Chapter 10 Solar Energy -...

Preview:

Citation preview

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

261

Chapter 10Solar Energy

10.1.1 World solar energy resources and market • Theworld’soverallsolarenergyresourcepotential

isaround5.6gigajoules(GJ)(1.6megawatt-hours(MWh))persquaremetreperyear.ThehighestsolarresourcepotentialisintheRedSeaarea,includingEgyptandSaudiArabia.

• Solarenergyaccountedfor0.1percentofworldtotalprimaryenergyconsumptionin2007,althoughitsusehasincreasedsignificantlyinrecentyears.

• Governmentpoliciesandfallinginvestment costsandrisksareprojectedtobethemainfactorsunderpinningfuturegrowthinworld solar energy use.

• TheInternationalEnergyAgency(IEA)initsreferencecaseprojectstheshareofsolarenergyintotalelectricitygenerationwillincreaseto1.2percentin2030–1.7percentinOECDcountriesand0.9percentinnon-OECDcountries.

10.1.2Australia’ssolarenergyresources• TheannualsolarradiationfallingonAustralia

isapproximately58millionpetajoules(PJ),approximately10000timesAustralia’sannualenergyconsumption.

• SolarenergyresourcesaregreaterinthenorthwestandcentreofAustralia,inareasthatdonothaveaccesstothenationalelectricitygrid.Accessingsolarenergyresourcesintheseareas

islikelytorequireinvestmentintransmissioninfrastructure(figure10.1).

• Therearealsosignificantsolarenergyresourcesinareaswithaccesstotheelectricitygrid.Thesolarenergyresource(annualsolarradiation)inareasofflattopographywithin25kmofexistingtransmissionlines(excludingNationalParks),isnearly500timesgreaterthantheannualenergyconsumptionofAustralia.

10.1.3KeyfactorsinutilisingAustralia’s solar resources• Solarradiationisintermittentbecauseofdaily

andseasonalvariations.However,thecorrelationbetweensolarradiationanddaytimepeakelectricitydemandmeansthatsolarenergyhasthepotentialtoprovideelectricityduringpeakdemandtimes.

• Solarthermaltechnologiescanalsooperateinhybridsystemswithfossilfuelpowerplants,and,withappropriatestorage,havethepotentialtoprovidebaseloadelectricitygeneration.Solarthermaltechnologiescanalsopotentiallyprovideelectricitytoremotetownshipsandminingcentreswherethecostofalternativeelectricitysourcesishigh.

• Photovoltaicsystemsarewellsuitedtooff-gridelectricitygenerationapplications,andwherecostsofelectricitygenerationfromothersourcesarehigh(suchasinremotecommunities).

10.1Summary

K E y m E S S a g E S

• Solarenergyisavastandlargelyuntappedresource.Australiahasthehighestaveragesolarradiationpersquaremetreofanycontinentintheworld.

• Solarenergyisusedmainlyinsmalldirect-useapplicationssuchaswaterheating.Itaccountsforonly0.1percentoftotalprimaryenergyconsumption,inAustraliaaswellasglobally.

• SolarenergyuseinAustraliaisprojectedtoincreaseby5.9percentperyearto24PJin 2029–30.

• Theoutlookforelectricitygenerationfromsolarenergydependscriticallyonthecommercialisationoflarge-scalesolarenergytechnologiesthatwillreduceinvestmentcostsandrisks.

• Governmentpolicysettingswillcontinuetobeanimportantfactorinthesolarenergymarketoutlook.Research,developmentanddemonstrationbyboththepublicandprivatesectorswillbecrucialinacceleratingthedevelopmentandcommercialisationofsolarenergyinAustralia,especiallylarge-scalesolarpowerstations.

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

262

andconcentratingsolarthermaltechnologies.

• InABARE’slatestlong-termenergyprojections,

whichincludetheRenewableEnergyTarget,a5

percentemissionsreductiontarget,andother

governmentpolicies,solarenergyuseinAustralia

isprojectedtoincreasefrom7PJin2007–08

to24PJin2029–30(figure10.2).Electricity

generationfromsolarenergyisprojectedto

increasefrom0.1TWhin2007–08to4TWhin

2029–30(figure10.3).

10.2Backgroundinformationandworldmarket

10.2.1DefinitionsSolarpowerisgeneratedwhenenergyfromthesun

(sunlight)isconvertedintoelectricityorusedtoheatair,

water,orotherfluids.Asillustratedinfigure10.4,there

aretwomaintypesofsolarenergytechnologies:

• Relativelyhighcapitalcostsandrisksremaintheprimarylimitationtomorewidespreaduseofsolarenergy.Governmentclimatechangepolicies,andresearch,developmentanddemonstration(RD&D)byboththepublicandprivatesectorswillbecriticalinthefuturecommercialisationoflargescalesolarenergysystemsforelectricitygeneration.

• TheAustralianGovernmenthasestablishedaSolarFlagshipsProgramatacostof$1.5billionaspartofitsCleanEnergyInitiativetosupporttheconstructionanddemonstrationoflargescale(upto1000MW)solarpowerstationsinAustralia.

10.1.4Australia’ssolarenergymarket• In2007–08,Australia’ssolarenergyuse

represented0.1percentofAustralia’stotalprimaryenergyconsumption.Solarthermalwaterheatinghasbeenthepredominantformofsolarenergyusetodate,butelectricitygenerationis increasingthroughthedeploymentofphotovoltaic

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

150°140°130°120°

10°

20°

30°

40°

AERA 10.1

0 750 km

Annual Average Solar Radiation

Transmission lines

Existing solar power> 100 kW

1000 - 2000 kW

100 - 300 kW300 - 600 kW

600 - 1000 kW

Megajoules/m² per day

12

13

14

15

16

17

18

19

20

21

22

24

Figure 10.1 Annualaveragesolarradiation(inMJ/m2)andcurrentlyinstalledsolarpowerstationswithacapacity ofmorethan10kW

Source: BureauofMeteorology2009;GeoscienceAustralia

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

263

0

4

8

12

16

20

24

PJ

0

0.30

0.25

0.20

0.15

0.10

0.05%

Share of total (%)

Solar energy consumption (PJ)

1999-00

2000-01

2001-02

2002-03

2003-04

2004-05

2005-06

2006-07

2007-08

2029-30

AERA 10.2Year

%

AERA 10.3

0

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

1.1

0.9

0.8

0.6

0.5

0.3

0.2

01999-

002000-

012001-

022002-

032003-

042004-

052005-

062006-

072007-

082029-

30

TWh

Share of total (%)

Solar electricity generation (TWh)

Year

Figure 10.2 ProjectedprimaryconsumptionofsolarenergyinAustralia

Source: ABARE2009a,2010

Figure 10.3 ProjectedelectricitygenerationfromsolarenergyinAustralia

Source: ABARE2009a,2010

Electricity

AERA 10.4

Solar cells, photovoltaic arraysPhotovoltaics (PV)

Parabolic trough, power tower,parabolic dish, fresnel reflector

Concentrating Solar Thermal

Heat exchangeSolar Thermal

Space heating, food processingand cooking, distillation,desalination, industrial

hot water

Process Heat

Solar Radiation

Solar Hot Water

Figure 10.4 SolarenergyflowsSource: ABAREandGeoscienceAustralia

• Solar thermalistheconversionofsolarradiationintothermalenergy(heat).Thermalenergycarriedbyair,water,orotherfluidiscommonlyuseddirectly,forspaceheating,ortogenerateelectricityusingsteamandturbines.Solarthermaliscommonlyusedforhotwatersystems.Solarthermalelectricity,alsoknownasconcentratingsolarpower,istypicallydesignedforlargescalepowergeneration.

• Solar photovoltaic (PV)convertssunlight directlyintoelectricityusingphotovoltaiccells.PVsystemscanbeinstalledonrooftops,integratedintobuildingdesigns andvehicles,orscaleduptomegawatt scalepowerplants.PVsystemscanalsobeusedinconjunctionwithconcentratingmirrorsorlensesforlargescalecentralisedpower.

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

264

ThehighestsolarresourcepotentialperunitlandareaisintheRedSeaarea.Australiaalsohashigherincidentsolarenergyperunitlandareathananyothercontinentintheworld.However,thedistributionofsolarenergyuseamongstcountriesreflectsgovernmentpolicysettingsthatencourageitsuse,ratherthanresourceavailability.

World solar resourcesTheamountofsolarenergyincidentontheworld’slandareafarexceedstotalworldenergydemand.Solarenergythushasthepotentialtomakeamajorcontributiontotheworld’senergyneeds.However,largescalesolarenergyproductioniscurrentlylimitedbyitshighcapitalcost.

Theannualsolarresourcevariesconsiderably aroundtheworld.Thesevariationsdependon severalfactors,includingproximitytotheequator,cloudcover,andotheratmosphericeffects. Figure10.6illustratesthevariationsinsolar energyavailability.

TheEarth’ssurface,onaverage,hasthepotentialtocapturearound5.4GJ(1.5MWh)ofsolarenergypersquaremetreayear(WEC2007).ThehighestresourcepotentialisintheRedSeaarea,includingEgyptandSaudiArabia(figure10.6).AustraliaandtheUnitedStatesalsohaveagreatersolarresourcepotentialthantheworldaverage.Muchofthispotentialcanbeexplainedbyproximitytotheequatorandaverageannualweatherpatterns.

SolarthermalandPVtechnologycanalsobecombinedintoasinglesystemthatgeneratesbothheatandelectricity.FurtherinformationonsolarthermalandPVtechnologiesisprovidedinboxes10.2and10.3insection10.4.

10.2.2SolarenergysupplychainArepresentationoftheAustraliansolarindustryisgiveninfigure10.5.Thepotentialforusingsolarenergyatagivenlocationdependslargelyonthesolarradiation,theproximitytoelectricityloadcentres,andtheavailabilityofsuitablesites.Largescalesolarpowerplantsrequireapproximately2hectaresoflandperMWofpower.Smallscaletechnologies(solarwaterheaters,PVmodulesandsmall-scalesolarconcentrators)canbeinstalledonexistingstructures,suchasrooftops.Onceasolarprojectisdeveloped,theenergyiscapturedbyheatingafluidorgasorbyusingphotovoltaiccells.Thisenergycanbeuseddirectlyashotwatersupply,convertedtoelectricity,usedasprocessheat,orstoredbyvariousmeans,suchasthermalstorage,batteries,pumpedhydroorsynthesisedfuels.

