Chapter 4: Quadratic Functions and Factoring 4.1 Graphing...

Preview:

Citation preview

Chp 4.notebook

1

October 23, 2012

4.1 Graphing Quadratic Functions in Standard forma quadratic function in standard form is written y = ax2 + bx + c, where a ≠ 0A quadratic Function creates a U-shaped graph called a parabola The vertex is the lowest/highest point of the parabola

Axis of symmetry is the line that divides the graph into two symmetric parts

The roots of the function (answers) are the two points that cross the x-axis (x-intercepts), when y = 0

VOCAB:

Chapter 4: Quadratic Functions and Factoring

Chp 4.notebook

2

October 23, 2012

Practice Graphing Graph of a quadratic functionif a is positive, the parabola opens up

if a is negative, the parabola opens down

The vertex has an x­coordinate of

The axis of symmetry is written x = 

b2a­

b2a­

Chp 4.notebook

3

October 23, 2012

Practice Graphing Graph of a quadratic function

STEP 1:  find the x­coordinate of the vertex by using

STEP 2: Make a table of values

STEP 3: Plot the points and create the parabola

b2a­vertex =

Chp 4.notebook

4

October 23, 2012

Graph: y = x2 ­2x ­3

Chp 4.notebook

5

October 23, 2012

Graph: y = ­2x2 ­x +2

Chp 4.notebook

6

October 23, 2012

Graph: y = 2x2 ­7x­8

Chp 4.notebook

7

October 23, 2012

4.2 Graphing Quadratic Functions in Vertex or Intercept form

vertex form: standard form: 

The graph of y = a(x­h)2 + k is the parabola y = ax2 translated horizontally h units and vertically k units

Characteristics of the graph:• the vertex is (h,k)• The axis of symmetry is x = h• The graph opens up if a>0 and down if a<0

y

x

y = ax2

(0,0)

y = a(x­h)2+k

(h,k)

hk

Chp 4.notebook

8

October 23, 2012

Step 1: Identify h, a and k. Use a to determine if the parabola opens up or down

Graph a quadratic function in vertex form: y = a(x-h) 2+k

Step 2: Plot the vertex (h,k) and draw the axis of symmetry

Step 3: Evaluate the function for two values of x.

Step 4: Draw parabola through plotted points

STEP 1

STEP 2

STEP 3

STEP 4

Chp 4.notebook

9

October 23, 2012

Example 2

Step 1: Identify h, a and k. Use a to determine if the parabola opens up or down

Graph a quadratic function in vertex form: y = a(x-h) 2+k

Step 2: Plot the vertex (h,k) and draw the axis of symmetry

Step 3: Evaluate the function for two values of x.

Step 4: Draw parabola through plotted points

STEP 1

STEP 2

STEP 3

STEP 4

Chp 4.notebook

10

October 23, 2012

Characteristics of the graph y=a(x­p)(x­q):• The x­intercepts are p and q• The axis of symmetry is halfway between (p,0) and (q,0) it has equation• The graph opens up if a>0 and down if a<0

y

x

y = ax2

(p,0) (q,0)

Intercept form: y=a(x­p)(x­q)

Chp 4.notebook

11

October 23, 2012

Example 1

Step 1: Identify the x-intercepts

Graph a quadratic function in intercept form: y = a(x-p)(x-q)

Step 2: Find the coordinates of the vertex

Step 3: Draw parabolua through the vertex and x-intercepts

STEP 1

STEP 2

STEP 3

STEP 4

Chp 4.notebook

12

October 23, 2012

Example 1

Step 1: Identify the x-intercepts

Graph a quadratic function in intercept form: y = a(x-p)(x-q)

