Chapter 20 Complex variables. 20.2 Cauchy-Riemann relation A function f(z)=u(x,y)+iv(x,y) is...

Preview:

Citation preview

Chapter 20 Complex variables

direction. the on dependnot does value Its

exists ])()(

[lim)(

for ),(),()(

0

'

z

zfzzfzf

iyxzyxivyxuzf

z

yixzfyx

yixzfxy

yix

yxiyxyix

yix

ixyyxyyxxiyyxx

z

zfzzfzf

yixz

z

xyiyxzf

z

22)( 0 ,0 choose (2)

22)( 0 ,0 choose (1)

2)()(22

2))((2)()(

)()(lim)(

for

. of values allfor abledifferenti

is 2)( function thethat Show :Ex

'

'

22

2222

0

'

22

Chapter 20 Complex variables

zzzz

zzz

z

zzzzf

ziyxzf

z

zz

22lim

]2)(

[lim])(

[lim)(

)()(

:method Another **

0

2

0

22

0

'

22

able.differenti nowhere is

)( so ,direction) (the on dependslimit The

1

2]

2[lim

)()(lim)(

slope of thriugh line a along 0 if

2222)()(

plane.complex the in anywhere abledifferenti

not is 2)( function thethat Show :Ex

0,0

'

zfm

im

im

yix

xiy

z

zfzzfzf

xmymzz

yix

xiy

yix

ixyxiixyy

z

zfzzf

ixyzf

yxz

Chapter 20 Complex variables

direction. the oft independen is )(

that such everywhere analytic is )( ,1 Provided

)1(

1]

)1)(1(

1[lim

)]1

1

1

1(

1[lim]

)()([lim)(

.1at except

everywhere analytic is )1/(1)( function thethat Show :Ex

'

20

00

'

zf

zfz

zzzz

zzzzz

zfzzfzf

z

zzf

z

zz

Chapter 20 Complex variables

20.2 Cauchy-Riemann relation

A function f(z)=u(x,y)+iv(x,y) is differentiable and analytic, there must be particular connection between u(x,y) and v(x,y)

relations Riemann-Cauchy - and

]),(),(),(),(

[lim

0 imaginary is suppose if (2)

]),(),(),(),(

[lim

0 real is suppose if (1)

]),(),(),(),(

[lim

),(),()(

),(),()(

])()(

[lim

0

0

0,

0

y

u

x

v

y

v

x

u

y

v

y

ui

yi

yxvyyxvi

yi

yxuyyxuL

xzx

vi

x

u

x

yxvyxxvi

x

yxuyxxuL

yz

yix

yxivyxuyyxxivyyxxuL

yyxxivyyxxuzzf

yixzyxivyxuzfz

zfzzfL

y

x

yx

z

Chapter 20 Complex variables

function? analytic an ||||)(

is planecomplex the of domain which In :Ex

yixzf

|||]|[ (2)

quatrant second the 0y ,0 (b)

quatrant fouth the 0 ,0 (a) |]|[|| (1)

||),( |,|),(

xy

yxy

u

x

v

x

yxyy

xxy

v

x

u

yyxvxyxu

iy xiyx

zzf

zf

y

u

x

vi

y

v

x

u

z

y

y

f

z

x

x

f

z

f

izzyzzx

iyxzziyxz

not , of ncombinatio the

contains of fonction analytic an implies 0/satisfied. are

relations Riemann-Cauchy the then , analytic is )( If

)(2

)(2

1

2/)( and 2/)(

is of conjugatecomplex and

*

***

**

*

Chapter 20 Complex variables

dimension. two in equation

sLaplace' of solutions are ),( and ),(

0 ),( functionfor result same the (2)

0 )()()()( (1)

satisfied are relations Riemann-Cauchy If

22

2

2

2

22

2

2

2

yxvyxu

y

v

x

vyxv

y

u

x

u

y

u

yx

v

yy

v

xx

u

x

orthogonal 0

ˆˆ),( and ˆˆ),(

are ly,respective curves, two the ingcorrespond vectors normal the

constant,),( andconctant ),( curves of families twoFor

x

u

y

u

y

u

x

u

y

v

y

u

x

v

x

uvu

jy

vi

x

vyxvj

y

ui

x

uyxu

yxvyxu

Chapter 20 Complex variables

20.3 Power series in a complex variable

0at only converges 0 )!(lim ! (2)

allfor converges 0)!

