 0.158 0.439 0.561 0.087 0.122 0.210 0.790

35 0.259 0.168 0.427 0.573 0.082 0.120 0.202 0.798

40 0.240 0.176 0.416 0.584 0.077 0.118 0.195 0.805

45 0.222 0.184 0.406 0.594 0.072 0.117 0.189 0.811

50 0.206 0.191 0.397 0.603 0.068 0.116 0.185 0.815

55 0.192 0.197 0.389 0.611 0.064 0.116 0.181 0.819

60 0.178 0.203 0.381 0.619 0.061 0.116 0.177 0.823

65 0.166 0.208 0.374 0.626 0.058 0.116 0.174 0.826

70 0.155 0.213 0.368 0.632 0.054 0.117 0.171 0.829

75 0.145 0.217 0.362 0.638 0.051 0.117 0.169 0.831

80 0.135 0.221 0.356 0.644 0.049 0.118 0.167 0.833

85 0.126 0.225 0.351 0.649 0.046 0.119 0.165 0.835

90 0.118 0.228 0.346 0.654 0.044 0.119 0.163 0.837

95 0.111 0.231 0.342 0.658 0.042 0.120 0.161 0.839

100 0.104 0.234 0.338 0.662 0.039 0.121 0.160 0.840

Average 0.239 0.176 0.415 0.099 0.116 0.215

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-104

Table6‐A‐5—continued

YearafterProduction

SouthCentral,Hardwood

InUseSawlog

TotalEmissions

InUse

PulpwoodTotal

EmissionsInLandfills

TotalStored

InLandfills

TotalStored

0 0.587 0.000 0.587 0.413 0.581 0.000 0.581 0.419

1 0.531 0.033 0.564 0.436 0.516 0.027 0.542 0.458

2 0.512 0.042 0.554 0.446 0.470 0.042 0.512 0.488

3 0.495 0.050 0.545 0.455 0.429 0.055 0.484 0.516

4 0.479 0.057 0.536 0.464 0.392 0.067 0.459 0.541

5 0.464 0.064 0.528 0.472 0.360 0.077 0.437 0.563

6 0.450 0.070 0.521 0.479 0.332 0.085 0.417 0.583

7 0.432 0.078 0.510 0.490 0.283 0.100 0.383 0.617

8 0.416 0.085 0.501 0.499 0.246 0.111 0.357 0.643

9 0.403 0.091 0.493 0.507 0.217 0.119 0.336 0.664

10 0.391 0.096 0.487 0.513 0.195 0.124 0.319 0.681

15 0.347 0.116 0.463 0.537 0.138 0.133 0.272 0.728

20 0.314 0.132 0.446 0.554 0.118 0.131 0.250 0.750

25 0.286 0.145 0.432 0.568 0.108 0.128 0.236 0.764

30 0.262 0.157 0.419 0.581 0.101 0.125 0.226 0.774

35 0.239 0.168 0.407 0.593 0.095 0.123 0.217 0.783

40 0.219 0.177 0.396 0.604 0.089 0.121 0.210 0.790

45 0.200 0.186 0.386 0.614 0.084 0.121 0.204 0.796

50 0.183 0.193 0.377 0.623 0.079 0.120 0.199 0.801

55 0.168 0.200 0.368 0.632 0.075 0.121 0.195 0.805

60 0.154 0.206 0.360 0.640 0.070 0.121 0.191 0.809

65 0.141 0.212 0.353 0.647 0.067 0.121 0.188 0.812

70 0.129 0.217 0.346 0.654 0.063 0.122 0.185 0.815

75 0.118 0.222 0.340 0.660 0.060 0.123 0.182 0.818

80 0.108 0.226 0.334 0.666 0.057 0.124 0.180 0.820

85 0.099 0.229 0.329 0.671 0.054 0.124 0.178 0.822

90 0.091 0.233 0.324 0.676 0.051 0.125 0.176 0.824

95 0.084 0.236 0.319 0.681 0.048 0.126 0.174 0.826

100 0.077 0.238 0.315 0.685 0.046 0.127 0.173 0.827

Average 0.215 0.177 0.393 0.110 0.119 0.229

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-105

Table6‐A‐5—continued

YearafterProduction

OtherWest,Hardwood

InUseAll

TotalEmissions

In

LandfillsTotalStored