10.2.3WorldsolarenergymarketTheworldhaslargesolarenergyresourceswhichhavenotbeengreatlyutilisedtodate.Solarenergycurrentlyaccountsforaverysmallshareofworldprimaryenergyconsumption,butitsuseisprojectedtoincreasestronglyovertheoutlookperiodto2030.

End Use MarketProcessing, Transport,

StorageDevelopment and

Production

Industry

Commercial

Residential

AERA 10.5

Electricity

Power plants

Solar collection

Electricity

Thermalstorage

Solar photovoltaic

Resource potentialSolar thermal

Resource Exploration

Water heating

Batterystorage

Developmentdecision

Figure 10.5 Australia’ssolarenergysupplychainSource: ABAREandGeoscienceAustralia

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

265

increasingatanaveragerateof10percentperyearfrom2000to2007(table10.1).Increasedconcernwithenvironmentalissuessurroundingfossilfuels,coupledwithgovernmentpoliciesthatencouragesolarenergyuse,havedrivenincreaseduptakeofsolartechnologies,especiallyPV.

From1985to1989,worldsolarenergyconsumptionincreasedatanaveragerateof19percentperyear(figure10.7).From1990to1998,therateofgrowthinsolarenergyconsumptiondecreasedto5percentperyear,beforeincreasingstronglyagainfrom1999to2007(figure10.7).

Primary energy consumptionSincesolarenergycannotcurrentlybestoredformorethanseveralhours,nortradedinitsprimaryform,solarenergyconsumptionisequaltosolarenergyproduction.Longtermstorageofsolarenergyiscurrentlyundergoingresearchanddevelopment,buthasnotyetreachedcommercialstatus.

SolarenergycontributesonlyasmallproportiontoAustralia’sprimaryenergyneeds,althoughitsshareiscomparabletotheworldaverage.Whilesolar energyaccountsforonlyaround0.1percentofworldprimaryenergyconsumption,itsusehasbeen

AERA 10.6

0 5000 km

Nil

1.0 - 1.9

2.0 - 2.9

3.0 - 3.9

4.0 - 4.9

5.0 - 5.9

6.0 - 6.9

120°E60°E0°60°W120°W

60°N

30°N

30°S

Hours ofsunlightper day

Figure 10.6 Hoursofsunlightperday,duringtheworstmonthoftheyearonanoptimallytiltedsurfaceSource: SunwizeTechnologies2008

Table 10.1 Keystatisticsforthesolarenergymarket

unit australia 2007–08

OECD 2008

World 2007

Primary energy consumptiona PJ 6.9 189.4 401.8

Shareoftotal % 0.12 0.09 0.08

Averageannualgrowth,from2000 % 7.2 4.3 9.6

Electricity generation

Electricityoutput TWh 0.1 8.2 4.8

Shareoftotal % 0.04 0.08 0.02

Averageannualgrowth,from2000 % 26.1 36.3 30.8

Electricitycapacity GW 0.1 8.3 14.7

a Energyproductionandprimaryenergyconsumptionareidentical Source:IEA2009b;ABARE2009a;Watt2009;EPIA2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

266

theremainderisusedforspaceheatingeitherresidentiallyorcommercially,andforheatingswimmingpools.Alloftheenergyusedfor thesepurposesiscollectedusingsolarthermaltechnology.

Themajorityofsolarenergyisproducedusing solarthermaltechnology;solarthermalcomprised 96percentoftotalsolarenergyproductionin 2007(figure10.7).Aroundhalfisusedforwaterheatingintheresidentialsector.Mostof

400

350

300

250

0

100

150

200

PJ

50

1985 1988 1991 1994 1997 2000 2003 2006

Year

Solar thermal

PJ

AERA 10.7

450

Figure 10.7 Worldprimarysolarenergyconsumption, bytechnology

Source: IEA2009b

Australia

Japan

Brazil

Israel

China

Turkey

Germany

Greece

India

China

Israel

Japan

Turkey

Germany

Greece

Australia

India

Brazil

0

PJ50 100 150 200

%0

AERA 10.8

1 2 3 4

United States

United States

a) Solar thermal use

b) Share in primary energy consumption

Figure 10.8 Directuseofsolarthermalenergy, bycountry,2007

Source: IEA2009b

1985 1988 1991 1994 1997 2000 2003 2006

YearAERA 10.9

0

1.0

2.0

TWh

3.0

4.0

5.0

Solar thermal

PV

0 1 2 3 4

TWh

0%

0.2 0.4 0.6

AERA 10.10

Germany

United States

Spain

China

Italy

Netherlands

Switzerland

Canada

Portugal

Australia

Germany

United States

Spain

China

Italy

Netherlands

Canada

Switzerland

Portugal

Australia

a) Solar electricity generation

b) Share in total electricity generation

Republic ofKorea

Republic ofKorea

Figure 10.9 Worldelectricitygenerationfromsolarenergy,bytechnology

Source: IEA2009b

Figure 10.10 Electricitygenerationfromsolarenergy,majorcountries,2007

Source: IEA2009b

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

267

3percentofsolarthermalenergyisconvertedtoelectricity.Until2003,moresolarthermalenergywasusedtogenerateelectricitythansolarphotovoltaicenergy(figure10.9).

Thelargestproducersofelectricityfromsolar energyin2007wereGermany(3.1TWh),theUnitedStates(0.7TWh)andSpain(0.5TWh),withallothercountrieseachproducing0.1TWhorless(figure10.10).Germanyhadthelargestshareofsolarenergyinelectricitygeneration,at0.5percent.Itisimportanttonotethattheseelectricitygenerationdatadonotincludeoff-gridPVinstallations,whichrepresentalargepartofPVuseinsomecountries.

Solar thermal energy consumptionThelargestusersofsolarthermalenergyin2007wereChina(180PJ),theUnitedStates(62PJ),Israel(31PJ)andJapan(23PJ).However,Israelhasasignificantlylargershareofsolarthermalinitstotalprimaryenergyconsumptionthananyothercountry(figure10.8).Growthinsolarthermalenergyuseinthesecountrieshasbeenlargelydrivenbygovernmentpolicies.

Electricity generationElectricitygenerationaccountsforaround5percentofprimaryconsumptionofsolarenergy.Allsolarphotovoltaicenergyiselectricity,whilearound

8000

7000

6000

5000

1000

2000

3000

4000

Peak

cap

acity

(MW

)

0

% s

hare

of s

olar

PV

mar

ket

1

2

3

4

5

6

7

89000

01992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Year

AERA 10.11

Other

Spain Japan

GermanyUnited States

Australia’s share ofsolar PV market (%)

Figure 10.11 WorldPVCapacity,1992–2007,includingoff-gridinstallationsSource: IEA-PVPS2008

Table 10.2 IEAreferencecaseprojectionsforworldsolarelectricitygeneration

unit 2007 2030

OECD TWh 4.60 220

Shareoftotal % 0.05 1.66

Averageannualgrowth,2007–2030 % - 18

Non-OECD TWh 0.18 182

Shareoftotal % 0.00 0.86

Averageannualgrowth,2007–2030 % - 35

World TWh 4.79 402

Shareoftotal % 0.02 1.17

Averageannualgrowth,2007–2030 % - 21

Source: IEA2009a

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

268

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

150°140°130°120°

10°

20°

30°

40°

AERA 10.12

0 750 km

Annual Average Solar Radiation

Transmission lines

Megajoules/m² per day

3

4 - 6

7 - 9

10 - 12

13 - 15

16 - 18

19 - 21

22 - 24

25 - 27

28 - 30

31 - 33

Figure 10.12 AnnualaveragesolarradiationSource: BureauofMeteorology2009

Installed PV generation capacityTheIEA’sestimatesoftotalPVelectricitygenerationcapacity(includingoff-gridgeneration)showthatJapan(1.9GW)andtheUnitedStates(0.8GW)hadthesecondandthirdlargestPVcapacityin2007,followingGermanywith3.9GW(figure10.11).Over90percentofthiscapacitywasconnectedtogrids(WEC2009).

World market outlookGovernmentincentives,fallingproductioncostsandrisingelectricitygenerationpricesareprojectedtoresultinincreasesinsolarelectricitygeneration.Electricitygenerationfromsolarenergyisprojected toincreaseto402TWhby2030,growingatanaveragerateof21percentperyeartoaccountfor1.2percentoftotalgeneration(table10.2).Solarelectricityisprojectedtoincreasemoresignificantlyinnon-OECDcountriesthaninOECDcountries,albeitfromamuchsmallerbase.

PVsystemsinstalledinbuildingsareprojectedtobethemainsourceofgrowthinsolarelectricitygenerationto2030.PVelectricityisprojectedto

increasetoalmost280TWhin2030,while electricitygeneratedfromconcentratingsolar powersystemsisprojectedtoincreasetoalmost124TWhby2030(IEA2009a).

10.3Australia’ssolarenergyresources and market

10.3.1SolarresourcesAsalreadynoted,theAustraliancontinenthasthehighestsolarradiationpersquaremetreofanycontinent(IEA2003);however,theregionswiththehighestradiationaredesertsinthenorthwestandcentreofthecontinent(figure10.12).

Australiareceivesanaverageof58millionPJofsolarradiationperyear(BoM2009),approximately10000timeslargerthanitstotalenergyconsumptionof5772PJin2007–08(ABARE2009a).Theoretically,then,ifonly0.1percentoftheincomingradiationcouldbeconvertedintousableenergyatanefficiencyof10percent,allofAustralia’senergyneedscouldbesuppliedbysolarenergy.Similarly,theenergyfallingonasolar

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

269

Concentrating solar powerFigure10.12showstheradiationfallingonaflatplane.ThisistheappropriatemeasureofradiationforflatplatePVandsolarthermalheatingsystems,butnotforconcentratingsystems.Forconcentratingsolarpower,includingbothsolarthermalpowerandconcentratingPV,theDirectNormalIrradiance(DNI)isamorerelevantmeasureofthesolarresource.Thisisbecauseconcentratingsolartechnologiescanonlyfocussunlightcomingfromonedirection,andusetrackingmechanismstoaligntheircollectorswiththedirectionofthesun.TheonlydatasetcurrentlyavailableforDNIthatcoversallofAustraliaisfromtheSurfaceMeteorologyandSolarEnergydatasetfromtheNationalAeronauticsandSpaceAdministration(NASA).ThisdatasetprovidesDNIatacoarseresolutionof1degree,equatingtoagridlengthofapproximately100km.TheannualaverageDNIfromthisdatasetisshowninfigure10.13.