Step 2: Find the coordinates of the vertex

Step 3: Draw parabolua through the vertex and x-intercepts

STEP 1

STEP 2

STEP 3

STEP 4

Chp 4.notebook

13

October 23, 2012

Example: Change intercept form to standard form

Chp 4.notebook

14

October 23, 2012

Example: Change intercept form to standard form

Chp 4.notebook

15

October 23, 2012

Example: Change vertex form to standard form

Chp 4.notebook

16

October 23, 2012

Example: Change vertex form to standard form

Chp 4.notebook

17

October 23, 2012

4.3 Solve x2 + bx + c = 0 by factoring

ac

b

Chp 4.notebook

18

October 23, 2012

8

6

Chp 4.notebook

19

October 23, 2012

x2 ­ 5x + 6Factor

Chp 4.notebook

20

October 23, 2012

x2 + 7x + 12

Factor

Chp 4.notebook

21

October 23, 2012

x2 ­ 1x ­ 6

Factor

Chp 4.notebook

22

October 23, 2012

Solve

x2 + 3x ­ 4 = 0

Chp 4.notebook

23

October 23, 2012

Solvex2 + 5x ­14 = 0

Chp 4.notebook

24

October 23, 2012

Solvex2 + 12x = ­27

Chp 4.notebook

25

October 23, 2012

Example 1:

Special Factoring Patterns

Difference of Squares (DOS): 

Perfect Square Trinomial:

a2 ­ b2 = (a­b)(a+b)

a2 + 2ab + b2 = (a+b)2

a2 ­ 2ab + b2 = (a­b)2

4x2 ­ 9

Example 2:

Example 3:

x2 + 6x + 9

x2 ­ 8x + 16

Chp 4.notebook

26

October 23, 2012

You try:

1.  x2 + 16x + 64

2. 9x2 ­ 49

3. x2 ­ 18x + 81

Chp 4.notebook

27

October 23, 2012

4.4 Solve ax2 + bx + c = 0 by factoring

2x2 ­ 3x ­ 20Factor

Chp 4.notebook

28

October 23, 2012

3x2 + 11x ­ 4Factor

Chp 4.notebook

29

October 23, 2012

7x2 ­ 31x + 12Factor

Chp 4.notebook

30

October 23, 2012

6x2 ­ 11x + 3Factor

Chp 4.notebook

31

October 23, 2012

5x2 ­ 8x + 3 = 0Solve

Chp 4.notebook

32

October 23, 2012

3x2 + 14x + 15 = 0Solve

Chp 4.notebook

33

October 23, 2012

7x2 + 11x ­ 30 = 0Solve

Chp 4.notebook

34

October 23, 2012

2x2 + 3x ­ 5 = 0Solve

Chp 4.notebook

35

October 23, 2012

Factor out monomials first

Chp 4.notebook

36

October 23, 2012

4.5 Solve Quadratic Equations by Finding Square RootsSQUARE ROOT OF A NUMBERif b2 = a, then b is a square root of a

example: if 32 = 9, then 3 is a square root of 9.

VOCAB: positive square root: √ negative square root: -√ positive/negative square root: ±√ radicand: the number or expression inside a radical symbol.

MATH IS √ DUDE

Chp 4.notebook

37

October 23, 2012

Simplifying radicalsProperties of Radicals

Product property              √ab = √a√b

Quotient property √ = a

b√a

√b

Chp 4.notebook

38

October 23, 2012

An expression with radicals is insimplest form if the following are true 1.) No perfect square factors other 

than 1 are in the radicand

2.) No fractions are in the radicand

3.) No radicals appear in the denominator of a fraction

Chp 4.notebook

39

October 23, 2012

Examples

Chp 4.notebook

40

October 23, 2012

Examples

Chp 4.notebook

41

October 23, 2012

Examples:rationalize denominators of fractions

Chp 4.notebook

42

October 23, 2012

Examples: solve a quadratic

Chp 4.notebook

43

October 23, 2012

Examples: solve a quadratic

Chp 4.notebook

44

October 23, 2012

4.6 Perform Operations with Complex Numbers

Not all quadratic equations have real-number solutions. For example: x2 = -1 has no real-number solutions because the square of any real number x is never a negative number

To overcome this problem mathematicians created an expanded system of numbers using the imaginary unit i. Defined as not that i2 = -1. The imaginary unit can be used to write the square root of any negative number.

