Chapter 1- Polynomial Functions - jensenmath.ca 1 unit package TEACHER.pdf · 1.4 L3 Factored Form...

Preview:

Citation preview

Chapter1-Polynomial

Functions

LessonPackage

MHF4U

trevorjensen
Stamp

Chapter1OutlineUnitGoal:Bytheendofthisunit,youwillbeabletoidentifyanddescribesomekeyfeaturesofpolynomialfunctions,andmakeconnectionsbetweenthenumeric,graphical,andalgebraicrepresentationsofpolynomialfunctions.

Section Subject LearningGoals CurriculumExpectations

L1 PowerFunctions-describekeyfeaturesofgraphsofpowerfunctions-learnintervalnotation-beabletodescribeendbehaviour

C1.1,1.2,1.3

L2 CharacteristicsofPolynomialFunctions

-describecharacteristicsofequationsandgraphsofpolynomialfunctions-learnhowdegreerelatedtoturningpointsand𝑥-intercepts

C1.1,1.2,1.3,1.4

L3 FactoredFormPolynomialFunctions

-connecthowfactoredformequationrelatedto𝑥-interceptsofgraphofpolynomialfunction-givengraph,determineequationinfactoredform

C1.5,1.7,1.8

L4 TransformationsofPolynomialFunctions

-understandhowtheparameters𝑎, 𝑘, 𝑑,and𝑐transformpowerfunctions

C1.6

L5 SymmetryinPolynomialFunctions

-understandthepropertiesofevenandoddpolynomialfunctions C1.9

Assessments F/A/O MinistryCode P/O/C KTACNoteCompletion A P PracticeWorksheetCompletion F/A P

Quiz–PropertiesofPolynomialFunctions F P

PreTestReview F/A P Test-Functions O C1.1,1.2,1.3,1.4,1.5,1.6,1.7,

1.8,1.9 P K(21%),T(34%),A(10%),C(34%)

L1–1.1–PowerFunctionsLessonMHF4UJensenThingstoRememberAboutFunctions

• Arelationisafunctionifforevery𝑥-valuethereisonly1corresponding𝑦-value.Thegraphofarelationrepresentsafunctionifitpassestheverticallinetest,thatis,ifaverticallinedrawnanywherealongthegraphintersectsthatgraphatnomorethanonepoint.

• TheDOMAINofafunctionisthecompletesetofallpossiblevaluesoftheindependentvariable(𝑥)

o Setofallpossible𝑥-valesthatwilloutputreal𝑦-values

• TheRANGEofafunctionisthecompletesetofallpossibleresultingvaluesofthedependentvariable(𝑦)

o Setofallpossible𝑦-valueswegetaftersubstitutingallpossible𝑥-values

• Forthefunction𝑓 𝑥 = (𝑥 − 1)) + 3

o D: 𝑋 ∈ ℝ}

o R:{𝑌 ∈ ℝ|𝑦 ≥ 3}

• Thedegreeofafunctionisthehighestexponentintheexpressiono 𝑓 𝑥 = 6𝑥5 − 3𝑥) + 4𝑥 − 9hasadegreeof3

• AnASYMPTOTEisalinethatacurveapproachesmoreandmorecloselybutnevertouches.

Thefunction𝒚 = 𝟏

𝒙;𝟑hastwoasymptotes:

VerticalAsymptote:Divisionbyzeroisundefined.Thereforetheexpressioninthedenominatorofthefunctioncannotbezero.Thereforex≠-3.Thisiswhytheverticallinex=-3isanasymptoteforthisfunction.HorizontalAsymptote:Fortherange,therecanneverbeasituationwheretheresultofthedivisioniszero.Thereforetheliney=0isahorizontalasymptote.Forallfunctionswherethedenominatorisahigherdegreethanthenumerator,therewillbyahorizontalasymptoteaty=0.

PolynomialFunctionsApolynomialfunctionhastheform

𝑓 𝑥 = 𝑎>𝑥> + 𝑎>?@𝑥>?@ + 𝑎>?)𝑥>?) + ⋯+ 𝑎)𝑥) + 𝑎@𝑥@ + 𝑎B

• 𝑛Isawholenumber• 𝑥Isavariable• thecoefficients𝑎B, 𝑎@, … , 𝑎>arerealnumbers• thedegreeofthefunctionis𝑛,theexponentofthegreatestpowerof𝑥• 𝑎>,thecoefficientofthegreatestpowerof𝑥,istheleadingcoefficient• 𝑎B,thetermwithoutavariable,istheconstantterm• ThedomainofapolynomialfunctionisthesetofrealnumbersD: 𝑋 ∈ ℝ}• Therangeofapolynomialfunctionmaybeallrealnumbers,oritmayhavealowerboundoran

upperbound(butnotboth)• Thegraphofpolynomialfunctionsdonothavehorizontalorverticalasymptotes• Thegraphsofpolynomialfunctionsofdegree0arehorizontallines.Theshapesofothergraphs

dependsonthedegreeofthefunction.Fivetypicalshapesareshownforvariousdegrees:Apowerfunctionisthesimplesttypeofpolynomialfunctionandhastheform:

𝑓 𝑥 = 𝑎𝑥>• 𝑎isarealnumber• 𝑥isavariable• 𝑛isawholenumber

Example1:Determinewhichfunctionsarepolynomials.Statethedegreeandtheleadingcoefficientofeachpolynomialfunction.a)𝑔 𝑥 = sin 𝑥b)𝑓 𝑥 = 2𝑥Kc)𝑦 = 𝑥5 − 5𝑥) + 6𝑥 − 8d)𝑔 𝑥 = 3N

Thisisatrigonometricfunction,notapolynomialfunction.

Thisisapolynomialfunctionofdegree4.Theleadingcoefficientis2

Thisisapolynomialfunctionofdegree3.Theleadingcoefficientis1.

Thisisnotapolynomialfunctionbutanexponentialfunction,sincethebaseisanumberandtheexponentisavariable.