Sincethegridcellsizeisaround10000km2,thisdatasetprovidesonlyafirstorderindicationoftheDNIacrossbroadregionsofAustralia.However,itisadequatetodemonstratethatthespatialdistribution

farmcovering50kmby50kmwouldbesufficienttomeetallofAustralia’selectricityneeds(Stein2009a).Giventhisvastandlargelyuntappedresource,thechallengeistofindeffectiveandacceptablewaysofexploitingit.

WhiletheareasofhighestsolarradiationinAustraliaaretypicallylocatedinland,therearesomegrid-connectedareasthathaverelativelyhighsolarradiation.WyldGroupandMMA(2008)identifiedanumberoflocationsthataresuitableforsolarthermalpowerplants,basedonhighsolarradiationlevels,proximitytolocalloads,andhighelectricitycostsfromalternativesources.WithintheNationalElectricityMarket(NEM)gridcatchmentarea,theyidentifiedthePortAugustaregioninSouthAustralia,north-westVictoria,andcentralandnorth-westNewSouthWalesasregionsofhighpotentialforsolarthermalpower.TheyalsonominatedKalbarri,nearGeraldton,WesternAustralia,ontheSouth-WestInterconnectedSystem,theDarwin-KatherineInterconnectedSystem,andAliceSprings-TennantCreekaslocationsofhighpotentialforsolar thermalpower.

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

150°140°130°120°

10°

20°

30°

40°

AERA 10.13

0 750 km

Direct Normal Irradiance

Megajoules/m² per day

3

4 - 6

7 - 9

10 - 12

13 - 15

16 - 18

19 - 21

22 - 24

25 - 27

28 - 30

31 - 33

Figure 10.13 DirectNormalSolarIrradianceSource: NASA2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

270

powertowers,dishesandPVsystemsarenotrestrictedtoflatland,whichrenderseventhisfigureaconservativeestimate.

Seasonal variations in resource availabilityTherearealsosignificantseasonalvariationsintheamountofsolarradiationreachingAustralia.WhilesummerradiationlevelsaregenerallyveryhighacrossallofinlandAustralia,winterradiationhasamuchstrongerdependenceonlatitude.Figures10.15and10.16showacomparisonoftheDecemberandJuneaveragedailysolarradiation.Thesamecolourschemehasbeenusedthroughoutfigures10.12to10.16toallowvisualcomparisonoftheamountofradiationineachfigure.

Insomestates,suchasVictoria,SouthAustralia andQueensland,theseasonalvariationinsolarradiationcorrelateswithaseasonalvariationinelectricitydemand.Thesesummerpeakdemandperiods–causedbyair-conditioningloads–coincidewiththehoursthatthesolarresourceisatitsmostabundant.However,thetotaldemandacrosstheNationalElectricityMarket(comprisingallofthe

ofDNIdiffersfromthatofthetotalradiationshowninfigure10.12.Inparticular,thereareareasofhighDNIincentralNewSouthWalesandcoastalregionsofWesternAustraliathatarelessevidentinthetotalradiation.MoredetailedmappingofDNIacrossAustraliaisneededtoassessthepotential forconcentratingsolarpoweratalocalscale.

Sometypesofsolarthermalpowerplants,includingparabolictroughsandFresnelreflectors,needto beconstructedonflatland.Itisestimatedthat about2hectaresoflandarerequiredperMWofpowerproduced(Stein2009a).Figure10.14showssolarradiation,wherelandwithaslopeofgreaterthan1percent,andlandfurtherthan25kmfromexistingtransmissionlineshasbeenexcluded. LandwithinNationalParkshasalsobeenexcluded.Theseexclusionthresholdsofslopeanddistancetogridarenotpreciselimitsbutintendedtobeindicativeonly.Evenwiththeselimits,theannualradiationfallingonthecolouredareasinfigure10.14is2.7millionPJ,whichamountstonearly500timestheannualenergydemandofAustralia.Moreover,

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

150°140°130°120°

10°

20°

30°

40°

AERA 10.14

0 750 km

Annual Average Solar Radiation(Slope < 1%)

Transmission lines

Megajoules/m² per day

3

4 - 6

7 - 9

10 - 12

13 - 15

16 - 18

19 - 21

22 - 24

25 - 27

28 - 30

31 - 33

Figure 10.14 Annualsolarradiation,excludinglandwithaslopeofgreaterthan1percentandareasfurther than25kmfromexistingtransmissionlines

Source: BureauofMeteorology2009;GeoscienceAustralia

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

271

infigure10.17,thegrowthratewasnotconstant;therewasconsiderablevariationfromyeartoyear.Thebulkofgrowthoverthisperiodwasintheformofsolarthermalsystemsusedfordomesticwaterheating.PVisalsousedtoproduceasmallamountofelectricity.Intotal,Australia’ssolarenergyconsumptionin2007–08was6.9PJ(1.9TWh),ofwhich6.5PJ(1.8TWh)wereusedforwaterheating(ABARE2009a).

Consumption of solar thermal energy, by stateStatisticsonPVenergyconsumptionbystatearenotavailable.However,PVrepresentsonly5.8percentoftotalsolarenergyconsumption;onthatbasis,statisticsonsolarthermalconsumptionbystateprovideareasonableapproximationofthedistributionoftotalsolarenergyconsumption.

WesternAustraliahasthehighestsolarenergyconsumptioninAustralia,contributing40percentofAustralia’stotalsolarthermalusein2007–08(figure10.18).NewSouthWalesandQueenslandcontributedanother26percentand15percentrespectively.Therateofgrowthofsolarenergyuse

easternstates,SouthAustraliaandTasmania)isrelativelyconstantthroughouttheyear,andoccasionallypeaksinwinterduetoheatingloads(AER2009).

10.3.2SolarenergymarketAustralia’smodestproductionanduseofsolarenergyisfocussedonoff-gridandresidentialinstallations.Whilesolarthermalwaterheatinghasbeenthepredominantformofsolarenergyusetodate,productionofelectricityfromPVandconcentrating

solarthermaltechnologiesisincreasing.

Primary energy consumptionAustralia’sprimaryenergyconsumptionofsolarenergyaccountedfor2.4percentofallrenewableenergyuseandaround0.1percentofprimaryenergyconsumptionin2007–08(ABARE2009a).Productionandconsumptionofsolarenergyarethesame,becausesolarenergycanonlybestoredforseveralhoursatpresent.

Overtheperiodfrom1999–2000to2007–08,Australia’ssolarenergyuseincreasedatanaveragerateof7.2percentperyear.However,asillustrated

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

150°140°130°120°

10°

20°

30°

40°

AERA 10.15

0 750 km

December Average SolarRadiation

Megajoules/m² per day

3

4 - 6

7 - 9

10 - 12

13 - 15

16 - 18

19 - 21

22 - 24

25 - 27

28 - 30

31 - 33

Figure 10.15 DecemberaveragesolarradiationSource: BureauofMeteorology2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

272

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

150°140°130°120°

10°

20°

30°

40°

AERA 10.16

0 750 km

June Average Solar Radiation

Megajoules/m² per day

3

4 - 6

7 - 9

10 - 12

13 - 15

16 - 18

19 - 21

22 - 24

25 - 27

28 - 30

31 - 33

Figure 10.16 JuneaveragesolarradiationSource: BureauofMeteorology2009

0

PJ

1

2

3

4

5

6

7

Solar thermal

PV

YearAERA 10.17

1974-75 1977-78 1980-81 1983-84 1986-87 1989-90 1992-93 1995-96 1998-99 2001-02 2004-05 2007-08

Figure 10.17 Australia’sprimaryconsumptionofsolarenergy,bytechnologySource: IEA2009b;ABARE2009a

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

273

ofboththeirthermalfuelinput,andtheirelectricaloutput.Theresultofthisdifferencebetweenfuelinputsandenergyoutputforfossilfuelsisthatsolarrepresentsalargershareofelectricitygenerationoutputthanoffuelinputstoelectricitygeneration.

In2007–08,0.11TWh(0.4PJ)ofelectricityweregeneratedfromsolarenergy,representing0.04percentofAustralianelectricitygeneration(figure10.19).Despiteitssmallshare,solarelectricitygenerationhasincreasedrapidlyinrecentyears.

Installed electricity generation capacityAustralia’stotalPVcapacityhasincreasedsignificantlyoverthelastdecade(figure10.20),andinparticularoverthelasttwoyears.ThishasbeendrivenprimarilybytheSolarHomesandCommunitiesPlanforon-gridapplicationsandtheRemoteRenewablePowerGenerationProgramforoff-gridapplications.Overthelasttwoyears,therehasbeenadramaticincreaseinthetake-upofsmallscalePV,withmorethan40MWinstalledin2009(figures10.20,10.23).Thisisduetoacombinationoffactors:supportprovidedthroughtheSolarHomesandCommunitiesprogram,greaterpublicawarenessofsolarPV,adropinthepriceofPVsystems,attributablebothtogreaterinternationalcompetitionamonganincreasednumberofsuppliersandadecreaseinworldwidedemandasaresultoftheglobalfinancialcrisis,astrongAustraliandollar,andhighlyeffectivemarketingbyPVretailers.

MostAustralianstatesandterritorieshaveinplace,orareplanningtoimplement,feed-intariffs.Whilethereissomecorrelationoftheirintroductionwithincreasedconsumeruptake,itistooearlytosuggestthatthesetariffshavebeensignificantcontributorstoit.Thecombinationofgovernmentpolicies,associatedpublicandprivateinvestmentinRD&Dmeasuresandbroadermarketconditionsarelikelytobethemaininfluences.

overthepastdecadehasbeensimilarinallstatesandterritories,rangingfromanaverageannualgrowthof7percentintheNorthernTerritoryandVictoria,toanaverageannualgrowthof11percentinNewSouthWales.