0 0.568 0.000 0.568 0.432 1 0.516 0.028 0.544 0.456 2 0.494 0.038 0.532 0.468 3 0.473 0.046 0.520 0.480 4 0.455 0.054 0.509 0.491 5 0.438 0.061 0.499 0.501 6 0.422 0.068 0.490 0.510 7 0.399 0.077 0.476 0.524 8 0.381 0.084 0.465 0.535 9 0.365 0.090 0.455 0.545 10 0.352 0.095 0.447 0.553 15 0.307 0.113 0.421 0.579 20 0.277 0.126 0.403 0.597 25 0.253 0.136 0.389 0.611 30 0.232 0.146 0.377 0.623 35 0.212 0.154 0.366 0.634 40 0.195 0.162 0.356 0.644 45 0.179 0.169 0.347 0.653 50 0.164 0.175 0.339 0.661 55 0.151 0.181 0.331 0.669 60 0.138 0.186 0.324 0.676 65 0.127 0.190 0.318 0.682 70 0.117 0.195 0.312 0.688 75 0.108 0.198 0.306 0.694 80 0.099 0.202 0.301 0.699 85 0.091 0.205 0.296 0.704 90 0.084 0.208 0.292 0.708 95 0.078 0.210 0.288 0.712 100 0.072 0.213 0.284 0.716 Average 0.195 0.161 0.357

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-106

Table6‐A‐6:RegionalFactorstoEstimateCarboninRoundwoodLogs,BarkonLogs,andFuelwood

RegionaTimberType

RoundwoodCategory

RatioofRoundwoodtoGrowing‐StockVolumethatisRoundwoodb

RatioofCarboninBarktoCarboninWoodc

FractionofGrowing‐StockVolumethatisRoundwoodd

RatioofFuelwoodtoGrowing‐StockVolumethatisRoundwoodb

NortheastSW

Sawlog 0.991 0.1820.948 0.136

Pulpwood 3.079 0.185

HWSawlog 0.927 0.199

0.879 0.547Pulpwood 2.177 0.218

NorthCentral

SWSawlog 0.985 0.182

0.931 0.066Pulpwood 1.285 0.185

HWSawlog 0.960 0.199

0.831 0.348Pulpwood 1.387 0.218

PacificCoast

SWSawlog 0.965 0.181

0.929 0.096Pulpwood 1.099 0.185

HWSawlog 0.721 0.197

0.947 0.957Pulpwood 0.324 0.219

RockyMountain

SWSawlog 0.994 0.181

0.907 0.217Pulpwood 2.413 0.185

HWSawlog 0.832 0.201

0.755 3.165Pulpwood 1.336 0.219

South

SWSawlog 0.990 0.182

0.891 0.019Pulpwood 1.246 0.185

HWSawlog 0.832 0.198

0.752 0.301Pulpwood 1.191 0.218SW=Softwood,HW=Hardwood.aNorthCentralincludestheNorthernPrairieStatesandtheNorthernLakeStates;PacificCoastincludesthePacificNorthwest(WestandEast)andthePacificSouthwest;RockyMountainincludesRockyMountain,NorthandSouth;andSouthincludestheSoutheastandSouthCentral.bValuesandclassificationsarebasedondatainTables2.2,3.2,4.2,5.2,and6.2ofJohnson(2001).cRatiosarecalculatedfromcarbonmassbasedonbiomasscomponentequationsinJenkinsetal.(2003a),appliedtoalllivetreesidentifiedasgrowingstockontimberlandstandsclassifiedasmedium‐orlarge‐diameterstandsinthesurveydatafortheconterminousUnitedStatesfromUSDAForestService,FIAProgram’sdatabaseofforestsurveys(FIADB)(Alerichetal.,2005;USDAForestService,2005).Carbonmassiscalculatedforbolesfromstumpto4‐inch(10.2cm)top,outsidediameter.dValuesandclassificationsarebasedondatainTables2.9,3.9,4.9,5.9,and6.9ofJohnson(2001).

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-107

Chapter6References

Aalde,H.,P.Gonzalez,M.Gytarski,T.Krug,etal.2006.Chapter2:Genericmethodologiesapplicabletomultipleland‐usecategories.In2006IPCCGuidelinesforNationalGreenhouseGasInventories,S.Eggleston,L.Buendia,K.Miwa,T.NgaraandK.Tanabe(eds.).Japan:IGES.

Akagi,S.K.,R.J.Yokelson,C.Wiedinmyer,M.J.Alvarado,etal.2011.Emissionfactorsforopenanddomesticbiomassburningforuseinatmosphericmodels.Atmos.Chem.Phys.,11:4039‐4072.

Albaugh,T.J.,E.D.Vance,C.Gaudreault,T.R.Fox,etal.2012.CarbonemissionsandsequestrationfromfertilizationofpineinthesoutheasternUnitedStates.ForestScience,58(5):419‐429.