The square root of a negative numberProperty Example

1. If r is a positive real number, then

2. By Property (1), it follows that

Chp 4.notebook

45

October 23, 2012

example:

Chp 4.notebook

46

October 23, 2012

example:

Chp 4.notebook

47

October 23, 2012

Complex Numbers:A complex number written in standard form is a number a+bi where a and b are real numbers.  The number a is the real part of the complex number and the bi is imaginary part.

If b≠0 then a + bi is an imaginary number.  If a = 0 and b ≠ 0, then a+bi is a pure imaginary number.

RealNumbers

ImaginaryNumbers

Pure ImaginaryNumbers

Complex Numbers: a + bi

Chp 4.notebook

48

October 23, 2012

The sum and difference of complex numbersTo add (subtract) two complex numbers, add (subtract) their real parts and their imaginary parts separately.

1. Sum of complex numbers:

2. Difference of complex numbers:

examples:a:

b:c:

Chp 4.notebook

49

October 23, 2012

examples:1:

2:

3:

Chp 4.notebook

50

October 23, 2012

Multiply Complex Numbers:

a: 

b:

Chp 4.notebook

51

October 23, 2012

Multiply Complex Numbers:

1: 

2:

Chp 4.notebook

52

October 23, 2012

Complex Conjugates:Two complex numbers of the form a+bi and a­bi are called complex conjugates.  The product of conjugates is always a real number.

Divide Complex Numbers: use complex conjugates

Chp 4.notebook

53

October 23, 2012

Divide Complex Numbers: use complex conjugates

1:

2:

Chp 4.notebook

54

October 23, 2012

Plot Complex NumbersPlot the complex numbers in the same complex plane.

a.

b.

c.

d.

Chp 4.notebook

55

October 23, 2012

Find absolute values of complex numbersAbsolute Vale of a Complex Number:

a.

b.

The absolute value of a complex number z = a + bi, denoted

is a nonnegative real number defined as

This is the distance between z and the origin in the complex plane

examples:

Chp 4.notebook

56

October 23, 2012

4.7 Complete the Squarex2 + bx +( )2 = (x + )2

b2

b2

To complete the square for the expression x2 + bx, add

Diagram:

x

x

b

xx2 bxx

x

Chp 4.notebook

57

October 23, 2012

example 1: Solve a quadratic by finding square roots

step 1: Write left side as binomial squared

step 2: Take square root of each side.

step 3: Solve for x

Chp 4.notebook

58

October 23, 2012

example 2: Make a perfect square trinomial

Step 1: Find half of the coefficient of x

Step 2: square the result of step 1

Step 3: Replace c with the result from step 2

Chp 4.notebook

59

October 23, 2012

example 3: Solve x 2 + bx + c (a = 1)

step 1: write left side in the form x 2+bx

step 2: Complete the square and add it to both sides

step 3: Write left side as a binomial squared

step 4: Take square root of each side

step 5: Solve for x (simplify if necessary)

Chp 4.notebook

60

October 23, 2012

example 4: Solve ax 2 + bx + c (a ≠ 1)

step 1: divide everything by a

step 2: write left side in the form x2 + bx

step 3: complete the square and add it to both sides

step 4: write the left side as a binomial squared

step 5: take square root of both sides

step 6: solve for x, simplify if necessary

Chp 4.notebook

61

October 23, 2012

Extra ExamplesSolve the equation by completing the square

Chp 4.notebook

62

October 23, 2012

Write a quadratic function in vertex form

step 1: complete the square and add it to both sides

step 2: write beginning part as binomial squared

step 3: solve for y

Chp 4.notebook

63

October 23, 2012

Write a quadratic function in vertex form

Chp 4.notebook

64

October 23, 2012

4.8 Use the quadratic formula and the discriminant

Quadratic Formula: The solutions of thequadratic equation ax2+bx+c=0 are

Chp 4.notebook

65

October 23, 2012

Proving the Quadratic Formula!