ArangeofgovernmentpolicysettingsfrombothAustralianandStategovernmentshaveresultedinasignificantincreaseintheuptakeofsmall-scalesolarhotwatersystemsinAustralia.Thecombinationofdrivers,includingthesolarhotwaterrebate,statebuildingcodes,theinclusionofsolarhotwaterundertheRenewableEnergyTargetandthemandatedphase-outofelectrichotwaterby2012,haveallcontributedtotheincreaseduptakeofsolarhotwatersystemsfrom7percentoftotalhotwatersysteminstallationsin2007to13percentin2008(BISShrapnel2008;ABARE2009a).

Electricity generationElectricitygenerationfromsolarenergyinAustraliaiscurrentlyalmostentirelysourcedfromPVinstallations,primarilyfromsmalloff-gridsystems.Electricitygenerationfromsolarthermalsystemsiscurrentlylimitedtosmallpilotprojects,althoughinterestinsolarthermalsystemsforlargescaleelectricitygenerationisincreasing.

Somecareinanalysisofgenerationdatainenergystatisticsiswarranted.Forenergyaccountingpurposes,thefuelinputstoasolarenergysystemareassumedtoequaltheenergygeneratedbythesolarsystem.Thus,thesolarelectricityfuelinputs inenergystatisticsrepresentthesolarenergycapturedbysolarenergysystems,ratherthanthesignificantlylargermeasureoftotalsolarradiationfallingonsolarenergysystems;howeverthisradiationisnotmeasuredinenergystatistics.Fossilfuelssuchasgasandcoalaremeasuredinterms

WesternAustralia

40%

Queensland15%

Victoria6%

Tasmania2%

NorthernTerritory

3%South

Australia8%

New SouthWales26%

AERA 10.18

Figure 10.18 Solarthermalenergyconsumption, bystate,2007–08

Source: ABARE2009a

Solar electricity generation (TWh)

TWh

0.12

0.10

0

0.02

0.04

0.06

0.08

%

0.06

0.04

0.03

0.02

0.01

0

0.05

1992-93 1995-96 1998-99 2001-02 2004-05 2007-08

Year

Share of total electricity generation (%)AERA 10.19

Solar electricity generation (TWh)

TWh

0.12

0.10

0

0.02

0.04

0.06

0.08

%

0.06

0.04

0.03

0.02

0.01

0

0.05

1992-93 1995-96 1998-99 2001-02 2004-05 2007-08

Year

Share of total electricity generation (%)AERA 10.19

Figure 10.19 Australianelectricitygenerationfrom solar energy

Source: ABARE

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

274

120

100

Peak

cap

acity

(MW

)

0

20

40

60

80

1992 1993 1994 1995 1996 2006200520042003200220012000199919981997 20082007

AERA 10.20

Year

Diesel grids

Grid centralised

Grid distributedOff gridnon-domestic

Off grid domestic

Thelargestcomponentofinstalledsolarelectricitycapacityisusedforoff-gridindustrialandagriculturalpurposes(41MW),withsignificantcontributionscomingfromoff-gridresidentialsystems(31MW),andgridconnecteddistributedsystems(30MW).Thislargeoff-gridusagereflectsthecapacityofPVsystemstobeusedasstand-alonegeneratingsystems,particularlyforsmallscaleapplications.Therehavealsobeenseveralcommercialsolarprojectsthatprovideelectricitytothegrid.

Recently completed solar projectsFivecommercial-scalesolarprojectswithacombinedcapacityofaround5MWhavebeencommissionedinAustraliasince1998(table10.3).AlloftheseprojectsarelocatedinNewSouthWales.Commissionedsolarprojectstodatehavehadsmallcapacitieswithfourofthefiveprojectscommissionedhavingacapacityoflessthanorequalto1MW.Theonlyprojecttohaveacapacityofmorethan1MW

Figure 10.20 PVinstalledcapacityfrom1992–2008Note: TheseestimatesrepresentthepeakpoweroutputofPVsystems.Theydonotrepresenttheaveragepoweroutputoverayear,assolarradiationvariesaccordingtofactorssuchasthetimeofday,thenumberofdaylighthours,theangleofthesunandthecloudcover.ThesecapacityestimatesareconsistentwiththePVproductiondatapresentedinthisreport

Source: Watt2009

Table 10.3 Recentlycompletedsolarprojects

Project Company State Start up Capacity

Singleton EnergyAustralia

NSW 1998 0.4MW

Newington Private NSW 2000 0.7MW

BrokenHill AustralianInlandEnergy

NSW 2000 1MW

Newcastle CSIRO NSW 2005 0.6MW

Liddell Ausra NSW Late2008

2MW

Source: GeoscienceAustralia2009

isAusra’s2008solarthermalattachmenttoLiddellpowerplant,whichhasapeakelectricpowercapacityof2MW(Ausra2009).Whilesomewhatlargerthanthemorecommondomesticorcommercialinstallations,thesearemodestly-sizedplants.However,thereareplansforconstructionofseverallargescalesolarpowerplantsundertheAustralianGovernment’sSolarFlagshipsProgram,whichwill usebothsolarthermalandPVtechnologies.

10.4Outlookto2030forAustralia’sresourcesandmarketSolarenergyisarenewableresource:increaseduseoftheresourcedoesnotaffectresourceavailability.However,thequantityoftheresourcethatcanbeeconomicallycapturedchangesovertimethroughtechnologicaldevelopments.

TheoutlookfortheAustraliansolarmarket dependsonthecostofsolarenergyrelativetootherenergyresources.Atpresent,solarenergyismoreexpensiveforelectricitygenerationthanothercurrentlyusedrenewableenergysources,suchashydro,wind,biomassandbiogas.Therefore,theoutlookforincreasedsolarenergyuptakedependsonfactorsthatwillreduceitscostsrelativetootherrenewablefuels.Thecompetitivenessofsolarenergyandrenewableenergysourcesgenerallywillalsodependongovernmentpoliciesaimedatreducinggreenhousegasemissions.

Solarenergyislikelytobeaneconomicallyattractiveoptionforremoteoff-gridelectricitygeneration.Thelong-termcompetitivenessofsolarenergyinlarge-

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

275

Solarwaterheatersarecontinuingtobedevelopedfurther,andcanalsobeintegrated withPVarrays.Otherdirectusesincludepassivesolarheating,andsolarairconditioning.Informationonsolarenergytechnologiesfordirect-useapplicationsispresentedinbox10.2.

WithbothsolarPVandsolarthermalgeneration,themajorityofcostsareborneinthecapitalinstallationphase,irrespectiveofthescaleorsizeoftheproject(figure10.21).ThelargestcostcomponentsofPVinstallationsarethecellsorpanelsandtheassociatedcomponentsrequiredtoinstallandconnectthepanelsasapowersource.Inaddition,theinverterthatconvertsthedirectcurrenttoalternatingcurrentneedstobereplacedatleastonceevery10years(Borenstein2008).However,therearenofuelcosts–oncethesystemisinstalled,apartfromreplacingtheinverter,thereshouldbenocostsassociatedwithrunningthesystemuntiltheendofitsusefullife(20to25years).Themajorchallenge,therefore,isinitialoutlay,withsomewhatmoremodestperiodiccomponentreplacement, andpaybackperiodfortheinvestment.

Currently,thecostofsolarenergyishigherthan othertechnologiesinmostcountries.TheminimumcostforsolarPVinareaswithhighsolarradiation isaroundUS23centsperkWh(EIA2009).

SolarthermalsystemshaveasimilarprofiletoPV,dependingonthescaleandtypeofinstallation.Thecostofelectricityproductionfromsolarenergyisexpectedtodeclineasnewtechnologiesaredevelopedandeconomiesofscaleimproveintheproductionprocesses.

Thecostofinstallingsolarcapacityhasgenerallybeendecreasing.BothPVandsolarthermaltechnologiescurrentlyhavesubstantialresearch anddevelopmentfundsdirectedtowardthem,andnewproductionprocessesareexpectedtoresultinacontinuationofthistrend(figure10.22).IntheUnited

scalegrid-connectedapplicationsdependsinlargemeasureontechnologicaldevelopmentsthatenhancetheefficiencyofenergyconversionandreducethecapitalandoperatingcostofsolarenergysystems andcomponentry.TheAustralianGovernment’s$1.5billionSolarFlagshipsprogram,announcedaspartoftheCleanEnergyInitiative,willsupporttheconstructionanddemonstrationoflargescale (upto1000MW)solarpowerstationsinAustralia. Itwillacceleratedevelopmentsolartechnologyand helppositionAustraliaasaworldleaderinthatfield.

10.4.1KeyfactorsinfluencingthefuturedevelopmentofAustralia’ssolarenergyresourcesAustraliaisaworldleaderindevelopingsolartechnologies(LovegroveandDennis2006),butuptakeofthesetechnologieswithinAustraliahasbeenrelativelylow,principallybecauseoftheir highcost.Anumberoffactorsaffecttheeconomicviabilityofsolarinstallations.

Solar energy technologies and costsResearchintobothsolarPVandsolarthermaltechnologiesislargelyfocussedonreducingcostsandincreasingtheefficiencyofthesystems.

• Electricity generation–commercial-scalegenerationprojectshavebeendemonstratedtobepossiblebutthecostofthetechnologyisstillrelativelyhigh,makingsolarlessattractiveandhigherriskforinvestors.Small-scalesolarPVarraysarecurrentlybestsuitedtoremoteandoff-gridapplications,withotherapplicationslargelydependentonresearchorgovernmentfundingtomakethemviable.Informationonsolarenergytechnologiesforelectricitygenerationispresentedinbox10.1.

• Direct-use applications–solarthermalhotwatersystemsfordomesticuserepresentthemostwidelycommercialisedsolarenergytechnology.

Cos

ts

Years = 25installation inverter replacement

AERA 10.21

Figure 10.21 IndicativesolarPVproductionprofile and costs

Source: ABARE

PV

Solar thermal

0

1

2

3

4

5

6

2007

US$

per

wat

t

2011 2013 2015 2017 2019 2021 2023 2025 2027 2029

Year

AERA 10.22

Figure 10.22 Projectedaveragecapitalcostsfor newelectricitygenerationplantsusingsolarenergy, 2011to2030

Source: EIA2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

276

Stand-alonePVsystemscanbelocatedclosetocustomers(forexampleonroofareasofresidentialbuildings),whichreducesthecostsofelectricitytransmissionanddistribution.However,concentratingsolarthermaltechnologiesrequiremorespecificconditionsandlargeareasofland(Lorenz,PinnerandSeitz2008)whichareoftenonlyavailablelongdistancesfromthecustomersneedingtheenergy. InAustralia,installingsmall-scaleresidentialormediumscalecommercialsystems(bothPVandthermal)canbehighlyattractiveoptionsforremoteareaswhereelectricityinfrastructureisdifficultorcostlytoaccess,andalternativelocalsourcesofelectricityareexpensive.

government policiesGovernmentpolicieshavebeenimplementedatseveralstagesofthesolarenergyproductionchaininAustralia.RebatesprovidedforsolarwaterheatingsystemsandresidentialPVinstallationsreducethecostofthesetechnologiesforconsumersandencouragetheiruptake.