Alerich,C.L.,L.Klevgard,C.Liff,P.D.Miles,etal.Theforestinventoryandanalysisdatabase:databasedescriptionandusersguideversion2.0.U.S.DepartmentofAgriculture,ForestService.Retrievedfromhttp://ncrs2.fs.fed.us/4801/fiadb/fiadb_documentation/FIADB_DOCUMENTATION.htm

Amateis,R.L.,andH.E.Burkhart.2005.TheInfluenceofThinningontheProportionofPeeler,Sawtimber,andPulpwoodTreesinLoblollyPinePlantations.SouthernJournalofAppliedForestry,29(3):158‐162.

Basiliko,N.,A.Khan,C.E.Prescott,R.Roy,etal.2009.SoilgreenhousegasandnutrientdynamicsinfertilizedwesternCanadianplantationforests.CanadianJournalofForestResearch,39(6):1220‐1235.

Birdsey,R.A.,andL.S.Heath.1995.ClimatechangesinU.S.forests.InClimatechangeandtheproductivityofAmerica'sforests,L.A.Joyce(ed.).FortCollins,CO:USDAForestService

Birdsey,R.A.1996.CarbonstorageformajorforesttypesandregionsintheconterminousUnitedStates.Forestsandglobalchange:forestmanagementopportunitiesformitigatingcarbonemissions,2:1‐26,261‐372.

Boerner,R.E.J.,J.Huang,andS.C.Hart.2008.Fire,thinning,andthecarboneconomy:Effectsoffireandfiresurrogatetreatmentsonestimatedcarbonstorageandsequestrationrate.ForestEcologyandManagement,255(8–9):3081‐3097.

Briggs,D.2007.Managementpracticesonpacificnorthwestwest‐sideindustrialforestlands,1991–2005:withprojectionsto2010:StandManagementCooperativeSMCWorkingPaperNumber6.www.cfr.washington.edu/research.smc/working_papers/smc_working_paper_6.pdf.

Brown,J.K.1974.HandbookforInventoryingDownedWoodyMaterial.Ogden,Utah:U.S.DepartmentofAgriculture,ForestService,IntermountainForestandRangeExperimentStation.

Burkhart,H.E.2008.Modellinggrowthandyieldforintensivelymanagedforests.Jour.For.Sci.,24:119‐126.

Caldeira,K.,M.Morgan,B.Granger,andD.Baldocci.2004.Aportfolioofcarbonmanagementoptions.InTheGlobalCarbonCycle,C.B.FieldandM.R.Raupach(eds.).Washington,DC:IslandPress.

Carlson,C.A.,H.E.Burkhart,H.L.Allen,andT.R.Fox.2008.AbsoluteandrelativechangesintreegrowthratesandchangestothestanddiameterdistributionofPinustaedaasaresultofmidrotationfertilizerapplications.CanadianJournalofForestResearch,38(7):2063‐2071.

Carter,M.C.,andC.D.Foster.2006.Milestonesandmillstones:Aretrospectiveon50yearsofresearchtoimproveproductivityinloblollypineplantations.ForestEcologyandManagement,227(1–2):137‐144.

Charmley,W.1995.PersonalCommunication.AscitedinNowak,D.J.,J.C.Stevens,S.M.Sisinni,andC.J.Luley.2002.Effectsofurbantreemanagementandspeciesselectiononatmosphericcarbondioxide.J.Arboric,28(3):113‐122.

ClimateActionReserve.2010.ForestProjectProtocol.LosAngeles,CA:ClimateActionReserve.Côté,W.A.,R.J.Young,K.B.Risse,A.F.Costanza,etal.2002.Acarbonbalancemethodforpaperand

woodproducts.EnvironmentalPollution,116:S1‐S6.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-108

Dixon,G.E.C.2002.EssentialFVS:Auser’sguidetotheForestVegetationSimulator.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,ForestManagementServiceCenter.http://www.fs.fed.us/fmsc/fvs/documents/gtrs.php.

DOE.1992.TechnicalGuidelinesforVoluntaryReportingofGreenhouseGasProgramChapter1,EmissionInventories,PartI,Appendix:Forestry.WashingtonDC:OfficeofPolicyandInternationalAffairsUnitedStatesDepartmentofEnergy.

Domke,G.,C.Woodall,andJ.Smith.2011.Accountingfordensityreductionandstructurallossinstandingdeadtrees:ImplicationsforforestbiomassandcarbonstockestimatesintheUnitedStates.CarbonBalanceandManagement,6(1):1‐11.

Domke,G.M.,C.W.Woodall,B.F.Walters,andJ.E.Smith.2013.Frommodelstomeasurements:comparingdowndeadwoodcarbonstockestimatesintheU.S.forestinventory.PLOSOne,8:e59949.

Escobedo,F.,J.A.Seitz,andW.Zipperer.2009.CarbonSequestrationandStorageGainesville'sUrbanForestUniversityofFloridaExtensionPublicationhttp://edis.ifas.ufl.edu/fr272

Finkral,A.J.,andA.M.Evans.2008.TheeffectsofathinningtreatmentoncarbonstocksinanorthernArizonaPonderosapineforest.ForestEcologyandManagement,255:2743‐2750.