IntervalNotationInthiscourse,youwilloftendescribethefeaturesofthegraphsofavarietyoftypesoffunctionsinrelationtoreal-numbervalues.Setsofrealnumbersmaybedescribedinavarietyofways:1)asaninequality−3 < 𝑥 ≤ 52)interval(orbracket)notation(−3, 5]3)graphicallyonanumberlineNote:

• Intervalsthatareinfiniteareexpressedusing∞(infinity)or−∞(negativeinfinity)• Squarebracketsindicatethattheendvalueisincludedintheinterval• RoundbracketsindicatethattheendvalueisNOTincludedintheinterval• Aroundbracketisalwaysusedatinfinityandnegativeinfinity

Example2:Belowarethegraphsofcommonpowerfunctions.Usethegraphtocompletethetable.

PowerFunction

SpecialName Graph Domain Range

EndBehaviouras𝒙 →−∞

EndBehaviouras

𝒙 → ∞

𝒚 = 𝒙 Linear

(−∞,∞) (−∞,∞)

𝑦 → −∞

Startsinquadrant3

𝑦 → ∞

Endsinquadrant1

𝒚 = 𝒙𝟐 Quadratic

(−∞,∞) [0,∞)

𝑦 → ∞

Startsinquadrant2

𝑦 → ∞

Endsinquadrant1

𝒚 = 𝒙𝟑 Cubic

(−∞,∞) (−∞,∞)

𝑦 → −∞

Startsinquadrant3

𝑦 → ∞

Endsinquadrant1

PowerFunction

SpecialName Graph Domain Range

EndBehaviouras𝒙 →−∞

EndBehaviouras

𝒙 → ∞

𝒚 = 𝒙𝟒 Quartic

(−∞,∞) [0,∞)

𝑦 → ∞

Startsinquadrant2

𝑦 → ∞

Endsinquadrant1

𝒚 = 𝒙𝟓 Quintic

(−∞,∞) [−∞,∞)

𝑦 → −∞

Startsinquadrant3

𝑦 → ∞

Endsinquadrant1

𝒚 = 𝒙𝟔 Sextic

(−∞,∞) [0,∞)

𝑦 → ∞

Startsinquadrant2

𝑦 → ∞

Endsinquadrant1

KeyFeaturesofEVENDegreePowerFunctionsWhentheleadingcoefficient(a)ispositive Whentheleadingcoefficient(a)isnegative

Endbehaviour

as𝑥 → −∞, 𝑦 → ∞andas𝑥 → ∞,𝑦 → ∞

Q2toQ1

Endbehaviour

as𝑥 → −∞, 𝑦 → −∞andas𝑥 → ∞,𝑦 → −∞

Q3toQ4

Domain

(−∞,∞)

Domain (−∞,∞)

Range [0,∞) Range

[0, −∞)

Example:

𝑓 𝑥 = 2𝑥K

Example:𝑓 𝑥 = −3𝑥)

LineSymmetryAgraphhaslinesymmetryifthereisaverticalline𝑥 = 𝑎thatdividesthegraphintotwopartssuchthateachpartisareflectionoftheother.Note:Thegraphsofevendegreepowerfunctionshavelinesymmetryabouttheverticalline𝑥 = 0(they-axis).

KeyFeaturesofODDDegreePowerFunctionsWhentheleadingcoefficient(a)ispositive Whentheleadingcoefficient(a)isnegative

Endbehaviour

as𝑥 → −∞, 𝑦 → −∞and

as𝑥 → ∞,𝑦 → ∞

Q3toQ1

Endbehaviour

as𝑥 → −∞, 𝑦 → ∞andas𝑥 → ∞,𝑦 → −∞

Q2toQ4

Domain

(−∞,∞)

Domain (−∞,∞)

Range (−∞,∞) Range

(−∞,∞)

Example:

𝑓 𝑥 = 3𝑥[

Example:𝑓 𝑥 = −2𝑥5

PointSymmetryAgraphhaspointpointsymmetryaboutapoint(𝑎, 𝑏)ifeachpartofthegraphononesideof(𝑎, 𝑏)canberotated180°tocoincidewithpartofthegraphontheothersideof(𝑎, 𝑏).Note:Thegraphofodddegreepowerfunctionshavepointsymmetryabouttheorigin(0,0).

Example3:Writeeachfunctionintheappropriaterowofthesecondcolumnofthetable.Givereasonsforyourchoices.𝑦 = 2𝑥 𝑦 = 5𝑥^ 𝑦 = −3𝑥) 𝑦 = 𝑥_𝑦 = − )

[𝑥` 𝑦 = −4𝑥[ 𝑦 = 𝑥@B 𝑦 = −0.5𝑥b

EndBehaviour Functions Reasons

Q3toQ1

𝑦 = 2𝑥

𝑦 = 𝑥_

Oddexponent

Positiveleadingcoefficient

Q2toQ4𝑦 = −

25 𝑥

`

𝑦 = −4𝑥[

Oddexponent

Negativeleadingcoefficient

Q2toQ1𝑦 = 5𝑥^

𝑦 = 𝑥@B

Evenexponent

Positiveleadingcoefficient

Q3toQ4𝑦 = −3𝑥)

𝑦 = −0.5𝑥b

Evenexponent

Negativeleadingcoefficient

Example4:Foreachofthefollowingfunctionsi)Statethedomainandrangeii)Describetheendbehavioriii)Identifyanysymmetry

a)b)c)

𝒚 = −𝒙

𝒚 = 𝟎. 𝟓𝒙𝟐

𝒚 = 𝟒𝒙𝟑

i)Domain:(−∞,∞) Range:(−∞,∞) ii)As𝑥 → −∞,𝑦 → ∞andas𝑥 → ∞,𝑦 → −∞Thegraphextendsfromquadrant2to4iii)Pointsymmetryabouttheorigin(0,0)

i)Domain:(−∞,∞) Range:[0,∞) ii)As𝑥 → −∞,𝑦 → ∞andas𝑥 → ∞,𝑦 → ∞Thegraphextendsfromquadrant2to1iii)Linesymmetryabouttheline𝑥 = 0(they-axis)

i)Domain:(−∞,∞) Range:(−∞,∞) ii)As𝑥 → −∞,𝑦 → −∞andas𝑥 → ∞,𝑦 → ∞Thegraphextendsfromquadrant3to1iii)Pointsymmetryabouttheorigin(0,0)