TheSolarHomesandCommunitiesPlan(2000toJune2009)providedrebatesfortheinstallationofsolarPVsystems.ThecapacityofPVsystemsinstalledbyAustralianhouseholdsincreasedsignificantlyunderthisprogram(figure10.23). TheexpandedRETschemeincludestheSolar Creditsinitiative,whichprovidesamultipliedcreditforelectricitygeneratedbysmallsolarPVsystems. Solar Creditsprovidesanup-frontcapitalsubsidytowardstheinstallationofsmallsolarPVsystems.

TheAustralianGovernmenthasalsoannounced $1.5billionofnewfundingforitsSolarFlagshipsprogram.Thisprogramaimstoinstalluptofournewsolarpowerplants,withacombinedpoweroutputofupto1000MW,madeupofbothPVandsolarthermalpowerplants,withthelocationsandtechnologiestobedeterminedbyacompetitivetenderprocess.Theprogramaimstodemonstratenewsolartechnologiesatacommercialscale,therebyacceleratinguptakeofsolarenergyingeneralandprovidingtheopportunityforAustraliatodevelopleadershipinsolarenergytechnology(RET2009b).

TheAustralianGovernmenthasalsoallocatedfundingtoestablishtheAustralianSolarInstitute(ASI),whichwillbebasedinNewcastle.ItwillhavestrongcollaborativelinkswithCSIROandUniversitiesundertakingR&Dinsolartechnologies.TheinstitutewillaimtodrivedevelopmentofsolarthermalandPVtechnologiesinAustralia,includingtheareasofefficiencyandcosteffectiveness(RET2009a).

Othergovernmentpolicies,includingfeed-intariffs,whichareproposedoralreadyinplaceinmostAustralianstatesandterritories,mayalsoencouragetheuptakeofsolarenergy.

States,thecapitalcostofnewPVplantsisprojectedtofallby37percent(inrealterms)from2009to2030(EIA2009).

TheElectricPowerResearchInstitute(EPRI)hasdevelopedestimatesofthelevelisedcostoftechnologya,includingarangeofsolartechnologies,toenablethecomparisonoftechnologiesatdifferentlevelsofmaturity(Chapter2,figures2.18,2.19).Thesolartechnologiesconsideredareparabolictroughs,centralreceiversystems,fixedPVsystemsandtrackingPVsystems.Centralreceiversolarsystemswithstorageareforecasttohavethelowestcostsoftechnologyin2015.AddingstoragetothecentralreceiversystemsortoparabolictroughsisestimatedtodecreasethecostperKWhproduced,asitallowsthesystemtoproduceahigherelectricityoutput.TrackingPVsystemsareforecasttohavethelowestcostoftheoptionsthatdonotincorporatestorage.TheEPRItechnologystatusdatainfigures2.18and2.19showthat,althoughsolartechnologiesremainrelativelyhighcostoptionsthroughouttheoutlookperiod,significantreductionsincostareanticipatedby2030.ThesubstantialglobalRD&D(bygovernmentsandtheprivatesector)intosolartechnologies,includingtheAustralianGovernment’s$1.5billionSolarFlagshipsProgramtosupporttheconstructionanddemonstrationoflargescalesolarpowerstationsinAustralia,isexpectedtoplayakeyroleinacceleratingthedevelopmentanddeploymentofsolarenergy.

Thetimetakentoinstallordevelopasolarsystem ishighlydependentonthesizeandscaleoftheproject.Solarhotwatersystemscanbeinstalledinaroundfourhours.Small-scalePVsystemscansimilarlybeinstalledquiterapidly.However,commercialscaledevelopmentstakeconsiderablylonger,dependingonthetypeofinstallationandotherfactors,includingbroaderlocationorenvironmentalconsiderations.

Location of the resourceInAustralia,thebestsolarresourcesarecommonlydistantfromthenationalelectricitymarket(NEM),especiallythemajorurbancentresontheeasternseaboard.Thisposesachallengefordevelopingnewsolarpowerplants,asthereneedstobeabalancebetweenmaximisingthesolarradiationandminimisingthecostsofconnectivitytotheelectricitygrid.However,thereispotentialforsolarthermalenergyapplicationtoprovidebaseandintermediateloadelectricitywithfossil-fuelplants(suchasgasturbinepowerstations)inareaswithisolatedgridsystemsandgoodinsolationresources.ThereportbytheWyldGroupandMMA(2008)identifiedMountIsa,AliceSprings,TennantCreekandthePilbararegionasareaswiththesecharacteristics.AccesstoAustralia’smajorsolarenergyresources–aswithotherremoterenewableenergysources–islikelytorequireinvestmenttoextendtheelectricitygrid.

a ThisEPRItechnologystatusdataenablesthecomparisonoftechnologiesatdifferentlevelsofmaturity. Itshouldnotbeusedtoforecastmarketandinvestmentoutcomes.

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

277

theenergyrequiredtoproduceitovera20yearsystemlifespan(MacKay2009).Inareaswithlesssolarradiation,suchasCentral-NorthernEurope,theenergyyieldratioisestimatedtobearoundfour.Thispositiveenergyyieldratioalsomeansthatgreenhousegasemissionsgeneratedfromtheproductionofsolarenergysystemsaremorethanoffsetoverthesystems’lifecycle,astherearenogreenhousegasemissionsgeneratedfromtheiroperation.

Mostsolarthermalelectricitygenerationsystemsrequirewaterforsteamproductionandthiswateruseaffectstheefficiencyofthesystem.Themajorityofthiswaterisconsumedin‘wetcooling’towers,whichuseevaporativecoolingtocondensethesteamafterithaspassedthroughtheturbine.Inaddition,solarthermalsystemsrequirewatertowashthemirrors,tomaintaintheirreflectivity(Jones2008).Itispossibletouse‘drycooling’towers,whicheliminatemostofthewaterconsumption,butthisreducestheefficiencyofthesteamcyclebyapproximately10percent(Stein2009b).

AfurtheroptionunderdevelopmentistheuseofhightemperatureBraytoncycles,whichdonotusesteamturbinesandthusdonotconsumewater.BraytoncyclesaremoreefficientthanconventionalRankine(steam)cycles,buttheycanonlybeachievedbypoint-focussingsolarthermaltechnologies(powertowersanddishes).

10.4.2OutlookforsolarenergymarketAlthoughsolarenergyismoreabundantinAustraliathanotherrenewableenergysources,plansforexpandingsolarenergyinAustraliagenerallyrelyonsubsidiestobeeconomicallyviable.Therearecurrentlyonlyasmallnumberofproposedcommercialsolarenergyprojects,mostlyofsmallscale.Solarenergyiscurrentlymoreexpensivetoproducethanotherformsofrenewableenergy,suchashydro,windandbiomass(WyldGroupandMMA2008).Intheshortterm,therefore,solarenergywillfinditdifficulttocompetecommerciallywithotherformsofcleanenergyforelectricitygenerationintheNEM.However,asglobaldeploymentofsolarenergytechnologiesincreases,thecostofthetechnologiesislikelytodecrease.Moreover,technologicaldevelopmentsandgreenhousegasemissionreductionpoliciesareexpectedtodriveincreaseduseofsolarenergyinthemediumandlongterm.

Key projections to 2029–30ABARE’slatest(2010)AustralianenergyprojectionsincludetheRET,a5percentemissionsreductiontarget,andothergovernmentpolicies.SolarenergyuseinAustraliaisprojectedtomorethantriple,from7PJin2007–08to24PJin2029–30,growingatanaveragerateof5.9percentayear(figure10.27,table10.4).Whilesolarwaterheatingisprojectedtoremainthepredominantuseforsolarenergy,theshareofPVintotalsolarenergyuseisprojectedtoincrease.

Infrastructure issuesThelocationoflargescalesolarpowerplants inAustraliawillbeinfluencedbythecostofconnectiontotheelectricitygrid.Intheshortterm,developmentsarelikelytofocusonisolatedgridsystemsornodestotheexistingelectricitygrid, sincethisminimisesinfrastructurecosts.

Inthelongerterm,theextensionofthegridtoaccessremotesolarenergyresourcesindesertregionsmayrequirebuildinglongdistancetransmissionlines.Thetechnologyneededtoachievethisexists:highvoltagedirectcurrent(HVDC)transmissionlinesareabletotransferelectricityoverthousandsofkilometres,withminimallosses.SomeHVDClinesarealreadyinuseinAustralia,andarebeingusedtoforminterstategridconnections;thelongestexamplebeingtheHVDClinkbetweenTasmaniaandVictoria.However,buildingaHVDClinktoasolarpowerstationindesertareaswouldrequirealargeup-frontinvestment.

Theideaofgeneratinglargescalesolarenergyinremotedesertregionshasbeenproposedonamuchlargerscaleinternationally.InJune2009theDESERTECFoundationoutlinedaproposaltobuildlargescalesolarfarmsinthesun-richregionsoftheMiddleEastandNorthernAfrica,andexporttheirpowertoEuropeusinglongdistanceHVDClines. Morerecently,anAsiaPacificSunbeltDevelopmentProjecthasbeenestablishedwiththeaimofmovingsolarenergybywayoffuelratherthanelectricityfromregionssuchasAustraliatothoseAsiancountrieswhoimportenergy,suchasJapanandKorea.Theseprojectsillustratethegrowinginternationalinterestinutilisinglargescalesolarpowerfromremoteandinhospitableareas,despitetheinfrastructurechallengesintransmittingortransportingenergyoverlongdistances.