Fox,T.R.,H.L.Allen,T.J.Albaugh,R.Rubilar,etal.2007.TreeNutritionandForestFertilizationofPinePlantationsintheSouthernUnitedStates.SouthernJournalofAppliedForestry,31(1):5‐11.

Gingrich,S.F.1967.MeasuringandevaluatingstockingandstanddensityinuplandhardwoodforestsintheCentralStates.ForestScience,13:38‐53.

Hanley,D.P.,andD.M.Baumgartner.2005.SilvicultureforWashingtonFamilyForests:WSUExtension.http://cru.cahe.wsu.edu/CEPublications/eb2000/eb2000.pdf.

Harmon,M.E.,C.W.Woodall,B.Fasth,J.Sexton,etal.2011.Differencesbetweenstandinganddowneddeadtreewooddensityreductionfactors:Acomparisonacrossdecayclassesandtreespecies,Res.Pap.15:USDAForestService,NorthernResearchStation.

Heath,L.S.,J.E.Smith,K.E.Skog,D.J.Nowak,etal.2011.ManagedforestcarbonestimatesfortheUSgreenhousegasinventory,1990‐2008.JournalofForestry,109(3):167‐173.

Heisler,G.M.1986.Energysavingswithtrees.J.Arboric,12(5):113‐125.Helms,J.A.,(ed.)1998.TheDictionaryofForestry.Washington,D.C.:SocietyofAmericanForesters.Hoover,C.M.,andS.A.Rebain.2008.TheKaneExperimentalForestcarboninventory:carbon

reportingwithFVS.ProceedingsoftheThirdForestVegetationSimulatorConference,FortCollins,CO.

Hoover,C.M.,andS.A.Rebain.2011.ForestcarbonestimationusingtheForestVegetationSimulator:Seventhingsyouneedtoknow.NewtownSquare,PA:U.S.DepartmentofAgriculture,ForestService,NorthernResearchStation.

Hoover,C.M.,(ed.)2008.FieldMeasurementsforForestCarbonMonitoring:ALandscape‐ScaleApproach.NewYork,NY:Springer.

Howard,J.L.2012.U.S.Timberproduction,trade,consumption,andpricestatistics,1965‐2009.Inpreparation.

IPCC.2000.LandUse,Land‐UseChange,andForestry.UK:IntergovernmentalPanelonClimateChange.

IPCC.2003.GoodPracticeGuidanceforLandUse,Land‐UseChangeandForestry.Kanagawa,Japan.:IntergovernmentalPanelonClimateChange.IPCCNationalGreenhouseGasInventoriesProgramme.http://www.ipcc‐nggip.iges.or.jp/public/gpglulucf/gpglulucf.html.

IPCC.2006.2006IPCCGuidelinesforNationalGreenhouseGasInventories,PreparedbytheNationalGreenhouseGasInventoriesProgramme.EditedbyH.S.Eggleston,L.Buendia,K.Miwa,T.NgaraandK.Tanabe.Japan:IGES.http://www.ipcc‐nggip.iges.or.jp/public/2006gl/vol4.html.

IPCC.2007.ContributionofWorkingGroupsI,IIandIIItotheFourthAssessmentReportofthe

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-109

IntergovernmentalPanelonClimateChangeCoreWritingTeam.Geneva,Switzerland:IntergovernmentalPanelonClimateChange.

Jenkins,J.C.,D.C.Chojnacky,L.S.Heath,andR.A.Birdsey.2003a.National‐ScaleBiomassEstimatorsforUnitedStatesTreeSpecies.ForestScience,49(1):12‐35.

Jenkins,J.C.,D.C.Chojnacky,L.S.Heath,andR.A.Birdsey.2003b.Comprehensivedatabaseofdiameter‐basedbiomassregressionsforNorthAmericantreespecies.NewtownSquare,PA:U.S.DepartmentofAgriculture,ForestService,NortheastResearchStation.

Johnson,l.R.,B.Lippke,J.D.Marshall,andJ.Comnick.2005.Life‐cycleimpactsofforestresourceactivitiesinthePacificNorthwestandSoutheastUnitedStates.WoodandFiberScience,37(CORRIMSpecialIssue):30‐46.

Johnson,M.C.,D.L.Peterson,andC.L.Raymond.2007.GuidetofueltreatmentsindryforestsoftheWesternUnitedStates:assessingforeststructureandfirehazard.Portland,OR:USDAForestService,PacificNorthwestResearchStation.