L2–1.2–CharacteristicsofPolynomialFunctionsLessonMHF4UJensenInsection1.1welookedatpowerfunctions,whicharesingle-termpolynomialfunctions.Manypolynomialfunctionsaremadeupoftwoormoreterms.Inthissectionwewilllookatthecharacteristicsofthegraphsandequationsofpolynomialfunctions.NewTerminology–LocalMin/Maxvs.AbsoluteMin/MaxLocalMinorMaxPoint–Pointsthatareminimumormaximumpointsonsomeintervalaroundthatpoint.AbsoluteMaxorMin–Thegreatest/leastvalueattainedbyafunctionforALLvaluesinitsdomain.Investigation:GraphsofPolynomialFunctionsThedegreeandtheleadingcoefficientintheequationofapolynomialfunctionindicatetheendbehavioursofthegraph.Thedegreeofapolynomialfunctionprovidesinformationabouttheshape,turningpoints(localmin/max),andzeros(x-intercepts)ofthegraph.Completethefollowingtableusingtheequationandgraphsgiven:

Inthisgraph,(-1,4)isalocalmaxand(1,-4)isalocalmin.Thesearenotabsoluteminandmaxpointsbecausethereareotherpointsonthegraphofthefunctionthataresmallerandgreater.Sometimeslocalminandmaxpointsarecalledturningpoints.

Onthegraphofthisfunction…Thereare3localmin/maxpoints.2arelocalminand1isalocalmax.Oneofthelocalminpointsisalsoanabsolutemin(itislabeled).

EquationandGraph DegreeEvenorOdd

Degree?

LeadingCoefficient EndBehaviour

Numberofturningpoints

Numberofx-intercepts

𝑓 𝑥 = 𝑥$ + 4𝑥 − 5

𝑓 𝑥 = 3𝑥* − 4𝑥+ − 4𝑥$ + 5𝑥 + 5

𝑓 𝑥 = 𝑥+ − 2𝑥

𝑓 𝑥 = −𝑥* − 2𝑥+ + 𝑥$ + 2𝑥

𝑓 𝑥 = 2𝑥- − 12𝑥* + 18𝑥$ + 𝑥 − 10

𝑓 𝑥 = 2𝑥1 + 7𝑥* − 3𝑥+ − 18𝑥$ + 5

trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil

SummaryofFindings:

• Apolynomialfunctionofdegree𝑛hasatmost𝒏 − 𝟏localmax/minpoints(turningpoints)• Apolynomialfunctionofdegree𝑛mayhaveupto𝒏distinctzeros(x-intercepts)• Ifapolynomialfunctionisodddegree,itmusthaveatleastonex-intercept,andanevennumberofturning

points• Ifapolynomialfunctionisevendegree,itmayhavenox-intercepts,andanoddnumberofturningpoints

• Anodddegreepolynomialfunctionextendsfrom…o 3rdquadrantto1stquadrantifithasapositiveleadingcoefficiento 2ndquadrantto4thquadrantifithasanegativeleadingcoefficient

• Anevendegreepolynomialfunctionextendsfrom…o 2ndquadrantto1stquadrantifithasapositiveleadingcoefficiento 3rdquadrantto4thquadrantifishasanegativeleadingcoefficient

EquationandGraph DegreeEvenorOdd

Degree?

LeadingCoefficient EndBehaviour

Numberofturningpoints

Numberofx-intercepts

𝑓 𝑥 = 5𝑥1 + 5𝑥* − 2𝑥+ + 4𝑥$ − 3𝑥

𝑓 𝑥 = −2𝑥+ + 4𝑥$ − 3𝑥 − 1

𝑓 𝑥 = 𝑥* + 2𝑥+ − 3𝑥 − 1

Note:OdddegreepolynomialshaveOPPOSITEendbehaviours

Note:EvendegreepolynomialshaveTHESAMEendbehaviour.

trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Stamp
trevorjensen
Stamp

Example1:Describetheendbehavioursofeachfunction,thepossiblenumberofturningpoints,andthepossiblenumberofzeros.Usethesecharacteristicstosketchpossiblegraphsofthefunctiona)𝑓 𝑥 = −3𝑥1 + 4𝑥+ − 8𝑥$ + 7𝑥 − 5ThedegreeisoddandtheleadingcoefficientisnegativesothefunctionmustextendfromQ2toQ4As𝑥 → −∞, 𝑦 → ∞As𝑥 → ∞, 𝑦 → −∞Thefunctioncanhaveatmost5𝑥-intercepts(1,2,3,4,or5)Thefunctioncanhaveatmost4turningpoints(0,2,or4)Possiblegraphsof5thdegreepolynomialfunctionswithanegativeleadingcoefficient:b)𝑔 𝑥 = 2𝑥* + 𝑥$ + 2Thedegreeisevenandtheleadingcoefficientispositivesothefunctionmustextendfromthesecondquadranttothefirstquadrant.As𝑥 → −∞, 𝑦 → ∞As𝑥 → ∞, 𝑦 → ∞Thefunctioncanhaveatmost4𝑥-intercepts(0,1,2,3,or4)Thefunctioncanhaveatmost3turningpoints(1,or3)Possiblegraphsof4thdegreepolynomialfunctionswithapositiveleadingcoefficient:Example2:Filloutthefollowingchart

Degree Possible#of𝒙-intercepts Possible#ofturningpoints1 1 02 0,1,2 13 1,2,3 0,24 0,1,2,3,4 1,35 1,2,3,4,5 0,2,4

Note:Odddegreefunctionsmusthaveanevennumberofturningpoints.

Note:Evendegreefunctionsmusthaveanoddnumberofturningpoints.