Environmental issuesAroof-mounted,grid-connectedsolarsysteminAustraliaisestimatedtoyieldmorethanseventimes

0

MW

10

20

30

40

50

2000

Year2001 2002 2003 2004 2005 2006 2007 2008 2009

AERA 10.23

Figure 10.23 ResidentialPVcapacityinstalledundertheSolarHomesandCommunitiesPlan(asofOctober2009)

Source: DEWHA2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

278

BOx 10.1SOLARENERGyTECHNOLOGIESFORELECTRICITyGENERATION

Sunlighthasbeenusedforheatingbygeneratingfireforhundredsofyears,butcommercialtechnologiesspecificallytousesolarenergytodirectlyheatwaterorgeneratepowerwerenotdevelopeduntilthe1800s.Solarwaterheatersdevelopedandinstalledbetween1910and1920werethefirstcommercialapplicationofsolarenergy.ThefirstPVcellscapableofconvertingenoughenergyintopowertorunelectricalequipmentwerenotdevelopeduntilthe1950sandthefirstsolarpowerstations(thermalandPV)withcapacityofatleast1megawattstartedoperatinginthe1980s.

Solar thermal electricitySolarthermalelectricityisproducedbyconvertingsunlightintoheat,andthenusingtheheattodrive agenerator.Thesunlightisconcentratedusingmirrors,andfocussedontoasolarreceiver.Thisreceivercontainsaworkingfluidthatabsorbstheconcentratedsunlight,andcanbeheateduptoveryhightemperatures.Heatistransferredfromtheworkingfluidtoasteamturbine,similartothoseusedinfossilfuelandnuclearpowerstations.Alternatively,theheatcanbestoredforlateruse(seebelow).

Therearefourmaintypesofconcentratingsolarreceivers,showninfigure10.24.Twoofthesetypesareline-focussing(parabolictroughandLinearFresnelreflector);theothertwoarepoint-focussing(paraboloidaldishandpowertower).Eachofthesetypesisdesignedtoconcentratealargeareaofsunlightontoasmallreceiver,whichenablesfluid tobeheatedtohightemperatures.Therearetrade-offsbetweenefficiency,landcoverage,andcosts ofeachtype.

Themostwidelyusedsolarconcentratoristheparabolictrough.Parabolictroughsfocuslightinoneaxisonly,whichmeansthattheyneedonlyasingleaxistrackingmechanismtofollowthedirectionofthesun.ThelinearFresnelreflectorachievesasimilarline-focus,butinsteadusesanarrayofalmostflatmirrors.LinearFresnelreflectorsachieveaweakerfocus(thereforelowertemperaturesandefficiencies)thanparabolictroughs.However,linearFresnelreflectorshavecost-savingfeaturesthatcompensateforlowerenergyefficiencies,includingagreateryieldperunitland,andsimplerconstructionrequirements.

Theparaboloidaldishisanalternatedesignwhichfocusessunlightontoasinglepoint.Thisdesignisabletoproduceamuchhighertemperatureatthe

Figure 10.24 Thefourtypesofsolarthermalconcentrators: (a)parabolictrough,(b)compactlinearFresnelreflector,(c)paraboloidaldish,and(d)powertower

Source: WikimediaCommons,photographbykjkolb;WikimediaCommons,originaluploaderwasLkruijswaten.wikipedia; AustralianNationalUniversity2009a;CSIRO

a

c

b

d

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

279

receiver,whichincreasestheefficiencyofenergyconversion.Theparaboloidaldishhasthegreatestpotentialtobeusedinmodularform,whichmaygivethisdesignanadvantageinoff-gridandremoteapplications.However,tofocusthesunlightontoasinglepoint,paraboloidaldishesneedtotrackthedirectionofsunlightontwoaxes.Thisrequiresamorecomplextrackingmechanism,andismoreexpensivetobuild.Theotherpointfocusingdesignisthe‘powertower’,whichusesaseriesofground-basedmirrorstofocusontoanelevatedcentralreceiver.Powertowermirrorsalsorequiretwo-axistrackingmechanisms;howevertheuseofsmaller,flatmirrorscanreducecosts.

Theparabolictroughhasthemostwidespreadcommercialuse.Anarrayofnineparabolictroughplantsproducingacombined354MWhaveoperatedinCaliforniasincethe1980s.SeveralnewoneshavebeenbuiltinSpainandNevadainthelastfewyearsatarounda50–60MWscale,andtherearemanyparabolictroughplantseitherintheconstructionorplanningphase.Whileparabolictroughshavethemajorityofthecurrentmarketshare,allfourdesignsaregainingrenewedcommercialinterest.Thereisan11MWsolarpowertowerplantoperatinginSpain, andasimilar20MWplanthasrecentlybegunoperatingatthesamelocation.ThelinearFresnelreflectorhasbeendemonstratedonasmallscale(5MW),anda177MWplantisplannedforconstructioninCalifornia.Theparaboloidaldishhasalsobeendemonstratedonasmallscale,andthereareplansforlargescaledishplants.

Methodsofpowerconversionandthermalstoragevaryfromtypetotype.Whilesolarthermalplantsaregenerallysuitedtolargescaleplants(greaterthan 50MW),theparaboloidaldishhasthepotentialto beusedinmodularform.Thismaygivedishsystemsanadvantageinremoteandoff-gridapplications.

Efficiency of solar thermalTheconversionefficiencyofsolarthermalpowerplantsdependsonthetypeofconcentratorused, andtheamountofsunlight.Ingeneral,thepoint-focusingconcentrators(paraboloidaldishandpowertower)canachievehigherefficienciesthanlinefocussingtechnologies(parabolictroughandFresnelreflector).Thisispossiblebecausethepoint-focussingtechnologiesachievehighertemperaturesforhigherthermodynamiclimits.

Thehighestvalueofsolar-to-electricefficiencyeverrecordedforasolarthermalsystemwas31.25percent,usingasolardishinpeaksunlightconditions(Sandia2009).Parabolictroughscanachieveapeaksolar-to-electricefficiencyofover20percent(SEGS2009).However,theconversionefficiencydropssignificantlywhentheradiationdropsinintensity,

sotheannualaverageefficienciesaresignificantlylower.AccordingtoBegay-Campbell(2008),theannualsolar-to-electricefficiencyisapproximately12–14percentforparabolictroughs,12percentforpowertowers(althoughemergingtechnologiescanachieve18–20percent),and22–25percentforparaboloidaldishes.LinearFresnelreflectorsachieveasimilarefficiencytoparabolictroughs,withanannualsolar-to-electricefficiencyofapproximately 12percent(Millsetal.2002).

Energy storageSolarthermalelectricitysystemshavethepotentialtostoreenergyoverseveralhours.Theworkingfluidusedinthesystemcanbeusedtotemporarilystoreheat,andcanbeconvertedintoelectricityafterthesunhasstoppedshining.Thismeansthatsolarthermalplantshavethepotentialtodispatchpoweratpeakdemandtimes.Itshouldbenoted,however,thatperiodsofsustainedcloudyweathercuttheproductivecapacityofsolarthermalpower. Theseasonalityofsunshinealsoreducespoweroutputinwinter.

Thermalstorageisoneofthekeyadvantagesofsolarthermalpower,andcreatesthepotentialforintermediateorbase-loadpowergeneration.Althoughthermalstoragetechnologyisrelativelynew,severalrecentlyconstructedsolarthermalpowerplantshaveincludedthermalstorageofapproximately7hours’powergeneration.Inaddition,therearenewpowertowerdesignsthatincorporateupto16hoursofthermalstorage,allowing24hourpowergenerationinappropriateconditions.Thedevelopmentofcosteffectivestoragetechnologiesmayenableamuchhigheruptakeofsolarthermalpowerinthefuture(WyldGroupandMMA2008).

Currentresearchisdevelopingalternativeenergystoragemethods,includingchemicalstorage,andphase-changematerials.Chemicalstorageoptionsincludedissociatedammoniaandsolar-enhancednaturalgas.Thesenewstoragemethodshavethepotentialtoprovideseasonalstorageofsolarenergy,ortoconvertsolarenergyintoportablefuels.Infuture,itmaybepossibleforsolarfuelstobeusedinthetransportsector,orevenforexportingsolarenergy.

Hybrid operation with fossil fuel plantsSolarthermalpowerplantscanmakeuseof existingturbinetechnologiesthathavebeendevelopedandrefinedovermanydecadesinfossilfueltechnologies.Usingthismaturetechnologycanreducemanufacturingcostsandincreasetheefficiencyofpowergeneration.Inaddition,solarthermalheatcollectorscanbeusedinhybridoperationwithfossilfuelburners.Anumberofexistingsolarthermalpowerplantsusegasburnerstoboostpowersupplyduringlowlevelsofsunlight.

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

280

Combiningsolarthermalpowerwithgascanprovideahedgeagainsttheintermittencyofsunlight.

Solarthermalheatcollectorscanbeattachedtoexistingcoalorgaspowerstationstopre-heatthewaterusedintheseplants.Thisispossiblesincesolarthermalheatcollectorsperformaverysimilarfunctiontofossilfuelburners.Inthisway,solarthermalpowercanmakeuseofexistinginfrastructure.Thisoptionisnotaffectedbyintermittencyofsunlight,sincethefossilfuelburnersprovidefirmcapacityofproduction.Internationally,thereareseveralnewintegratedsolarcombinedcycle(ISCC)plantsplannedforconstruction.ISCCplantsaresimilartocombinedcyclegasplants(usingbothagasturbine,andasteamturbine),butusesolarthermalheatcollectorstoboostthesteamturbineproduction.

Solar updraft towersAnalternativesolarthermalpowertechnologyisthesolarupdrafttower,alsoknownasasolarchimney.Theupdrafttowercapturessolarenergyusingalargegreenhouse,whichheatsairbeneathatransparentroof.Averytallchimneyisplacedatthecentreofthegreenhouse,andtheheatedaircreatespressuredifferencesthatdriveairflowupthechimney.Electricityisgeneratedfromtheairflowusingwindturbinesatthebaseofthechimney.

Solarupdrafttowershavebeentestedatarelativelysmallscale,witha50kWplantinSpainbeingtheonlyworkingprototypeatpresent.Thereareplanstoupscalethistechnology,includingaproposed200MWplantinBuronga,NSW.ThemaindisadvantageofsolarupdrafttowersisthattheydeliversignificantlylesspowerperunitareathanconcentratingsolarthermalandPVsystems(Enviromission2009).