1(lim

! (1)

edundetermin || (3)

divergent || (2)

convergent absolutely || (1) ||lim1

econvergenc of radius The

test".root Cauchy by" justisfied be can not,or convergent || Is

convergent absolutely is )( convergent is || if

)exp()(

/1

0

/1

0

/1

0

0

00

zRnzn

zRnn

z

Rz

Rz

RzaR

R

ra

zfra

inrazazf

n

nn

n

n

nn

n

nn

n

n

nn

n

nn

n

nn

n

nn

Chapter 20 Complex variables

20.4 Some elementary functions

0 !exp Define

n

n

n

zz

terms. two above thefor of coeff. same the are There

!!

1

!!expexp

!!

1

!)!(

!

!

1

! is of coeff. the set

)...(!

1

!

)()exp(

)exp(expexpthat Show :Ex

21

210 000

21

21

22122

2122

11110

0

0

2121

2121

rs

rs

s rr

r

s

s

nrrs

nnn

rrnnr

nnnnnn

n

n

n

zz

zzrsr

z

s

zzz

rsrrn

n

nn

Czzsrn

zCzzCzzCzzCzCn

n

zzzz

zzzz

Chapter 20 Complex variables

)sin)(cosexp( , if (3)

sincos...)!3

(.....!4!2

1

...!3!2

1)exp( if (2)

number real as same the exp)lnexp( if (1)

!

)(ln)lnexp(

0number real a ofcomonent complex the Define

342

32

0

yiyxeeeiyxzea

yiyy

yiyy

iyyiyeiyze,a

zezeea

n

azaza

a

iyxiyx

iy

z

n

nnz

Chapter 20 Complex variables

)exp(

define we numbers,complex both are and 0 If

lnln

0 choosing by value principal its Take

. of function dmultivalue a is

)2(ln )]2(exp[

and real is for exp Write

expSet

zLntt

zt

-irz

n

zLnz

nirLnzwnirz

rirz

zw

z

])2(

exp[])2(

ln1

exp[

)]2(exp[ and )1

exp(

. of roots nthdistinct n exactly are therethat Show :Ex

11

1

n

kir

n

kir

nt

kirtLntn

t

t

nn

n

Chapter 20 Complex variables

20.5 Multivalued functions and branch cuts

A logarithmic function, a complex power and a complex root are all multivalued. Is the properties of analytic function still applied?

)exp( and )( :Ex 2/1 irzzzf y

x

C

r

(A)

y

x

'C

r

(B)

(A)

circuit.

complete oneafter value original its to

return origin, the enclosenot dose

that Ccontour closed any traverse

z

(B)

2/1

2/1

2/12/1

)( function the ofpoint branch a is 0

)()(

)2/exp(

]2/)2(exp[)2/exp(

origin the enclose 2

zzfz

zfzf

ir

irir

Chapter 20 Complex variables

Branch point: z remains unchanged while z traverse a closed contour C about some point. But a function f(z) changes after one complete circuit.

Branch cut: It is a line (or curve) in the complex plane that we must cross , so the function remains single-valued.

valued-single is )(

20restrict

)( :Ex 2/1

zf

zzf

y

x0

Chapter 20 Complex variables

)()(2,2 then points, branch both (4)

)()(2, then ,not but (3)

)()(,2 then ,not but (2)

)()( , then point, branchneither (1)

encloses Ccontour If

)](exp[

)2/exp()2/exp()(

)exp( and )exp(set

:points branch expected ))((1)(

cuts. branch of tsarrangemen suitable

sketch hence and ,1)( of points branch the Find :Ex

2211

2211

2211

2211

2121

2121

2211

2

2

zfzf

zfzfiziz

zfzfiziz

zfzf

irr

iirrzf

iriziriz

izizizzzf

zzf

Chapter 20 Complex variables

:follows ascut branch choose We.or either

containing loops around value changes )(

iziz

zf

y

i

i

x

(A) y

x

i

i

(B)