ax2+bx+c = 0 where a≠0

Chp 4.notebook

66

October 23, 2012

Example 1:x2 ­ 8x + 15 = 0

Chp 4.notebook

67

October 23, 2012

Example 2:

2x2 + 6x + 2 = ­1

Chp 4.notebook

68

October 23, 2012

Example 3: One solution

Chp 4.notebook

69

October 23, 2012

Example 4:One solution

Chp 4.notebook

70

October 23, 2012

Example 5: Imaginary Solution

Chp 4.notebook

71

October 23, 2012

Example 6: Imaginary Solution

Chp 4.notebook

72

October 23, 2012

Word ProblemsObjects Dropped:

Objects Launched/Thrown:initial velocity

initial height

A juggler tosses a ball into the air.  The ball leaves the juggler's hand 4 feet above the ground and has an initial vertical velocity of 40 feet per second.  The juggler catches the ball when it falls back to a height of 3 feet. How long is the ball in the air?

Chp 4.notebook

73

October 23, 2012

Word ProblemsObjects Dropped:

Objects Launched/Thrown:initial velocity

initial height

A basketball player passes the ball to a teammate.  The ball leaves the player's hand 5 feet above the ground and has an initial vertical velocity of 55 feet per second.  The teammate catches the ball when it returns to a height of 5 feet.  How long is the ball in the air?

Chp 4.notebook

74

October 23, 2012

Word ProblemsThe equation h = ­16t2 + 20t + 6 gives the height, h, in feet of a basketball as a function of t, in seconds

a) What is the maximum height the ball reaches?

b) At what time does the ball hit the ground?

Chp 4.notebook

75

October 23, 2012

Applications of the discriminantIn the quadratic formula the expression inside the radical is the discriminant

Discriminantb2-4ac

Chp 4.notebook

76

October 23, 2012

Number of solutions of a quadraticConsider the quadratic equation ax2 + bx + c = 0:

• If b2­4ac is positive, then the equation has two solutions• if b2­4ac is zero, then the equation has one solution• if b2­4ac is negative, then the equation has no real solutions

Chp 4.notebook

77

October 23, 2012

Example:a. x2 ­ 3x ­ 4

b. ­x2 + 2x ­ 1

c. 2x2­2x + 3

Chp 4.notebook

78

October 23, 2012

Example:a. ­3x2 + 5x ­ 1

b. ­x2 + 10x ­ 25

c. x2 ­2x + 4

Chp 4.notebook

79

October 23, 2012

Match the graph with the discriminant:

a. b2­4ac = 2

b. b2­4ac = 0

c. b2­4ac = ­3

c

A

b

Chp 4.notebook

80

October 23, 2012

4.10 Write Quadratic Functions and Models

Example 1: Write a quadratic function in vertex form y = a(x-h)2+K

Vertex: (1, ­2)  Point: (3, 2)

Chp 4.notebook

81

October 23, 2012

Example 2: Write a quadratic function in vertex form y = a(x-h)2+K

Vertex: (4, ­5)  Point: (2, ­1)

Chp 4.notebook

82

October 23, 2012

Example 3: Write a quadratic function in intercept form y = a(x-p)(x-q)

x­intercepts: ­2 and 5  Point: (6, 2)

Chp 4.notebook

83

October 23, 2012

Example 4: Write a quadratic function in intercept form y = a(x-p)(x-q)

x­intercepts: ­1 and 4  Point: (3, 2)

Chp 4.notebook

84

October 23, 2012

Example 5: Write a quadratic function in Standard form y = ax 2 + bx + c

points:  (­1, ­3), (0, ­4), (2, 6)

Chp 4.notebook

85

October 23, 2012

Example 6: Write a quadratic function in Standard form y = ax 2 + bx + c

points:  (­1, 5), (0, ­1), (2, 11)

Recommended