Johnson,T.G.,(ed.).2001.UnitedStatestimberindustry‐anassessmentoftimberproductoutputanduse,1996,Gen.Tech.Rep.SRS‐45.Asheville,NC:U.S.DepartmentofAgriculture,ForestService,SouthernResearchStation.

JointFireScienceProgram.2009.Consume3.0‐‐asoftwaretoolforcomputingfuelconsumption.FireScienceBrief(55):6.

Jokela,E.J.,H.L.Allen,andW.W.McFee.1991.Fertilizationofsouthernpinesatestablishment.InForestRegenerationManual,M.DuryeaandP.Dougherty(eds.).Netherlands:KluwerAcademicPublishers.

Lambin,E.F.,Geist,H.,andRindfus,R.R..2006.Introduction:localprocesseswithglobalimpacts.InLandUseandLandCoverChange,E.F.LambinandH.Geist(eds.).Verlag,Berlin:Springer.

Lewandrowski,J.,M.Sperow,M.Peters,M.Eve,etal.2004.EconomicsofsequesteringcarbonintheU.S.agriculturalsector.Washington,DC:U.S.DepartmentofAgriculture,EconomicResearchService.

Li,Y.,E.C.Turnblom,andD.G.Briggs.2007.EffectsofdensitycontrolandfertilizationongrowthandyieldofyoungDouglas‐firplantationsinthePacificNorthwest.CanadianJournalofForestResearch,37(2):449‐461.

Liski,J.,A.Pussinen,K.Pingoud,auml,etal.2001.Whichrotationlengthisfavourabletocarbonsequestration?CanadianJournalofForestResearch,31(11):2004‐2013.

Lund,H.G.1999.DefinitionsofForest,Deforestation,AfforestationandReforestation.Manassas,VA:ForestInformationServices.

Markewitz,D.2006.Fossilfuelcarbonemissionsfromsilviculture:Impactsonnetcarbonsequestrationinforests.ForestEcologyandManagement,236(2–3):153‐161.

McKeand,S.,T.Mullin,T.Byram,andT.White.2003.DeploymentofGeneticallyImprovedLoblollyandSlashPinesintheSouth.JournalofForestry,101(3):32‐37.

McPherson,E.G.,andJ.R.Simpson.1999.Carbondioxidereductionthroughurbanforestry:Guidelinesforprofessionalandvolunteertreeplanters.Albany,CA:USDAForestService,PacificSouthwestResearchStation.

Nave,L.E.,E.D.Vance,C.W.Swanston,andP.S.Curtis.2010.Harvestimpactsonsoilcarbonstorageintemperateforests.ForestEcologyandManagement,259(5):857‐866.

Nowak,D.J.1991.UrbanForestDevelopmentandStructure:AnalysisofOakland,California:UniversityofCalifornia,Berkeley.

Nowak,D.J.1994.AtmosphericcarbondioxidereductionbyChicago'surbanforest.InChicago'sUrbanForestEcosystem:ResultsoftheChicagoUrbanForestClimateProject,E.G.McPherson,D.J.NowakandR.A.Rowntree(eds.):USDAForestServiceGeneralTechnicalReportNE‐186.

Nowak,D.J.,andD.E.Crane.2002.CarbonstorageandsequestrationbyurbantreesintheUSA.EnvironmentalPollution,116(3):381‐389.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-110

Nowak,D.J.,J.C.Stevens,S.M.Sisinni,andC.J.Luley.2002.Effectsofurbantreemanagementandspeciesselectiononatmosphericcarbondioxide.J.Arboric,28(3):113‐122.

Nowak,D.J.,R.Hoehn,D.E.Crane,J.C.Stevens,etal.2006a.Assessingurbanforesteffectsandvalues:Casper,WY’surbanforest.NewtownSquare,PA:USDAForestService.

Nowak,D.J.,R.Hoehn,D.E.Crane,J.C.Stevens,etal.2006b.Assessingurbanforesteffectsandvalues:WashingtonD.C.’surbanforest.NewtownSquare,PA:USDAForestService.

Nowak,D.J.,R.Hoehn,D.E.Crane,J.C.Stevens,etal.2006c.Assessingurbanforesteffectsandvalues:Minneapolis’urbanforest:USDAForestService.

Nowak,D.J.,A.B.Cumming,D.B.Twardus,R.Hoehn,etal.2007a.NationalForestHealthMonitoringProgram,MonitoringUrbanForestsinIndiana:PilotStudy2002,Part2:StatewideEstimatesUsingtheUFOREModel:NortheasternAreaReportNA‐FR‐01‐07.

Nowak,D.J.,R.Hoehn,D.E.Crane,J.C.Stevens,etal.2007b.Assessingurbanforesteffectsandvalues:SanFrancisco’surbanforest.NewtownSquare,PA:USDAForestService.