Chapter 20 Complex variables

20.6 Singularities and zeros of complex function

.at order of pole a has )( the

,0)( and containing odneighborho some

in points allat analytic is )( integer, positive a is

)(

)()( :(pole) ysingularit Isolated

0

00

0

zznzf

zgzz

zgn

zz

zgzf

n

ysingularit essentiallimit the satisfies finite no if direction, any from (4)

as |)(|)( of pole a is if (3)

. thangreater order of pole a is then infinite, is if (2)

. than lessorder of pole a is then ,0 if (1)

number complex zero-non finite, a is and analytic is )(

)]()[(lim

is at order

of pole a has )(that for definition alternate An**

00

0

0

0

0

0

n

zzzfzfzz

nzza

nzza

azf

azfzz

zz n

zf

n

zz

Chapter 20 Complex variables

1)(n pole simple a is ysingularit each

1}sinh

sinhcosh])2/1([{lim}

cosh

sinh])2/1([{lim

rule sHospital'l' Using

)2

1( )12(2

integer any is n )exp(])12(exp[exp

)exp(exp when ysingularit a has )(

)exp(exp

)exp(exp

cosh

sinh

tanh)( (2)

1 and 1at 1order of poles )1)(1(

2)(

1

1

1

1)( (1)

function the of iessingularit the Find :Ex

)2/1()2/1(

z

zzinz

z

zinz

inzniz

zniz

zzzf

zz

zz

z

z

zzf

zzzz

zzf

zzzf

inzinz

Chapter 20 Complex variables

.approached is which from direction the oft independen and exists

)(limbut ed,undetermin )( of value the makes ySingularit

:essingularti Remove

0

0

z

zfzfzz

.0at ysingularit removable a has )(

so ,0 way the oft independen is 1)(lim

....!5!3

1........)!5!3

(1

)(

edundetermin 0/0)(lim :

0at ysingularit removable a is /sin)(that Show :Ex

0

5353

0

zzf

zzf

zzzzz

zzf

zfSol

zzzzf

z

z

Chapter 20 Complex variables

zf

zf

/1 where ,0at )/1(

ofthat by given is infinityat )( ofbehavior The

zzf

nfzzf

z

fzzzf

zzf

bafzbzazf

zzfzzzf

bzazf

n

n

at ysingularit essential an has )(

)!()/1( exp)( (iii)

at 3order

of pole a has /1/1)/1( )1()( (ii)

at analytic is )( 0at analytic is

)/1( /1set )( (i)

exp)( (iii) and )1()( (ii)

)( (i) of infinityat behavior the Find :Ex

0

1

32

22

2

2

Chapter 20 Complex variables

)(/1 of norder of pole a also is (iii)

zero. simple a called is 1,n if (ii)

n.order of zero a called is (i)

0)( and integer, positive a

is n if ,)()()( and 0)( If

0

0

0

0

00

zfzz

zz

zz

zg

zgzzzfzf n

Chapter 20 Complex variables

20.10 Complex integral

dtdt

dxvidt

dt

dyuidt

dt

dyvdt

dt

dxu

vdxiudyivdyudx

idydxivudzzf

t

ttyytxx

tt

CCC C

C C

))(()(

is Bpoint

, is point A and )( ,)(

for ,parameter continuous real A2C

A 3C

y

x

1C

B

Chapter 20 Complex variables

.at finishing and starting ,circle the

along ,/1)( of integralcomplex the Evaluate :Ex

RzR |z|

zzf

y

R

1C

x

t

. oft independen isresult calculated The

2sincos

cossin

by calculated also is integral The **

200

)sin)(sin

(coscos

cos)sin

()sin(cos1

sin ,

cos

,1

)( ,cos ,sin

20 ,sincos)(

2

0

2

0

2

0

2

0

2

0

2

0

2222

22

1

1

R

iidtdttiRtR

tiRtR

z

dz

iii

dttRR

titdtR

R

ti

tdtRR

tdttR

R

tdz

z

R

t

yx

yv

R

t

yx

xu

ivuyx

iyx

iyxzftR

dt

dytR

dt

dx

ttiRtRtz

C

C

Chapter 20 Complex variables

3b3a3

2

C and C linesstraight two of up made Ccontour the (ii)