trevorjensen
Stamp

Example3:Determinethekeyfeaturesofthegraphofeachpolynomialfunction.Usethesefeaturestomatcheachfunctionwithitsgraph.Statethenumberof𝑥-intercepts,thenumberoflocalmax/minpoints,andthenumberofabsolutemax/minpointsforthegraphofeachfunction.Howarethesefeaturesrelatedtothedegreeofeachfunction?a)𝑓 𝑥 = 2𝑥+ − 4𝑥$ + 𝑥 + 1b)𝑔 𝑥 = −𝑥* + 10𝑥$ + 5𝑥 − 4c)ℎ 𝑥 = −2𝑥1 + 5𝑥+ − 𝑥d)𝑝 𝑥 = 𝑥- − 16𝑥$ + 3a)Thefunctioniscubicwithapositiveleadingcoefficient.ThegraphextendsfromQ3toQ1.They-interceptis1.Graphiv)correspondstothisequation.Thereare3x-interceptsandthedegreeis3.Thefunctionhasonelocalmaxandonelocalmin,whichisatotaloftwoturningpoints,whichisonelessthanthedegree.Thereisnoabsolutemaxorminpoint.b)Thefunctionisquarticwithanegativeleadingcoefficient.Thegraphextendsfromquadrant3to4.They-interceptis-4.Graphi)correspondstothisequation.Thereare4x-interceptsandthedegreeis4.Thefunctionhastwolocalmaxandonelocalmin,whichisatotalof3turningpoints,whichisonelessthanthedegree.Thefunctionhasoneabsolutemaxpoint.c)Thefunctionisquinticwithanegativeleadingcoefficient.Thegraphextendsfromquadrant2to4.They-interceptis0.Graphiii)correspondstothisequation.Thereare5x-interceptsandthedegreeis5.Thefunctionhastwolocalmaxandtwolocalmin,whichisatotalof4,whichisonelessthanthedegree.Thefunctionhasnoabsolutemaxorminpoints.d)Thefunctionisdegree6withapositiveleadingcoefficient.Thegraphextendsfromquadrant2to1.They-interceptis3.Graphii)correspondstothisequation.Thereare4x-interceptsandthedegreeis6.Thefunctionhastwolocalmaxandonelocalmin,whichisatotalof3,whichisthreelessthanthedegree.Thefunctionhastwoabsoluteminpoints.FiniteDifferencesForapolynomialfunctionofdegree𝑛,where𝑛isapositiveinteger,the𝑛?@differences…

• areequal• havethesamesignastheleadingcoefficient• areequalto𝑎 ∙ 𝑛!,where𝑎istheleadingcoefficient

Note:𝑛!isreadas𝑛factorial.𝑛! = 𝑛×(𝑛 − 1)×(𝑛 − 2)×…×2×15! = 5×4×3×2×1 = 120

Example4:Thetableofvaluesrepresentsapolynomialfunction.Usefinitedifferencestodetermine

a) thedegreeofthepolynomialfunctionb) thesignoftheleadingcoefficientc) thevalueoftheleadingcoefficient

a)Thethirddifferencesareconstant.So,thetableofvaluesrepresentsacubicfunction.Thedegreeofthefunctionis3.b)Theleadingcoefficientispositivesince6ispositive.c) 6 = 𝑎 ∙ 𝑛! 6 = 𝑎 ∙ 3! 6 = 𝑎 ∙ 6 -

-= 𝑎

𝑎 = 1Therefore,theleadingcoefficientofthepolynomialfunctionis1.Example5:Forthefunction2𝑥* − 4𝑥$ + 𝑥 + 1whatisthevalueoftheconstantfinitedifferences?𝐹𝑖𝑛𝑖𝑡𝑒𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = 𝑎 ∙ 𝑛! = 2 ∙ 4! = 2 ∙ 24 = 48Therefore,thefourthdifferenceswouldallbe48forthisfunction.

𝒙 𝒚 Firstdifferences Seconddifferences Thirddifferences

-3 -36 -2 -12 −12 − −36 = 24 -1 -2 −2 − −12 = 10 10 − 24 = −14 0 0 0 − −2 = 2 2 − 10 = −8 −8 − −14 = 61 0 0 − 0 = 0 0 − 2 = −2 −2 − −8 = 62 4 4 − 0 = 4 4 − 0 = 4 4 − −2 = 63 18 18 − 4 = 14 14 − 4 = 10 10 − 4 = 64 48 48 − 18 = 30 30 − 14 = 16 16 − 10 = 6

L3–1.3–FactoredFormPolynomialFunctionsLessonMHF4UJensenInthissection,youwillinvestigatetherelationshipbetweenthefactoredformofapolynomialfunctionandthe𝑥-interceptsofthecorrespondinggraph,andyouwillexaminetheeffectofrepeatedfactoronthegraphofapolynomialfunction.FactoredFormInvestigationIfwewanttographthepolynomialfunction𝑓 𝑥 = 𝑥$ + 3𝑥' + 𝑥( − 3𝑥 − 2accurately,itwouldbemostusefultolookatthefactoredformversionofthefunction:𝑓 𝑥 = 𝑥 + 1 ( 𝑥 + 2 𝑥 − 1 Letsstartbylookingatthegraphofthefunctionandmakingconnectionstothefactoredformequation.

Graphof𝑓(𝑥): Fromthegraph,answerthefollowingquestions… a)Whatisthedegreeofthefunction? b)Whatisthesignoftheleadingcoefficient? c)Whatarethe𝑥-intercepts? d)Whatisthe𝑦-intercept?

e)The𝑥-interceptsdividethegraphintointofourintervals.Writetheintervalsinthefirstrowofthetable.Inthesecondrow,chooseatestpointwithintheinterval.Inthethirdrow,indicatewhetherthefunctionispositive(abovethe𝑥-axis)ornegative(belowthe𝑦-axis).Interval (−∞,−2) (−2,−1) (−1, 1) (1,∞)

TestPoint

𝑓 −3 = −3 + 1 ( −3 + 2 −3 − 1 = −2 ((−1)(−4)= 16

𝑓 −1.5 = −1.5 + 1 ( −1.5 + 2 −1.5 − 1 = −0.5 ((0.5)(−2.5)= −0.3125

𝑓 0 = 0 + 1 ( 0 + 2 0 − 1 = 1 ((2)(−1)= −2

𝑓 3 = 3 + 1 ( 3 + 2 3 − 1 = 4 ((5)(2)= 160

Signof𝒇(𝒙) + − − +f)Whathappenstothesignoftheof𝑓(𝑥)neareach𝑥-intercept?