Photovoltaic systemsThecostsofproducingPVcellshasdeclinedrapidlyinrecentyearsasuptakehasincreased(Fthenakis

etal.2009)andanumberofPVtechnologieshave

beendeveloped.Thecostofmodulescanbereduced

infourmainways:

• makingthinnerlayers–reducingmaterialand

processingcosts;

• integratingPVpanelswithbuildingelementssuch

asglassandroofs–reducingoverallsystem

costs;

• makingadhesiveonsite–reducingmaterials

costs;and

• improvingdecisionsaboutmakingorbuying

inputs,increasingeconomiesofscale,and

improvingthedesignofPVmodules.

TherearethreemaintypesofPVtechnology:

crystallinesilicon,thin-filmandconcentratingPV.

Crystallinesiliconistheoldestandmostwidespread

technology.Thesecellsarebecomingmoreefficient

overtime,andcostshavefallensteadily.

Thin-filmPVisanemerginggroupoftechnologies,

targetedatreducingcostsofPVcells.Thin-filmPV

isatanearlierstageofdevelopment,andcurrently

deliversalowerefficiencythancrystallinesilicon,

estimatedataround10percent,althoughmany

ofthenewervarietiesstilldeliverefficienciesof

lessthanthis(Prowse2009).However,thisis

compensatedbylowercosts,andtherearestrong

prospectsforefficiencyimprovementsinthefuture.

Thin-filmPVcanbeinstalledonmanydifferent

substrates,givingitgreatflexibilityinitsapplications.

ConcentratingPVsystemsuseeithermirrorsor

lensestofocusalargeareaofsunlightontoacentral

receiver(figure10.25).Thisincreasestheintensity

ofthelight,andallowsagreaterpercentageofits

energytobeconvertedintoelectricity.Thesesystems

aredesignedprimarilyforlargescalecentralised

Figure 10.25 (a)ExampleofarooftopPVsystem. (b)AschematicconcentratingPVsystem,wherealargenumberofmirrorsfocussunlightontocentralPVreceivers

Source: CERP,WikimediaCommons;EnergyInnovationsInc.underWikipedialicencecc-by-sa-2.5

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

281

power,duetothecomplexitiesofthereceivers.ConcentratingPVisthemostefficientformofPV,deliveringatypicalsystemefficiencyofaround 20percent,andhasachievedefficienciesofjustover40percentinideallaboratoryconditions(NREL2008).

AnadvantageofusingconcentratingPVisthatitreducestheareaofsolarcellsneededtocapture thesunlight.PVcellsareoftenexpensivetoproduce,andthemirrorsorlensesusedtoconcentratethelightaregenerallycheaperthanthecells.However,theuseofsolarconcentratorsgenerallyrequiresalargersystemthatcannotbescaleddownaseasilyasflat-platePVcells.

ArelativelyrecentareaofgrowthforPVapplicationsisinBuilding-integratedPV(BIPV)systems.BIPVsystemsincorporatePVtechnologyintomanydifferentcomponentsofanewbuilding.Thesecomponentsincluderooftops,wallsandwindows,

Solar thermal heatingSolarthermalheatingusesdirectheatfromsunlight,withouttheneedtoconverttheenergyintoelectricity.Thesimplestformofsolarthermalheatingisachievedsimplybypumpingwaterthroughasystemoflight-absorbingtubes,usuallymountedonarooftop.Thetubesabsorbsunlight,andheatthewaterflowingwithinthem.Themostcommonuseforsolarthermalheatingishotwatersystems,buttheyarealsousedforswimmingpoolheatingorspaceheating.

Therearetwomaintypesofsolarwaterheaters:flat-plateandevacuatedtubesystems(figure10.26).Flat-platesystemsarethemostwidespreadandmaturetechnology.Theyuseanarrayofverysmalltubes,coveredbyatransparentglazingforinsulation.Evacuatedtubesconsistofasunlightabsorbingmetaltube,insidetwoconcentrictransparentglasstubes.Thespacebetweenthetwoglasstubesis

BOx 10.2SOLARENERGyTECHNOLOGIESFORDIRECT-USEAPPLICATIONS

evacuatedtopreventlossesduetoconvection.Evacuatedtubeshavelowerheatlossesthanflatplatecollectors,givingthemanadvantageinwinterconditions.However,flat-platesystemsaregenerallycheaper,duetotheirrelativecommercialmaturity.

Solarthermalheatingisamaturetechnologyandrelativelyinexpensivecomparedtoothersolartechnologies.Thiscostadvantagehasmeantthatsolarthermalheatinghasthelargestenergyproductionofanysolartechnology.Insomecountrieswithfavourablesunlightconditions,solarwaterheatershavegainedasubstantialmarketshareofwaterheaters.Forexample,theproportionofhouseholdswithsolarwaterheatersintheNorthernTerritorywas54percentin2008(CEC2009)whereasinIsraelthisproportionisapproximately 90percent(CSIRO2010).

wherePVcellscaneitherreplace,orbeintegratedwithexistingmaterials.BIPVhasthepotentialtoreducecostsofPVsystems,andtoincreasethesurfaceareaavailableforcapturingsolarenergywithinabuilding(NREL2009b).

Efficiency of photovoltaic systemsCurrently,themaximumefficiencyofcommerciallyavailablePVmodulesisaround20to25percent,withefficienciesofaround40percentachievedinlaboratories.MostcommerciallyavailablePVsystemshaveanaverageconversionefficiencyofaround10percent.Newdevelopments(suchasmulti-junctiontandemcells)suggestsolarcellswithconversionefficienciesofgreaterthan40percentcouldbecomecommerciallyavailableinthefuture.Fthenakisetal.(2009)positthatincreasesinefficiencyofPVmoduleswillcomefromfurthertechnologyimprovements.

Figure 10.26 (a)Flat-platesolarwaterheater. (b)EvacuatedtubesolarwaterheaterSource: WesternAustralianSustainableEnergyDevelopmentOffice2009;HillsSolar(SolarSolutionsforLife)2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

282

Solar air conditioningSolarthermalenergycanalsobeusedtodriveair-conditioningsystems.Sorptioncoolingusesaheatsourcetodrivearefrigerationcycle,andcanbeintegratedwithsolarthermalheatcollectorstoprovidesolarair-conditioning.Sincesunlightisgenerallystrongwhenair-conditioningismostneeded,solarair-conditioningcanbeusedtobalancepeaksummerelectricityloads.However,anumberofdevelopmentsarerequiredbeforesolarair-conditioningbecomescostcompetitiveinAustralia(CSIRO2010).

Passive solar heatingSolarenergycanalsobeusedtoheatbuildingsdirectly,throughdesigningbuildingsthatcapturesunlightandstoreheatthatcanbeusedatnight.Thisprocessiscalledpassivesolarheating,andcansaveenergy(electricityandgas)thatwouldotherwisebeneededtoheatbuildingsduringcoldweather.Newbuildingscanbeconstructedwithpassivesolarheatingfeaturesatminimalextracost,providingareliablesourceofheatingthatcangreatlyreduceenergydemandsinwinter(AZSC2009).

Passivesolarheatingusuallyrequirestwo

0

4

8

12

16

20

24

PJ

0

0.30

0.25

0.20

0.15

0.10

0.05

%

Share of total (%)

Solar energy consumption (PJ)

1999-00

2000-01

2001-02

2002-03

2003-04

2004-05

2005-06

2006-07

2007-08

2029-30

AERA 10.2Year

%

AERA 10.3

0

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

1.1

0.9

0.8

0.6

0.5

0.3

0.2

01999-

002000-

012001-

022002-

032003-

042004-

052005-

062006-

072007-

082029-

30

TWh

Share of total (%)

Solar electricity generation (TWh)

Year

Figure 10.27 Projectedprimaryenergyconsumption ofsolarenergy

Source: ABARE2009a,2010

Figure 10.28 Projectedelectricitygenerationfrom solar energy

Source: ABARE2009a,2010

basicelements:anorth-facing(intheSouthernHemisphere)windowoftransparentmaterialthatallowssunlighttoenterthebuilding;andathermalstoragematerialthatabsorbsandstoresheat.Passivesolarheatingmustalsobeintegratedwithinsulationtoprovideefficientstorageofheat,androofdesignsthatcanmaximiseexposureinwinter,andminimiseexposureinsummer.Althoughsomeofthesefeaturescanberetrofittedtoexistingbuildings,thebestprospectsforpassivesolarheatingareinthedesignofnewbuildings.

Combined heat and power systemsAtechnologyunderdevelopmentinAustraliaandoverseasisthecombinedheatandpowersystem,combiningsolarthermalheatingwithPVtechnology(ANU2009).Typicallythisconsistsofasmall-scaleconcentratingparabolictroughsystemwithacentralPVreceiver,wherethereceiveriscoupledtoacoolingfluid.WhilethePVproduceselectricity,heatisextractedfromthecoolingfluidandcanbeusedinthesamewayasaconventionalsolarthermalheater.Thesesystemscanachieveagreaterefficiencyofenergyconversion,byusingthesamesunlightfortwopurposes.Thesesystemsarebeingtargetedforsmall-scalerooftopapplications.

programsandtheproposedemissionsreductiontargetareallexpectedtounderpinthegrowthofsolarenergyovertheoutlookperiod.

Proposed development projectsAsatOctober2009,therewerenosolarprojectsnearingcompletioninAustralia(table10.5).Therearecurrentlyfiveproposedsolarprojects,withacombinedcapacityof116MW.ThelargestoftheseprojectsisWizardPower’s$355millionWhyallaSolarOasis,whichwillbelocatedinSouthAustralia.Theprojectisexpectedtohaveacapacityof80MWandisscheduledtobecompletedby2012.

Electricitygenerationfromsolarenergyisprojectedtoincreasestrongly,fromonly0.1TWhin2007–08to4TWhin2029–30,representinganaverageannualgrowthrateof17.4percent(figure10.28).Theshareofsolarenergyinelectricitygenerationisalsoprojectedtoincrease,from0.04percentin2007–08to1percentin2029–30.