0 plane-half the

in || semicircle the of consisting Ccontour the (i)

along /1)( of integralcomplex the Evaluate :Ex

y

Rz

zzf

ca

xdx

xa

aii

titt

dttt

idttt

tdt

itt

i

dtiRRsiR

iRRdt

iRRtR

iRR

z

dz

sRsisRC

titRRtzC

izdzt

C

b

a

C

)(tan 2

)]2

(2

[2

0

|)]2/1

2/1(tan2[

2|)]221[ln(

2

1

221

1

221

12

1

1 term1st

)()(

10for )1( :

10for )1( : (ii)

/ 0

for but example, previous the in asjust is This (i)

122

10

110

2

1

0 2

1

0 2

1

0

1

0

1

0

3

3

3

2

y

R

bC3

1s

iR

aC3

R x

0t

Chapter 20 Complex variables

path.different the oft independen is integral The

2)]

4(

4[0

|)2/1

2/1(tan|)]122[ln(

2

1

122

1

122

12

)1(

)]1()[1(

)1(

1 term 2nd

3

10

110

2

1

0 2

1

0 2

1

0 22

1

0

iz

dz

ii

siss

dsss

idsss

s

dsss

sisids

sis

i

C

Chapter 20 Complex variables

examples. previous the in shown as C and C ,C path the

along )Re()( of integralcomplex the Evaluate :Ex

321

zzf

path.different the on depends integral The

)1(2

1)1(

2

1

)1()1)(1(

))(()()1(

:CCC (iii)2

)cossin(cos :C (ii)

)cossin(cos :C (i)

222

1

0

1

022

1

0

1

0

3b3a3

202

2

02

1

iRiRiR

dsisRdtitR

dsiRRsRdtiRRRt

Ri

dttiRtRtR

RidttiRtRtR

Chapter 20 Complex variables

20.11 Cauchy theorem

C

dzzf

zfzf

0)(

Ccontour closed a on and withinpoint eachat

continuous is )( and function, analytic an is )( If '

apply. relations Riemann-Cauchy the and analytic is )(

0])(

[])()(

[

)()()(

and )(

)()(theorem divergence

ldemensiona-two by then C,contour closed a on

and within continuous are ),(

and ),(

If

zf

dxdyx

u

y

vidxdy

x

v

y

u

udyvdxivdyudxdzzfI

idydxdzivuzf

qdxpdydxdyy

q

x

p

y

yxq

x

yxp

RR

C C C

CR

Chapter 20 Complex variables

.C and C along same the is )( of integral the then paths two

the by enclosed region the in and path each on function analytic

an is )( ifthat Show .C and C pathsdifferent two by

joined are planecomplex the in B and Apoints twos Suppose :Ex

21

21

zf

zf

A

1C

y

x

B

1 2

1 2 21

)()(

enclosingcontour closed a forms path

0)()()(

21

C C

C C CC

dzzfdzzf

RCC

dzzfdzzfdzzf

R

Chapter 20 Complex variables

C

dzzfdzzfzf

C

C

)()( then contours two the between region the in analytic is )(

function the ifthat Show . with completely liesit that small lysufficient

being diagram, Argandthe in and contour closed twoConsider :Ex

y C

1C

2C

x

dzzfdzzfC

dzzfdzzfdzzfdzzf

dzzf

zf

C

CCC

)()( contour

ofthat as contour of direction the take If

)()()()(

0)(

analytic is )(

and , by bounded is area the

21

C

z fdzzfC

Rzzf

analytic. is )(0)(for , curve a by bounded

domain closed a in of function continuous a is )( if

:theorem sMorera'