Thehighestdegreetermis𝑥$,thereforethefunctionisdegree4(quartic)

Theleadingcoefficientis1,thereforetheleadingcoefficientisPOSITIVE

The𝑥-interceptsare(−2, 0)oforder1,(−1, 0)oforder2,and(1, 0)oforder1

The𝑦-interceptisthepoint(0,−2)

At(-2,0)whichisorder1,itchangessignsAt(-1,0)whichisorder2,thesigndoesNOTchangeAt(1,0)whichisorder1,itchangessigns

trevorjensen
Pencil
trevorjensen
Pencil

Conclusionsfrominvestigation:The𝑥-interceptsofthegraphofthefunctioncorrespondtotheroots(zeros)ofthecorrespondingequation.Forexample,thefunction𝑓 𝑥 = (𝑥 − 2)(𝑥 + 1)has𝑥-interceptsat2and-1.Thesearetherootsoftheequation 𝑥 − 2 𝑥 + 1 = 0.Ifapolynomialfunctionhasafactor(𝑥 − 𝑎)thatisrepeated𝑛times,then𝑥 = 𝑎isazeroofORDER𝑛.Order–theexponenttowhicheachfactorinanalgebraicexpressionisraised.Forexample,thefunction𝑓 𝑥 = 𝑥 − 3 ((𝑥 − 1)hasazeroofordertwoat𝑥 = 3andazerooforderoneat𝑥 = 1.Thegraphofapolynomialfunctionchangessignatzerosofoddorderbutdoesnotchangesignatzerosofevenorder.Shapesbasedonorderofzero:

𝑓 𝑥 = 0.01(𝑥 − 1) 𝑥 + 2 ((𝑥 − 4)'

ORDER2(-2,0)isan𝑥-interceptoforder2.Therefore,itdoesn’tchangesign.“Bouncesoff”𝑥-axis.Parabolicshape.

ORDER1(1,0)isan𝑥-interceptoforder1.Therefore,itchangessign.“Goesstraightthrough”𝑥-axis.LinearShape

ORDER3(4,0)isan𝑥-interceptoforder3.Therefore,itchangessign.“S-shape”through𝑥-axis.Cubicshape.

trevorjensen
Pencil
trevorjensen
Pencil

Three𝑥-interceptsoforder1,sotheleastpossibledegreeis3.ThegraphgoesfromQ2toQ4sotheleadingcoefficientisnegative.

The𝑥-interceptsare-5,0,and3.Thefactorsare(𝑥 + 5),𝑥,and(𝑥 − 3)

Two𝑥-interceptsoforder1,andone𝑥-interceptoforder2,sotheleastpossibledegreeis4.ThegraphgoesfromQ2toQ1sotheleadingcoefficientispositive.

The𝑥-interceptsare-2,1,and3.Thefactorsare(𝑥 + 2),(𝑥 − 1),and(𝑥 − 3)(

Example1:AnalyzingGraphsofPolynomialFunctionsForeachgraph,

i) theleastpossibledegreeandthesignoftheleadingcoefficientii) the𝑥-interceptsandthefactorsofthefunctioniii) theintervalswherethefunctionispositive/negative

a) i) ii) iii)b) i) ii) iii)

trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Stamp
trevorjensen
Stamp
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil

Example2:AnalyzeFactoredFormEquationstoSketchGraphs

Degree LeadingCoefficient EndBehaviour 𝒙-intercepts 𝒚-interceptTheexponenton𝑥whenallfactorsof𝑥aremultipliedtogether

OR

Addtheexponentsonthefactorsthatincludean𝑥.

Theproductofallthe𝑥coefficients

Usedegreeandsignofleadingcoefficienttodeterminethis

Seteachfactorequaltozeroandsolvefor𝑥

Set𝑥 = 0andsolvefor𝑦

Sketchagraphofeachpolynomialfunction:a)𝑓 𝑥 = (𝑥 − 1)(𝑥 + 2)(𝑥 + 3)

Degree LeadingCoefficient EndBehaviour 𝒙-intercepts 𝒚-interceptTheproductofallfactorsof𝑥is:

𝑥 𝑥 𝑥 = 𝑥'Thefunctioniscubic.

DEGREE3

Theproductofallthe𝑥coefficientsis:1 1 1 = 1

LeadingCoefficientis1

Cubicwithapositiveleadingcoefficientextendsfrom:

Q3toQ1

The𝒙-interceptsare1,-2,and-3(1,0)(-2,0)(-3,0)

Set𝑥equalto0andsolve:𝑦 = 0 − 1 0 + 2 0 + 3 𝑦 = (−1)(2)(3)𝑦 = −6The𝒚-interceptis

at(0,-6)

trevorjensen
Pencil

b)𝑔 𝑥 = −2 𝑥 − 1 ((𝑥 + 2)

Degree LeadingCoefficient EndBehaviour 𝒙-intercepts 𝒚-interceptTheproductofallfactorsof𝑥is:

𝑥( 𝑥 = 𝑥'Thefunctioniscubic.

DEGREE3

Theproductofallthe𝑥coefficientsis:−2 1 ( 1 = −2

LeadingCoefficientis−𝟐

Cubicwithanegativeleadingcoefficientextendsfrom:

Q2toQ4

The𝒙-interceptsare1(order2),and-2.(1,0)(-2,0)

Set𝑥equalto0andsolve:𝑦 = −2 0 − 1 ( 0 + 2 𝑦 = (−2)(1)(2)𝑦 = −4The𝒚-interceptis

at(0,-4)

c)ℎ 𝑥 = − 2𝑥 + 1 '(𝑥 − 3)

Degree LeadingCoefficient EndBehaviour 𝒙-intercepts 𝒚-interceptTheproductofallfactorsof𝑥is:

𝑥' 𝑥 = 𝑥$Thefunctionisquartic.

DEGREE4

Theproductofallthe𝑥coefficientsis:−1 2 ' 1 = −8

LeadingCoefficientis−𝟖

Aquarticwithanegativeleadingcoefficientextendsfrom:

Q3toQ4

The𝒙-interceptsare−𝟏

𝟐(order3),

and3.−A(, 0

(3, 0)

Set𝑥equalto0andsolve:𝑦 = − 2 0 + 1 '[0 − 3]𝑦 = (−1)(1)(−3)𝑦 = 3The𝒚-interceptis

at(0,3)

trevorjensen
Pencil
trevorjensen
Pencil

d)𝑗 𝑥 = 𝑥$ − 4𝑥' + 3𝑥(

𝑗 𝑥 = 𝑥((𝑥( − 4𝑥 + 3)𝑗 𝑥 = 𝑥((𝑥 − 3)(𝑥 − 1)

Degree LeadingCoefficient EndBehaviour 𝒙-intercepts 𝒚-interceptTheproductofallfactorsof𝑥is:

𝑥( 𝑥 (𝑥) = 𝑥$Thefunctionisquartic.