Nowak,D.J.,R.Hoehn,D.E.Crane,J.C.Stevens,etal.2007c.Assessingurbanforesteffectsandvalues:Philadelphia’surbanforest.NewtownSquare,PA:USDAForestService.

Nowak,D.J.,R.Hoehn,D.E.Crane,J.C.Stevens,etal.2007d.Assessingurbanforesteffectsandvalues:NewYorkCity’surbanforest.NewtownSquare,PA:USDAForestService.

Nowak,D.J.,R.Hoehn,D.E.Crane,J.C.Stevens,etal.2008.Aground‐basedmethodofassessingurbanforeststructureandecosystemservices.Arboric.Urb.For.,34(6):347‐358.

Nowak,D.J.,R.Hoehn,D.E.Crane,J.C.Stevens,etal.2010.Assessingurbanforesteffectsandvalues:Scranton’surbanforest.NewtownSquare,PA:USDAForestService.

Nowak,D.J.,R.Hoehn,D.E.Crane,J.C.Stevens,etal.2011.Assessingurbanforesteffectsandvalues:Chicago’surbanforest.NewtownSquare,PA:USDAForestService.

Nowak,D.J.,A.B.Cumming,D.B.Twardus,R.Hoehn,etal.2012a.UrbanForestsofTennessee.Ashville,NC:U.S.DepartmentofAgriculture,ForestServiceGen.Tech.Rep.SRS‐149.

Nowak,D.J.,andE.J.Greenfield.2012.TreeandimperviouscoverchangeinU.S.cities.UrbanForestryandUrbanGreening,11:21‐30.

Nowak,D.J.,R.Hoehn,D.E.Crane,andA.Bodine.2012b.AssessingurbanforesteffectsandvaluesintheGreatPlainsStates:Kansas,Nebraska,NorthDakota,SouthDakota.NewtownSquare,PA:U.S.DepratmentofAgriculture,ForestService,NorthernResourceBulletinNRS‐71.

Nowak,D.J.,R.Hoehn,D.E.Crane,J.Cumming,etal.2012c.Assessingurbanforesteffectsandvalues:Morgantown’surbanforest.NewtownSquare,PA:U.S.DepartmentofAgriculture,ForestService,NorthernResearchStation,ResourceBulletinNRS‐70.

Nowak,D.J.,E.J.Greenfield,R.Hoehn,andE.LaPoint.2013.CarbonstorageandsequestrationbytreesinurbanandcommunityareasoftheUnitedStates.EnvironmentalPollution,178:229‐236.

Nowak,D.J.,R.Hoehn,D.E.Crane,E.G.McPherson,etal.Inreview.Assessingurbanforesteffectsandvalues:Sacramento’surbanforest.NewtownSquare,PA:USDAForestService.

Nyland,R.D.2002.SilvicultureConceptsandApplications.2ndEditioned.NewYork:McGraw‐Hill.Pacala,S.,andR.Socolow.2004.Stabilizationwedges:solvingtheclimateproblemforthenext50

yearswithcurrenttechnologies.Science,305:968‐972.Pearson,T.R.H.,S.L.Brown,andR.A.Birdsey.2007.Measurementguidelinesforthesequestrationof

forestcarbon.NewtownSquare,PA:USDepartmentofAgriculture,ForestService,NorthernResearchStation.

Rebain,S.A.2010.TheFireandFuelsExtensiontotheForestVegetationSimulator:UpdatedModelDocumentation.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,ForestManagementServiceCenter.http://www.fs.fed.us/fmsc/ftp/fvs/docs/gtr/FFEguide.pdf.

Reinhardt,E.D.,R.E.Keane,andJ.K.Brown.1997.FirstOrderFireEffectsModel:FOFEM4.0,User'sGuide.

Reinhardt,E.D.,andN.L.Crookston.2003.TheFireandFuelsExtensiontotheForestVegetation

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-111

Simulator:RockyMountainResearchStation.Schultz,R.P.1997.LoblollyPine:TheEcologyandCultureofLoblollyPine(PinustaedaL.).

WashingtonDC:USDAForestService.Shepperd,W.D.,andM.A.Battaglia.2002.Ecology,Silviculture,andManagementofBlackHills

PonderosaPine,Gen.Tech.Rep.RMRS‐GTR‐97.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation.

Siry,J.2002.Intensivetimbermanagementpractices.InSouthernforestresourceassessment,D.WearandJ.Greis(eds.).Asheville,NC:USDAForestService,SouthernResearchStation.

Skog,K.E.2008.SequestrationofcarboninharvestedwoodproductsfortheUnitedStates.ForestProductsJournal,58(6):56‐72.

Skog,K.E.2013.PersonalcommunicationwithCoeliHoover,U.S.DepartmentofAgriculture,ForestService.