Chapter 20 Complex variables

20.12 Cauchy’s integral formula

Cdz

zz

zf

izfCz

Czf

000

)(

2

1)( then withinpoint a is and

contour closed a on and within analytic is )( If

C

)(2)(

)(

)exp( ),exp(for

)()(

0

02

0 0

2

00

0

00

zifdezfi

deie

ezfI

diidzizz

dzzz

zfdz

zz

zfI

i

ii

i

C

0z

Chapter 20 Complex variables

)(

)(

2

1)(

:functioncomplex a of derivative the of form integral The

20

0' dz

zz

zf

izf

C

dzzz

zf

i

nzf

dzzz

zf

i

dzzzhzz

zf

i

dzzzhzzh

zf

i

h

zfhzfzf

C nn

C

Ch

Ch

h

10

0)(

20

000

000

00

00

'

)(

)(

2

!)( derivative nthFor

)(

)(

2

1

]))((

)(

2

1[lim

])11

()(

2

1[lim

)()(lim)(

Chapter 20 Complex variables

.!

|)(|that show constant, some is

where circle, the on |)(| If .point the on centered

radius of circle a on and inside analytic is )(that Suppose :Ex

0)(

0

nn

R

MnzfM

MzfzzR

Czf

nnC nn

R

MnR

R

Mn

zz

dzzfnzf

!2

2

!|

)(

)(|

2

!|)(|

110

0)(

constant. a is )( then

allfor bounded and analytic is )( If :theorem sLiouville'

zfz

zf

zfzzfz

zzzf

zfzfRn

R

Mn!zf

nn

constant )( allfor 0)( plane.- the inpoint

any as take may we , allfor analytic is )( Since

0)(0|)(| let and 1set

|)(| :inequality sCauchy' Using

'

0

0'

0'

0)(

Chapter 20 Complex variables

20.13 Taylor and Laurent series

n

n

nn

nn zz

n

zfzzazf

zzz

zf

)(!

)()()(

then C, insidepoint a is and ,point the on

centeredR radius of C circle a on and inside analytic is )( If

00

0)(

00

0

Taylor’s theorem:

!

)()(

!

)(2)(

2

1

)(

)()(

2

1)(

)(

2

1)(

)(11

in series geometric a as 1

expand

C on lies where )(

2

1)( so C, on and inside analytic is )(

0)(

00

0)(

00

100

00 0

0

0

0 0

0

00

0

n

zfzz

n

zifzz

i

dz

fzz

id

z

zz

z

f

izf

z

zz

zzz

zz

z

dz

f

izfzf

nn

n

nn

n

C nn

n

n

nC

n

n

C

Chapter 20 Complex variables

202010

0

11

0

1

0

00

00

0

)()(.......)()(

)(

exp )( ,

.)()( series

Taylor a as expanded and at analytic is )()()( Then . on and

insidepoint other everyat analytic isbut at order of pole a has )( If

zzazzaazz

a

zz

a

zz

azf

eries Laurent sanded as a can bezfCinsidezallforThus

zzbzg

zzzfzzzgC

zzpzf

pp

pp

n

nn

p

021

0

10

10

10

0)(

on centered and circles two

between region a in analytic is )()(

)(

)(

2

1

)(

)(

2

1

)(

)(

2

1

!

)( and

zzCC

Rzzazf

dzzz

zf

idz

zz

zg

ia

dzzz

zg

in

zgbba

n

nn

npnn

n

n

npnn

0z

2C

1C

R

Chapter 20 Complex variables

p

zfazzpzf

kaa

zzzf

zzm

zfmz-za

na

nazzzf

kpp

mm

n

n

ysingularit essential of valuelowest a find to impossible (ii)

)( of residue the called is ,at order of pole a has )(

0 allfor 0but 0 find to possible (i)

at analyticnot is )( If (2)

.at order of

zero a have to said is )( ,0 with )( is term

vanishing-nonfirst the ,0for 0 happen mayIt

.0for 0 all then ,at analytic is )( If )1(

10

0

0

0

0

n

nn zzazf )()( 0

Chapter 20 Complex variables

pole. eachat )( of residue the find and 3,order of pole

a is 2 and 1order of pole a is 0that verify Hence .2 and 0

iessingularit theabout )2(

1)( of seriesLaurent the Find :Ex

3

zf

zzzz

zzzf

.8/1 is 2at )( of residue the 3,order of pole a is 2

32

2

16

1

)2(8

1

)2(4

1

)2(2

1..