DEGREE4

Theproductofallthe𝑥coefficientsis:1 ( 1 (1) = 1

LeadingCoefficientis𝟏

Aquarticwithapositiveleadingcoefficientextendsfrom:

Q2toQ1

The𝒙-interceptsare0(order2),3,and1.(0, 0)(3, 0)(1, 0)

Set𝑥equalto0andsolve:𝑦 = 0 ((0 − 3)(0 − 1)𝑦 = (0)(−3)(−1)𝑦 = 0The𝒚-interceptis

at(0,0)

Example3:RepresentingtheGraphofaPolynomialFunctionwithitsEquationa)Writetheequationofthefunctionshownbelow:

Note:mustputintofactoredformtofind𝑥-intercepts

Steps:1)Writetheequationofthefamilyofpolynomialsusingfactorscreatedfrom𝑥-intercepts2)Substitutethecoordinatesofanotherpoint(𝑥, 𝑦)intotheequation.3)Solvefor𝑎4)Writetheequationinfactoredform

Thefunctionhas𝑥-interceptsat-2and3.Bothareoforder2.𝑓(𝑥) = 𝑘(𝑥 + 2)((𝑥 − 3)(

4 = 𝑘(2 + 2)((2 − 3)(

4 = 𝑘(4)((−1)(

4 = 16𝑘

𝑘 =14

𝒇(𝒙) =𝟏𝟒 (𝒙 + 𝟐)

𝟐(𝒙 − 𝟑)𝟐

trevorjensen
Pencil

b)Findtheequationofapolynomialfunctionthatisdegree4withzeros−1(order3)and1,andwitha𝑦-interceptof−2.

𝑓(𝑥) = 𝑘(𝑥 + 1)'(𝑥 − 1)

−2 = 𝑘(0 + 1)'(0 − 1)−2 = 𝑘(1)'(−1)−2 = −1𝑘𝑘 = 2

𝒇(𝒙) = 𝟐(𝒙 + 𝟏)𝟑(𝒙 − 𝟏)

trevorjensen
Pencil

L4–1.4–TransformationsLessonMHF4UJensenInthissection,youwillinvestigatetherolesoftheparameters𝑎, 𝑘, 𝑑,and𝑐inpolynomialfunctionsoftheform𝒇(𝒙) = 𝒂 𝒌 𝒙 − 𝒅 𝒏 + 𝒄.Youwillapplytransformationstothegraphsofbasicpowerfunctionstosketchthegraphofitstransformedfunction.Part1:TransformationsInvestigationInthisinvestigation,youwillbelookingattransformationsofthepowerfunction𝑦 = 𝑥4.Completethefollowingtableusinggraphingtechnologytohelp.Thegraphof𝑦 = 𝑥4isgivenoneachsetofaxes;sketchthegraphofthetransformedfunctiononthesamesetofaxes.Thencommentonhowthevalueoftheparameter𝑎, 𝑘, 𝑑,or𝑐transformstheparentfunction.Effectsof𝑐on𝑦 = 𝑥4 + 𝑐TransformedFunction Valueof𝒄 Transformationsto𝒚 = 𝒙𝟒 Graphoftransformedfunction

comparedto𝒚 = 𝒙𝟒

𝑦 = 𝑥4 + 1 𝑐 = 1 Shiftup1unit

𝑦 = 𝑥4 − 2 𝑐 = −2 Shiftdown2units

Effectsof𝑑on𝑦 = (𝑥 − 𝑑)4TransformedFunction

Valueof𝒅 Transformationsto𝒚 = 𝒙𝟒 Graphoftransformedfunctioncomparedto𝒚 = 𝒙𝟒

𝑦 = (𝑥 − 2)4 𝑑 = 2 Shiftright2units

𝑦 = (𝑥 + 3)4 𝑑 = −3 Shiftleft3units

Effectsof𝑎on𝑦 = 𝑎𝑥4TransformedFunction

Valueof𝒂 Transformationsto𝒚 = 𝒙𝟒 Graphoftransformedfunctioncomparedto𝒚 = 𝒙𝟒

𝑦 = 2𝑥4 𝑎 = 2 Verticalstretchbyafactorof2

𝑦 =12𝑥

4 𝑎 =12

Verticalcompressionbyafactorof:

;

𝑦 = −2𝑥4 𝑎 = −2 Verticalstretchbyafactorof2andaverticalreflection.

Effectsof𝑘on𝑦 = (𝑘𝑥)4TransformedFunction

Valueof𝒌 Transformationsto𝒚 = 𝒙𝟒 Graphoftransformedfunctioncomparedto𝒚 = 𝒙𝟒

𝑦 = (2𝑥)4 𝑘 = 2Horizontalcompressionbya

factorof:;

𝑦 =13𝑥

4

𝑘 =13

Horizontalstretchbyafactorof3

𝑦 = (−2𝑥)4 𝑘 = −2Horizontalcompressionbyafactorof:

;andahorizontalreflection

Summaryofeffectsof𝑎, 𝑘, 𝑑,and𝑐inpolynomialfunctionsoftheform𝑓(𝑥) = 𝑎 𝑘 𝑥 − 𝑑 = + 𝑐

Valueof𝒄in𝒇(𝒙) = 𝒂 𝒌 𝒙 − 𝒅 𝒏 + 𝒄

𝑐 > 0 Shift𝑐unitsup

𝑐 < 0 Shift𝑐unitsdown

Valueof𝒅in𝒇(𝒙) = 𝒂 𝒌 𝒙 − 𝒅 𝒏 + 𝒄

𝑑 > 0 Shift𝑑unitsright

𝑑 < 0 Shift|𝑑|unitsleft

Valueof𝒂in𝒇(𝒙) = 𝒂 𝒌 𝒙 − 𝒅 𝒏 + 𝒄

𝑎 > 1or𝑎 < −1 Verticalstretchbyafactorof|𝑎|

−1 < 𝑎 < 1 Verticalcompressionbyafactorof|𝑎|

𝑎 < 0 Verticalreflection(reflectioninthe𝑥-axis)

Valueof𝒌in𝒇(𝒙) = 𝒂 𝒌 𝒙 − 𝒅 𝒏 + 𝒄

𝑘 > 1or𝑘 < −1 Horizontalcompressionbyafactorof :|B|

−1 < 𝑘 < 1 Horizontalstretchbyafactorof :|B|

𝑘 < 0 Horizontalreflection(reflectioninthe𝑦-axis)

Note:𝑎and𝑐causeVERTICALtransformationsandthereforeeffectthe𝑦-coordinatesofthefunction.𝑘and𝑑causeHORIZONTALtransformationsandthereforeeffectthe𝑥-coordinatesofthefunction.Whenapplyingtransformationstoaparentfunction,makesuretoapplythetransformationsrepresentedby𝑎and𝑘BEFOREthetransformationsrepresentedby𝑑and𝑐.