Skole,D.L.1994.Dataongloballandcoverchange:acquisition,assessment,andanalysis.InChangesinLandUseandLandCover:aGlobalPerpsective,W.B.a.T.Meyer,B.L.(ed.).CambridgeEngland;NewYork,NY:CambridgeUniversityPress

Smith,J.E.,andL.S.Heath.2002.AmodelofforestfloorcarbonmassforUnitedStatesforesttypes.NewtownSquare,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternResearchStation.

Smith,J.E.,L.S.Heath,andJ.C.Jenkins.2003.Forestvolume‐to‐biomassmodelsandestimatesofmassforliveandstandingdeadtreesofU.S.forests.NewtownSquare,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternResearchStation.

Smith,J.E.,L.S.Heath,K.E.Skog,andR.A.Birdsey.2006.MethodsforcalculatingforestecosystemandharvestedcarbonwithstandardestimatesforforesttypesoftheUnitedStates.NewtownSquare,PA:USDepartmentofAgriculture,ForestService,NorthernResearchStation.

Smith,W.B.,P.D.Miles,C.H.Perry,andS.A.Pugh.2007.ForestResourcesoftheUnitedStates,Gen.Tech.Rep.WO‐78.Washington,DC:U.S.DepartmentofAgriculture,ForestService,WashingtonOffice.

Smith,W.B.,P.D.Miles,C.H.Perry,andS.A.Pugh.2009.ForestResourcesoftheUnitedStates,2007.Washington,DC:U.S.DepartmentofAgriculture,ForestService.

St.Clair,J.B.,N.L.Mandel,andK.J.S.Jayawickrama.2004.EarlyrealizedgeneticgainsforcoastalDouglas‐firinthenorthernOregonCascades.WesternJournalofAppliedForestry,19(3):195‐201.

Stainback,A.G.,andJ.R.R.Alavalapati.2002.EconomicanalysisofslashpineforestcarbonsequestrationinthesouthernU.S.JournalofForestEconomics,8(2):105‐117.

Stanturf,J.A.,R.C.Kellison,F.S.Broerman,andS.B.Jones.2003.ProductivityofSouthernPinePlantations:WhereAreWeandHowDidWeGetHere?JournalofForestry,101(3):26‐31.

Stavins,R.N.,andK.R.Richards.2005.ThecostofU.S.forest‐basedcarbonsequestration.Arlington,VA:ThePewCenteronGlobalClimateChange.

Sucre,E.B.,R.B.Harrison,E.C.Turnblom,andD.G.Briggs.2008.TheuseofvarioussoilandsitevariablesforestimatinggrowthresponseofDouglas‐firtomultipleapplicationsofureaanddeterminingpotentiallong‐termeffectsonsoilproperties.CanadianJournalofForestResearch,38(6):1458‐1469.

Ter‐Mikaelian,M.T.,andM.D.Korzukhin.1997.Biomassequationsforsixty‐fiveNorthAmericantreespecies.ForestEcologyandManagement,97(1):1‐24.

Turner,B.L.,W.B.Meyer,andD.L.Skole.1994.Globalland‐use/land‐coverchange:Towardsan integratedstudy.Ambio,23(1):91‐95.

U.S.CensusBureau.U.S.CensusData.U.S.CensusBureau.RetrievedJanuary2007fromwww.census.gov.

U.S.CensusBureau.2011.Cartographicboundaryfiles.U.S.CensusBureau.RetrievedJunefromhttp://www.census.gov/geo/www/cob/bdy_files.html.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-112

U.S.DOE.2011.TechnicalGuidelines:VoluntaryReportingofGreenhouseGases(1605(b))Program.U.S.DepartmentofEnergy,OfficeofPolicyandInternationalAffairs.RetrievedDecemberfromhttp://www.eia.gov/oiaf/1605/January2007_1605bTechnicalGuidelines.pdf.

U.S.EPA.1991.Non‐roadengineandvehicleemissionstudy‐report.AnnArbor,MI:U.S.EnvironmentalProtectionAgency,OfficeofMobileServices.

U.S.EPA.2005.GreenhouseGasMitigationPotentialinU.S.ForestryandAgriculture.Washington,DC:U.S.EnvironmentalProtectionAgency.

U.S.EPA.2010.InventoryofU.S.GreenhouseGasEmissionsandSinks:1990‐2008.Washington,DC:U.S.EnvironmentalProtectionAgency.http://epa.gov/climatechange/emissions/usinventoryreport.html.

U.S.EPA.2011.InventoryofU.S.GreenhouseGasEmissionsandSinks:1990‐2009.Washington,D.C.:U.S.EnvironmentalProtectionAgency.http://epa.gov/climatechange/emissions/usinventoryreport.html.