3216

1

8

1

4

1

2

1

...])2

()2

()2

()2

(1[2

1

)2/1(2

1)(

)2/1(2)2()2( 2set 2point (2)

1order of pole a is 0 ...32

5

16

3

16

3

8

1

...])2

(!3

)5)(4)(3()

2(

!2

)4)(3()

2)(3(1[

8

1

)2/1(8

1)(

0point (1)

2323

43233

333

2

323

zzfz

z

zzz

zf

zzzz

zz

zz

zzz

zzzzf

z

Chapter 20 Complex variables

001

1

10

0

01

101

1

101010

202010

0

1

0

at residue )]}()[()!1(

1{lim)(

limit the Take

)()!1()]()[(

...)(.......)()()(

...)()()(

......)(

)(

0

zzzfzzdz

d

mazR

zz

zzbamzfzzdz

d

zzazzaazfzz

zzazzaazz

a

zz

azf

mm

m

zz

n

nn

mm

m

mmm

m

mm

How to obtain the residue ?

)(

)(

)(

1lim)(

)(

)(lim)(

)(

)()(lim)(

0)( and at zero-non

and analytic is )( ,)(

)()( and at simple a has )( If (2)

)]()[(lim)(1 pole simple aFor (1)

0'

0'0

00

00

00

0

00

000

0

zh

zg

zhzg

zh

zzzg

zh

zgzzzR

zhz

zgzh

zgzfzzzf

zfzzzRm

zzzzzz

zz

Chapter 20 Complex variables

.point theat )1(

exp)( function the of residue the

evaluate Hence .at )( of )( residue thefor expression

general a deriving ,about )( of seriesLaurent the gconsiderin

By .point theat order of pole a has )(that Suppose :Ex

22

00

0

0

izz

izzf

zzzfzR

zzf

zzmzf

e

ie

ie

i

iiR

iziz

iziz

i

iz

iz

dz

dzfiz

dz

d

iz

iziziziz

iz

z

izzf

2]

)2(

2

)2([

!1

1)(

exp)(

2exp

)(]

)(

exp[)]()[(

:at polefor

and at 2order of poles )()(

exp

)1(

exp)(

13

12

3222

2222

Chapter 20 Complex variables

20.14 Residue theorem

0z

C

C

ninnin

nin

mnn

nC

mnn

ii

C

n

mnn

iadzzfI

iidn

ni

eidein

deiadzzzaI

deidzezz

dzzfdzzfI

zzazf

zzmzf

1

2

0

20

)1(1)1(2

01

)1(2

01

0

0

0

0

2)(

2 1for

0|)1(

1for

)(

set

)()(

)()(

at order of pole a has )(

Chapter 20 Complex variables

Residue theorem:

C within poles itsat )( of residues the of sum the is

2)(

C within poles ofnumber finite afor except analytic, and

Ccontour closed a on and within continuous is )(

zfR

Ridzzf

zf

jj

jjC

C 'C

Chapter 20 Complex variables

Ccontour open an along )( of integral The zfIC

0z

112

121100

0

101

0

2010

0

101

0

2 2contour closed afor

)()1

(lim)(lim

0)(lim

)()()(

except )( of ysingularit nothat enough small chosen is

)arg( and ||

gsurroundinneighbour some within analytic is )(

)()()(

at pole simple a has )( if

2

1

iaI

iadeie

adzzfI

dzz

dzzzadzzdzzfI

zzzf

zzzz

zz

zzazzf

zzzf

iiC

C

CC C

Chapter 20 Complex variables

20.16 Integrals of sinusoidal functions

dzizdz

ziz

z

izdF

1

2

0

),1

(2

1sin ,)