Part2:DescribingTransformationsfromanEquationExample1:Describethetransformationsthatmustbeappliedtothegraphofeachpowerfunction,𝑓(𝑥),toobtainthetransformedfunction,𝑔(𝑥).Then,writethecorrespondingequationofthetransformedfunction.Then,statethedomainandrangeofthetransformedfunction.a)𝑓 𝑥 = 𝑥4,𝑔 𝑥 = 2𝑓 :

D𝑥 − 5

𝑎 = 2;verticalstretchbyafactorof2(2𝑦)𝑘 = :

D;horizontalstretchbyafactorof3(3𝑥)

𝑑 = 5;shift5unitsright(𝑥 + 5)

𝑔 𝑥 = 213 𝑥 − 5

4

b)𝑓 𝑥 = 𝑥G,𝑔 𝑥 = :

4𝑓 −2 𝑥 − 3 + 4

𝑎 = :

4;verticalcompressionbyafactorof:

4 I4

𝑘 = −2;horizontalcompressionbyafactorof:

;andahorizontalreflection J

K;

𝑑 = 3;shiftright3units(𝑥 + 3)𝑐 = 4;shift4unitsup(𝑦 + 4)

𝑔 𝑥 =14 −2 𝑥 − 3 G + 4

Part3:ApplyingTransformationstoSketchaGraphExample2:Thegraphof𝑓(𝑥) = 𝑥Distransformedtoobtainthegraphof𝑔(𝑥) = 3 −2 𝑥 + 1 D + 5.a)Statetheparametersanddescribethecorrespondingtransformations𝑎 = 3;verticalstretchbyafactorof3(3𝑦)

𝑘 = −2;horizontalcompressionbyafactorof:;andahorizontalreflection J

K;

𝑑 = −1;shiftleft1unit(𝑥 − 1)𝑐 = 5;shiftup5units(𝑦 + 5)b)Makeatableofvaluesfortheparentfunctionandthenusethetransformationsdescribedinparta)tomakeatableofvaluesforthetransformedfunction.

c)Graphtheparentfunctionandthetransformedfunctiononthesamegrid.

𝑓 𝑥 = 𝑥D𝒙 𝒚-2 -8

-1 -1

0 0

1 1

2 8

𝒈(𝒙) = 𝟑 -𝟐 𝒙 + 𝟏 𝟑 + 𝟓𝒙K𝟐− 𝟏 𝟑𝒚 + 𝟓0 −19

−0.5 2

−1 5

−1.5 8

−2 29

Note:Whenchoosingkeypointsfortheparentfunction,alwayschoose𝑥-valuesbetween-2and2andcalculatethecorrespondingvaluesof𝑦.

trevorjensen
Pencil
trevorjensen
Pencil

Example3:Thegraphof𝑓(𝑥) = 𝑥4istransformedtoobtainthegraphof𝑔(𝑥) = − :D𝑥 + 2

4− 1.

a)Statetheparametersanddescribethecorrespondingtransformations

𝑔 𝑥 = −13 𝑥 + 6

4

− 1𝑎 = −1;verticalreflection(−1𝑦)

𝑘 = :D;horizontalstretchbyafactorof3(3𝑥)

𝑑 = −6;shiftleft6units(𝑥 − 6)𝑐 = −1;shiftdown1unit(𝑦 − 1)b)Makeatableofvaluesfortheparentfunctionandthenusethetransformationsdescribedinparta)tomakeatableofvaluesforthetransformedfunction.

c)Graphtheparentfunctionandthetransformedfunctiononthesamegrid.

𝑓 𝑥 = 𝑥4𝒙 𝒚-2 16

-1 1

0 0

1 1

2 16

𝑔 𝑥 = −13𝑥 + 6

4− 1

3𝑥 − 6 −𝑦 − 1−12 −17

−9 −2

−6 −1

−3 −2

0 −17

Note:𝑘valuemustbefactoredoutintotheform[𝑘(𝑥 + 𝑑)]

trevorjensen
Pencil

Part4:DetermininganEquationGiventheGraphofaTransformedFunctionExample4:Transformationsareappliedtoeachpowerfunctiontoobtaintheresultinggraph.Determineanequationforthetransformedfunction.Thenstatethedomainandrangeofthetransformedfunction.a) b)

Noticethetransformedfunctionisthesameshapeastheparentfunction.Therefore,ithasnotbeenstretchedorcompressed.𝑑 = −3;ithasbeenshiftedleft3units𝑐 = −5;ithasbeenshifteddown5units𝒈(𝒙) = (𝒙 + 𝟑)𝟒 − 𝟓Domain:(−∞,∞) Range:[−𝟓,∞)

Noticethetransformedfunctionisthesameshapeastheparentfunction.Therefore,ithasnotbeenstretchedorcompressed.𝑎 = −1;ithasbeenreflectedvertically𝑑 = 5;ithasbeenshiftedright5units𝒈(𝒙) = −(𝒙 − 𝟓)𝟑Domain:(−∞,∞) Range:(−∞,∞)

trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil

f(1)

f(-1)

f(1)f(-1)

𝑓(𝑥) = 2𝑥' + 3𝑥* − 2Notice:𝑓(1) = 3𝑓(−1) = 3∴ 𝑓(1) = 𝑓(−1)

L5–1.3–SymmetryinPolynomialFunctionsMHF4UJensenInthissection,youwilllearnaboutthepropertiesofevenandoddpolynomialfunctions.SymmetryinPolynomialFunctionsLineSymmetry–thereisaverticallineoverwhichthepolynomialremainsunchangedwhenreflected.Pointsymmetry/RotationalSymmetry–thereisapointaboutwhichthepolynomialremainsunchangedwhenrotated180°Section1:PropertiesofEvenandOddFunctionsApolynomialfunctionofevenorodddegreeisNOTnecessarilyandevenoroddfunction.Thefollowingarepropertiesofallevenandoddfunctions:

EvenFunctions OddFunctionsAnevendegreepolynomialfunctionisanEVENFUNCTIONif:

• Linesymmetryoverthe𝑦-axis• Theexponentofeachtermiseven• Mayhaveaconstantterm

AnodddegreepolynomialfunctionisanODDFUNCTIONif:

• Pointsymmetryabouttheorigin(0,0)• Theexponentofeachtermisodd• Noconstantterm

Rule:𝑓 −𝑥 = 𝑓(𝑥)

Rule:−𝑓 𝑥 = 𝑓(−𝑥)

Example:

Example:

𝑓(𝑥) = 2𝑥2 + 3𝑥Notice:𝑓(1) = 5𝑓(−1) = −5∴ −𝑓(1) = 𝑓(−1)

trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil

Example1:Identifyeachfunctionasanevenfunction,oddfunction,orneither.Explainhowyoucantell.a)𝑦 = 𝑥2 − 4𝑥b)𝑦 = 𝑥2 − 4𝑥 + 2c)𝑦 = 𝑥' − 4𝑥* + 2

Thisisanoddfunctionbecause:

• Ithaspointsymmetryabouttheorigin• Alltermsintheequationhaveanoddexponentandthereisno

constantterm

NeitherThisfunctionhaspointsymmetry.However,theoriginisnotthepointaboutwhichthefunctionissymmetrical.Therefore,itisnotanoddorevenfunction.FromtheequationwecantellitisNOTanoddfunctionbecausethereisaconstantterm.

Thisisanevenfunctionbecause:

• Ithaslinesymmetryaboutthe𝑦-axis• Alltermsintheequationhaveanevenexponent.Evenfunctionsare

allowedtohaveaconstantterm.

trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil

d)𝑦 = 3𝑥' + 𝑥2 − 4𝑥* + 2e)𝑦 = −3𝑥* − 6𝑥Example2:Chooseallthatapplyforeachfunctiona) b)

NeitherThisfunctiondoesnothavelineorpointsymmetry.FromtheequationwecantellitisNOTanevenoroddfunctionbecausethereisamixofevenandoddexponents.

NeitherThisfunctionhaslinesymmetry.However,the𝑦-axisisnotthelineaboutwhichthefunctionissymmetrical.Therefore,itisnotanoddorevenfunction.FromtheequationwecantellitisNOTanevenoroddfunctionbecausethereisamixtureofevenandoddexponents.

i)nosymmetry

ii)pointsymmetry

iii)linesymmetry

iv)oddfunction

v)evenfunction

i)nosymmetry

ii)pointsymmetry

iii)linesymmetry

iv)oddfunction

v)evenfunction

trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil
trevorjensen
Pencil

c)𝑃 𝑥 = 5𝑥2 + 3𝑥* + 2 d)𝑃 𝑥 = 𝑥8 + 𝑥* − 11

e) f)g)𝑃 𝑥 = 5𝑥9 − 4𝑥2 + 8𝑥Example3:Withoutgraphing,determineifeachpolynomialfunctionhaslinesymmetryaboutthey-axis,pointsymmetryabouttheorigin,orneither.Verifyyourresponsealgebraically.a)𝑓 𝑥 = 2𝑥' − 5𝑥* + 4Thefunctionisevensincetheexponentofeachtermiseven.Thefunctionhaslinesymmetryaboutthe𝑦-axis.Verify𝑓 𝑥 = 𝑓(−𝑥)𝑓 −𝑥 = 2 −𝑥 ' − 5 −𝑥 * + 4𝑓 −𝑥 = 2𝑥' − 5𝑥* + 4𝑓 −𝑥 = 𝑓(𝑥)

i)nosymmetry

ii)pointsymmetry

iii)linesymmetry

iv)oddfunction

v)evenfunction

i)nosymmetry

ii)pointsymmetry

iii)linesymmetry

iv)oddfunction

v)evenfunction

i)nosymmetry

ii)pointsymmetry

iii)linesymmetry

iv)oddfunction

v)evenfunction

i)nosymmetry

ii)pointsymmetry

iii)linesymmetry

iv)oddfunction

v)evenfunction

i)nosymmetry

ii)pointsymmetry

iii)linesymmetry

iv)oddfunction

v)evenfunction

Note:allcubicfunctionshavepointsymmetry

trevorjensen
Pencil
trevorjensen
Pencil

(-1, 3)

b)𝑓 𝑥 = −3𝑥9 + 9𝑥2 + 2𝑥Thefunctionisoddsincetheexponentofeachtermisodd.Thefunctionhaspointsymmetryabouttheorigin.Verify– 𝑓 𝑥 = 𝑓(−𝑥)−𝑓 𝑥 = − −3𝑥9 + 9𝑥2 + 2𝑥 −𝑓 𝑥 = 3𝑥9 − 9𝑥2 − 2𝑥∴ −𝑓 𝑥 = 𝑓(−𝑥)c)𝑥8 − 4𝑥2 + 6𝑥* − 4Someexponentsareevenandsomeareodd,sothefunctionisneitherevennorodd.Itdoesnothavelinesymmetryaboutthe𝑦-axisorpointsymmetryabouttheorigin.Section2:ConnectingfromthroughouttheunitExample4:Usethegivengraphtostate:a)𝑥-intercepts−2(order2),0(order1),and2(order2)b)numberofturningpoints2localminand2localmax4turningpointsc)leastpossibledegreeLeastpossibledegreeis5b)anysymmetrypresentPointsymmetryabouttheorigin.Therefore,thisisanoddfunction.c)theintervalswhere𝑓 𝑥 < 0(0, 2) ∪ (2,∞)

𝑓(−𝑥) = −3(−𝑥)9 + 9(−𝑥)2 + 2(−𝑥)𝑓(−𝑥) = 3𝑥9 − 9𝑥2 − 2𝑥

trevorjensen
Pencil
trevorjensen
Pencil

d)Findtheequationinfactoredform𝑃 𝑥 = 𝑘(𝑥)(𝑥 + 2)*(𝑥 − 2)*3 = 𝑘(−1)(−1 + 2)*(−1 − 2)*3 = 𝑘 −1 1 * −3 *3 = −9𝑘

𝑘 = −13

𝑃 𝑥 = −13𝑥(𝑥 + 2)

*(𝑥 − 2)*

Recommended