U.S.EPA.2012a.2008NationalEmissionsInventory,version2:U.S.EnvironmentalProtectionAgency.http://www.epa.gov/ttnchie1/net/2008inventory.html.

U.S.EPA.2012b.InventoryofU.S.GreenhouseGasEmissionsandSinks:1990‐2010.Washington,DC:U.S.EnvironmentalProtectionAgency.http://epa.gov/climatechange/emissions/usinventoryreport.html.

Urbanski,S.P.,W.M.Hao,andS.Baker.2009.ChemicalCompositionofWildlandFireEmissions.TheNetherlands.

USDA.2011.U.S.AgricultureandForestGreenhouseGasInventory:1990‐2008.Washington,DC:U.S.DepartmentofAgriculture.

USDAForestService.ForestService.2005.Forestinventorymapmaker,RPAtabler,andFIADBdownloadfiles.Retrievedfromhttp://ncrs2.fs.fed.us/4801/fiadb/index.htm.

USDAForestService.2010a.ForestInventoryandAnalysisfieldmethodsforphase3measurements.Version5.0:U.S.DepartmentofAgriculture,ForestService.Unpublishedinformationonfileathttp://www.fia.fs.fed.us/library/field‐guides‐methods‐proc/.

USDAForestService.2010b.ForestInventoryandAnalysisNationalCoreFieldGuide:fielddatacollectionproceduresforphase2plots.Version5.0:Unpublishedinformationonfileathttp://fia.fs.fed.us/library/field‐guides‐methods‐proc/.

USDAForestService.2012.ForestInventoryandAnalysis(FIA)Database.Arlington,VA:U.S.DepartmentofAgriculture,ForestService.

vanKooten,G.C.,C.S.Binkley,andG.Delcourt.1995.Effectofcarbontaxesandsubsidiesonoptimalforestrotationageandsupplyofcarbonservices.AmericanJournalofAgriculturalEconomics,77(2):365‐374.

Vance,E.D.,D.A.Maguire,andR.S.Zalesny.2010.ResearchStrategiesforIncreasingProductivityofIntensivelyManagedForestPlantations.JournalofForestry,108(4):183‐192.

Wade,D.,andP.Dubish.1995.PersonalCommunication.AscitedinNowak,D.J.,J.C.Stevens,S.M.Sisinni,andC.J.Luley.2002.Effectsofurbantreemanagementandspeciesselectiononatmosphericcarbondioxide.J.Arboric,28(3):113‐122.

Westfall,J.A.,C.W.Woodall,andM.A.Hatfield.2013.Astatisticalpoweranalysisofwoodycarbonfluxfromforestinventorydata.ClimaticChange,118(3‐4):919‐931.

Woodall,C.W.,andV.J.Monleon.2008.Samplingprotocol,estimation,andanalysisproceduresforthedownwoodymaterialsindicatoroftheFIAprogram.NewtownSquare,PA:U.S.DepartmentofAgriculture,ForestService,NorthernResearchStation.

Woodall,C.W.,B.L.Conkling,M.C.Amacher,J.W.Coulston,etal.2010.TheForestInventoryandAnalysisDatabaseVersion4.0:DescriptionandUsersManualforPhase3.NewtownSquare,PA:U.S.DepartmentofAgriculture,ForestService,NorthernResearchStation.

Woodall,C.W.,L.S.Heath,G.M.Domke,andM.Nichols.2011.Methodsandequationsforestimatingvolume,biomass,andcarbonfortreesintheU.S.’snationalforestinventory,2010.Newtown

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-113

Square,PA:U.S.DepartmentofAgriculture,ForestService,NorthernResearchStation.Woodall,C.W.,G.M.Domke,D.W.MacFarlane,andC.M.Oswalt.2012.Comparingfield‐andmodel‐

basedstandingdeadtreecarbonstockestimatesacrossforestsoftheUnitedStates.Forestry,85:125‐133.

Woodall,C.W.,B.F.Walters,S.N.Oswalt,G.M.Domke,etal.2013.BiomassandcarbonattributesofdownedwoodymaterialsinforestsoftheUnitedStates.ForestEcologyandManagement,305:48‐59.

Woudenberg,S.W.,B.Conkling,L.,B.M.O’Connell,E.B.LaPoint,etal.2010.TheForestInventoryandAnalysisDatabase:Databasedescriptionandusersmanualversion4.0forPhase2.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation.

Youngblood,A.2005.SilviculturalSystemsforManagingPonderosaPineProceedingsoftheSymposiumonPonderosaPine:Issues,Trends,andManagement,2004October18‐21,KlamathFalls,OR.

Chapter 6: Quantifying Greenhouse Gas Sources and Sinks in Managed Forest Systems

6-114

Thispageisintentionallyleftblank.

Recommended