1(

2

1cos

circleunit in expset )sin,(cos

0for cos2

2cos Evaluate :Ex

2

0 22

abd

abbaI

dz

ab

zba

zz

z

ab

i

ab

ba

zzz

dzz

ab

i

ababzzbzaz

idzz

zzabba

dzizzzd

abba

zzzzn nn

))((

)1(

2)1)((

)1(

2

)(

)1(21

)(21

2

))((21

cos2

2cos

)(2

12cos )(

2

1cos

2

4

22

4

2222

4

122

122

22

22

Chapter 20 Complex variables

)(

2]

)([

22

)(

)(

)//()/(

1)/(]

)/)(/(

1)/[(lim)/(

1 ,/at pole (2)

//})/()/(

)]//(2)[1)(1(

)/)(/(

4{lim

]})/)(/(

1[

!1

1{lim)0(

2 ,0at pole (1)

)]()[()!1(

1{lim)( : Residue

circleunit the within / and 0at poles double ))((

1

2

222

2

22

4422

22

44

2

4

2

4

/

22

43

0

2

42

0

01

1

0

2

4

0

abb

a

abab

ba

ab

ba

ab

iiI

abab

ba

abbaba

ba

abzbazz

zbazbaR

mbaz

abbaabzbaz

abbazz

abzbaz

z

abzbazz

zz

dz

dR

mz

zfzzdz

d

mzR

bazzdz

ab

zba

zz

z

ab

iI

baz

z

z

mm

m

zz

C

Chapter 20 Complex variables

20.17 Some infinite integrals

dxxf )(

. as zero to tends

along integral the ,) on || of maximum(2|)(|for

2)(

exist both )( and )( (3)

).|| as 0)(that is

condition sufficient (a as zero to tends on ||

of maximum the times , radius of semicircle a on (2)

axis. real the on is which of none poles, ofnumber finite a

forexcept ,0Im plane,-halfupper the in analytic is )( (1)

:properties following the has )(

0

0

R

ΓfRdzzf

Ridxxf

dxxfdxxf

zzzf

RΓf

RRΓ

zzf

zf

jj

y

R 0 R x

Chapter 20 Complex variables

real is )(

Evaluate :Ex0 422

aax

dxI

77770 422

73

41

4442422

422

422422422

422422422

32

5

32

10

2

1

32

10)

32

5(2

)(

32

5)

2(

!3

)6)(5)(4(

)2(

1 is oft coefficien the

)2

1()2(

1

)2(

1

)(

1 0 ,set

plane-halfupper theat only

,at 4order of poles 0)(

)()(0

)(

as )()()(

aaI

aa

ii

ax

dx

a

i

a

i

a

a

i

aiaiazaiz

aiz

aizaz

ax

dx

az

dz

az

dz

Raz

dz

ax

dx

az

dz

Γ

R

RC

R 0 R

ai

Chapter 20 Complex variables

R 0 R - 0z

y

x

For poles on the real axis:

zero is integral the , as /1 thanfaster vanishes )( If

Re)(Re)(

Re Reset )(for (2)

)( at pole a has )(for (1)

)()()(

)()()()()(

contour closed afor

)()()(

0 as defined integral, the of value Principal

2

10

0

0

0

0

RRzf

difdzzf

didzzdzzf

aidzzfzzdzzf

dzzfdzzfdxxfP

dzzfdxxfdzzfdxxfdzzf

C

dxxfdxxfdxxfP

ii

iiθ

Γ

R

R

R

z

z

RC

R

z

z

R

R

R

Chapter 20 Complex variables

Jordan’s lemma

contourar semicircul the is , as 0)(

then ,0 (3)