Whilehighinvestmentcostscurrentlyrepresentabarriertomorewidespreaduseofsolarenergy,thereisconsiderablescopeforthecostofsolartechnologiestodeclinesignificantlyovertime.Thecompetitivenessofsolarenergywillalsodependongovernmentpolicies.TheRET,theresultsofRD&D

CHAPTER 10: SOLAR ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

283

Table 10.5 Proposedsolarenergyprojects

Project Company Location Status Start up Capacity Capital expenditure

SolarGasOne CSIROandQldGovernment

Qld Governmentgrantreceived

2012 1MW na

LakeCargelligosolarthermalproject

LloydEnergySystems

LakeCargelligo,NSW

Governmentgrantreceived

na 3MW na

Cloncurrysolarthermalpowerstation

LloydEnergySystems

Cloncurry,Qld Governmentgrantreceived

2010 10MW $31m

ACTsolarpowerplant

ACTGovernment Tobedetermined,ACT

Pre-feasibilitystudycompleted

2012 22MW $141m

WhyallaSolarOasis

WizardPower Whyalla,SA Feasibilitystudyunderway

2012 80MW $355m

Source: ABARE2009c;LloydEnergySystems2007

Table 10.4 OutlookforAustralia’ssolarmarketto2029–30

unit 2007–08 2029–30

Primary energy consumption PJ 7 24

Shareoftotal % 0.1 0.3

Averageannualgrowth,2007–08to20029–30 % 5.9

Electricity generation

Electricityoutput TWh 0.1 4

Shareoftotal % 0.04 1.0

Averageannualgrowth,2007–08to2029–30 % 17.4

a Energyproductionandprimaryenergyconsumptionareidentical Source: ABARE2009a,2010

10.5ReferencesABARE(AustralianBureauofAgriculturalandResourceEconomics),2010,Australianenergyprojectionsto2029–30,ABAREresearchreport10.02,preparedfortheDepartmentofResources,EnergyandTourism,Canberra

ABARE,2009a,AustralianEnergyStatistics,Canberra,August

ABARE,2009b,Electricitygeneration:Majordevelopmentprojects–October2009listing,Canberra,November

AER(AustralianEnergyRegulator),2008,StateoftheEnergyMarket2008,<http://www.aer.gov.au/content/index.phtml/itemId/723386>

Ausra,2009,TheLiddellSolarThermalPowerStation,<http://www.ausra.com/pdfs/LiddellOverview.pdf>

ANU(AustralianNationalUniversity),2009a,SolarThermalEnergyResearch,<http://solar-thermal.anu.edu.au/pages/DownloadPics.php>

ANU,2009b,CombinedHeatandPowerSolar(CHAPS)ConcentratorSystem,<http://solar.anu.edu.au/projects/chaps_proj.php>

AZSC(ArizonaSolarCenter),2009,PassiveSolarHeating andCooling,<http://www.azsolarcenter.com/technology/pas-2.html>

Begay-CampbellS,2008,ConcentratingSolarTechnologiesandApplications:SandiaNationalLaboratories,<http://apps1.eere.energy.gov/tribalenergy/pdfs/course_tcd0801_ca17ax.pdf>

BISShrapnel,2008,Hotwatersystemsinstalledinnew

dwellingsinAustralia,NorthSydney,<http://www.bis.com.au/reports/hot_water_systems_nd_in_aust.html>

BorensteinS,2008,TheMarketValueandCostofSolarPhotovoltaicElectricityProduction,CentrefortheStudyofEnergyMarkets,UniversityofCalifornia

BureauofMeteorology,2009,AverageDailySolarExposure,<http://www.bom.gov.au/climate/averages/climatology/solar_radiation/IDCJCM0019_solar_exposure.shtml>

CEC(CleanEnergyCouncil),2009,SolarIndustrySnapshot,<http://www.bcse.or.au/cec/resourcecentre/reports/mainColumnParagraphs/00/text_files/file15/CEC%20Solar%20Sheet_revised_2.pdf>

ClimateActionNewcastle,2009,Newcastle’sGoingSolar,<http://www.climateaction.org.au/files/images/solar%20panel%20photo_0.jpg>

CSIRO,2010,EnergytechnologyinAustralia:overviewandprospectsforthefuture,AreportfortheDepartmentofResources,EnergyandTourism,Canberra(forthcoming)

DESERTEC,2009,CleanPowerFromDeserts.Whitebook4thEdition,<http://www.desertec.org/en/concept/whitebook/>

Desertec-UK,2009,ConcentratingSolarThermalPower,<http://www.trec-uk.org.uk/images/schott_parabolic_trough.jpg>

DEWHA(DepartmentofEnvironment,Water,HeritageandtheArts),2009,Solarhomesandcommunitiesplanwebsite,<http://www.environment.gov.au/settlements/renewable/pv/index.html>

EIA(EnergyInformationAdministrationoftheUnitedStates),2009,InternationalEnergyOutlook2009,WashingtonDC

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

284

Enviromission,2009,TechnologyOverview,<http://www.enviromission.com.au/EVM/content/technology_technologyover.html>

EPIA(EuropeanPhotovoltaicIndustryAssociation),2009,GlobalMarketOutlookforPhotovoltaicsUntil2013, <http://www.epia.org/publications/epia-publications.html>

FthenakisV,MasonJEandZweibelK,2009,Thetechnical,geographical,andeconomicfeasibilityforsolarenergytosupplytheenergyneedsoftheUS,EnergyPolicy,vol37, no2,387–399

GeoscienceAustralia,2009,RenewableEnergyPowerStations,<http://www.ga.gov.au/renewable/operating/operating_renewable.xls>

Greenpeace,2009,ConcentratingSolarPower,GlobalOutlook09,<http://www.greenpeace.org/international/press/reports/concentrating-solar-power-2009>

IEA(InternationalEnergyAgency),2003,GreenhouseGasResearchandDevelopmentProgramme–ThepotentialofsolarelectricitytoreduceCO

2emissions,Paris

IEA,2009a,WorldEnergyOutlook2009,Paris

IEA,2009b,WorldEnergyBalances,2009,Paris

IEA-PVPS,2008,TrendsinPhotovoltaicApplications:SurveyreportofselectedIEAcountriesbetween1992and2007,IEAPhotovoltaicPowerSystemsProgramme

JiaxingDyiSolarEnergyCo,2009,SolarWaterHeater-1,<http://jxdiyi.en.made-in-china.com/product/sqdnACbhfQDM/China-Flat-Solar-Water-Heater-1.html>

JonesJ,2008,ConcentratingSolarThermalPower,RenewableEnergyWorldMagazine

LloydEnergySystems,2007,CloncurrySolarThermalStorageProject,<http://www.lloydenergy.com/presentations/Cloncurry%20Solar%20Thermal%20Storage%20Project.pdf>

LorenzP,PinnerDandSeitzT,2008,TheEconomicsofSolarPower.TheMcKinseyQuarterly,June2008

LovegroveKandDennisM,2006,SolarthermalenergysystemsinAustralia.InternationalJournalofEnvironmentalStudies.63(6):791–802

MacKayDJC,2009,SustainableEnergy–WithouttheHotAir.UIT,Cambridge,<http://www.withouthotair.com/>

McKinsey&Company,2008,TheEconomicsofSolarPower,inMcKinseyQuarterly,June2008,<http://www.mckinseyquarterly.com>

MillsD,MorrisonGandLeLievreP,2002,ProjectProposalforaCompactLinearFresnelReflectorSolarThermalPlantintheHunterValley,<http://solar1.mech.unsw.edu.au/glm/papers/Mills_projectproposal_newcastle.pdf>

NationalAeronauticsandSpaceAdministration(NASA),2009,SurfaceMeteorologyandSolarEnergyDataset,<http://eosweb.larc.nasa.gov/sse>

NREL,2009a,PhotographicInformationExchange, <http://www.nrel.gov/data/pix/searchpix.html>

NREL,2009b,PhotovoltaicResearch–Building-IntegratedPV,<http://www.nrel.gov/pv/building_integrated_pv.html>

ProwseR,2009,Personalcommunication,5/6/2009.CentreManager,CentreforSustainableEnergySystems,AustralianNationalUniversity

RET(DepartmentofResources,EnergyandTourism),2009a,AustralianSolarInstituteFactSheet,<http://www.ret.gov.au/energy/Documents/ASI%20Fact%20sheet%2014Jan%20cleared%20by%20MO.pdf>

RET,2009b,SolarFlagshipsProgramFactSheet,<http://www.ret.gov.au/energy/Documents/Solar%20Flagships%20factsheet%20-%20Oct%202009.pdf>

Sandia,2009,LabAccomplishments2009:SandiaNationalLaboratories,<http://www.sandia.gov/LabNews/labs-accomplish/2009/lab_accomplish-2009.pdf>

SEGS,2009,SolarElectricityGeneratingSystemswebsite,<http://www.flagsol.com/SEGS_tech.htm>

Sellsius,2006,TheWorld’sMostEfficientSolarEnergy,<http://blog.sellsiusrealestate.com/technology/the-worlds-most-efficient-solar-energy/2006/08/06/>

SolarSystems,2009,154MWVictorianProject,<http://www.solarsystems.com.au/154MWVictorianProject.html>

SolarTubeCompany,2009,SolarWaterHeatingSystem,<http://www.solartubecompany.co.uk/solar-water-heating/>

SteinW,2009a,personalcommunication,4/8/2009.Manager,NationalSolarEnergyCentre,CSIRODivisionofEnergyTechnology

SteinW,2009b,personalcommunication,3/11/2009.Manager,NationalSolarEnergyCentre,CSIRODivisionofEnergyTechnology

SunwizeTechnologies,2008,SunWizeWorldInsolationMap,<http://www.sunwize.com/info_center/solar-insolation-map.php>

WattM,2009,NationalSurveyReportofPVPowerApplicationsinAustralia2008:AustralianPVAssociation

WEC(WorldEnergyCouncil),2007,SurveyofEnergyResources2007,London,September2007,<http://www.worldenergy.org/pugblications/survey_of_energy_resources_2007/default.asp>

WEC,2009,Surveyofenergyresources:Interimupdate2009.London,July2009,<http://www.worldenergy.org/publications/survey_of_energy_resources_interim_update_2009/default.asp>

WyldGroupandMMA,2008,HighTemperatureSolarThermalTechnologyRoadmap.PreparedfortheNSWandVictorianGovernmentsbyWyldGroupandMcLennanMagasanikAssociates,<http://www.coag.gov.au/reports/docs/HTSolar_thermal_roadmap.pdf>

Recommended