plane-halfupper the in || as 0|)(| of maximum the )2(

0Im in poles ofnumber

finite afor except plane-halfupper the in analytic is )( )1(

RdzzfeI

m

zzf

z

zf

imz

0 0 as

)1(2

0 ,on )(of maximum e

2

)(

)sinexp()exp(

2//sin1 ,2/0for

2/

0)/2(

2

0sin

0sin

IMRm

Me

m

MdeMRI

MRR |z||z |fM is th

dθeMR

deMR||dz|zf|eI

|θmR||imz|

mRmR

π/ θmR

Γ

π θmRimz

2/

)(f /2f

sinf

Chapter 20 Complex variables

a R 0 R -

0 real, cos

of value principal the Find :Ex

madx

ax

mx

madxax

mxPmadx

ax

mxP

eaaidxax

eP

dzaz

eR

dzaz

edx

ax

edz

az

edx

ax

e

dzaz

eI

|z||az|

dzaz

eI

imaimx

imz

imzR

a

imximza

R

imx

C

imz

C

imz

cossin

and sincos

and 0

0 0 and As

0

as 0)( and plane,-halfupper

the in pole no 0 integral theConsider

11

1

Chapter 20 Complex variables

20.18 Integral of multivalued functions

y

x

R

B A

D Copposite. and equalnot are

to joining CD and ABlines two along

values its d,multivalue is integrand The .0 and

let Weotigin. theat ispoint branch Single

, as such functions dMultivalue 2/1

Rzz

R

Lnzz

0for )(

:Ex0 2/13

axax

dxI

2/52/1

2

2

2/133

13

13

2/12/2/12/1

2/13

8

3

!2

1lim

])(

1)[(

)!13(

1lim)(

)( and ,at pole (2)

integralcontour the to oncontributi no make circles two the

and 0 as 0)( ,)()( integrand the (1)

a

iz

dz

d

zazaz

dz

daR

iaeaaaz

R|z|zfzazzf

az

az

i

Chapter 20 Complex variables

2/50 2/13

2/50 2/13

2/5

0

, )22/1(2/132,0 2/13

20

2/5

8

3

)(

4

3

)()

11(

4

3

)()(

CD line along , ABline along

0 and 0 and

)8

3(2

axax

dx

axax

dx

e

aexaxe

dx

xax

dx

xezxez

dzdz

a

iidzdzdzdz

i

DC iiBA

ii

DCAB

Chapter 20 Complex variables

dx sin

)( Evaluate :Ex22

x

xxI

2122222221 2

1

2

1sinIIdz

z

ze

idz

z

ze

idz

z

zzC

iz

C

iz

C

ii

iziziz

ixix

R

ix

C

iz

iz

ee

zii

dzz

ze

idz

z

ze

idz

z

ze

i

dxx

xe

idx

x

xe

i

dxx

xe

idz

z

ze

iI

ze

I

22)Res(2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

.at pole one only and , term the to due

plane-halfupper the on choosed iscontour the ,for (1)

222222

2222

22221

1

21

1

1C

R -R -

1

2

Chapter 20 Complex variables

iiiziz

izixix

R

ix

C

iz

iz

iiiix

iiz

iiz

ee

ii

dzz

ze

idz

z

ze

i

dzz

ze

idx

x

xe

idx

x

xe

i

dxx

xe

idz

z

ze

iI

ze

I

eeedxx

xe

iI

ezii

dzzz

ze

i

ezii

dzzz

ze

i

dzR

22

)()2()

2

1(

2

1

2

1

2

1

2

1

2

1

2

1

2

1

at pole one only , term

the by plane-halflower the choose we ,for (2)

2)(

42

1

4)Res(

2

1

))((2

1

4)Res()(

2

1

))((2

1

0 and 0 As

2222

222222

22222

2

221

2

1

2

2

1

1

2

2C

Chapter 20 Complex variables

cos)(222

)(42

)(42

2

1

2

1sin)(

)(4

1

22

1

2)(

42

1

42))(

2

1(

))((2

1

42

)())(

2

1(

))((2

1

0 ,0 As

222222

22

222

2

1

iiiii

iiiiii

ixix

iiiix

iiiix

iiiz

iiiz

eeeee

eeeeee

dxx

xe

idx

x

xe

idx

x

xxI

eeedxx

xe

i

eeedxx

xe

iI

ee

ii

dzzz

ze

i

ee

ii

dzzz

ze

i

dzR

Recommended