Ch.21 Carboxylic Acid Derivatives and Nucleophilic...

Preview:

Citation preview

Carboxylic Acid Derivatives

Ch.21 Carboxylic Acid Derivatives and Nucleophilic Acyl Substitution

Carboxylicacid

CR OHO

Ester

CR OO

R'

Acid anhydride

CR OO

CO

R'

Nitrile

CR N

Thioester

CR SR'O

Acyl phosphate

CR OO

PO

O-

O-

Carboxylicacid chloride

CR ClO

Amide

CR NH2

O

R Y

O Nu-

R Nu

O+ Y-

Nucleophilic Acyl Substitution

21.1 Nomenclature

Acid Halides: RCOX

Cl

Acetyl chloride

OCl

Benzoyl chloride

O

Cl

Cyclohexanecarbonyl chloride

O

-oic acid → -yl-carboxylic acid → -carbonyl

Acid Anhydrides: RCO2COR'

O

Acetic anhydride

OO

Benzoic anhydride

OO

O

OO O

Succinic anhydride

acid → anhydride

O

Bis(chloroacetic) anhydride

O O

Acetic benzoic anhydride

OO

O

Cl Cl

- anhydride from substituted monocarboxylic acid: bis-- unsymmetrical anhydride: cite two carboxylic groups alphabetically

Amides: RCONH2 -(o)ic acid → amide-carboxylic acid → -carboxamide

NH2

Acetamide

ONH2

Cyclohexanecarboxamide

O

NH2

Hexanamide

O

NH

N-Methylacetamide

ON

N,N-Diethylcyclohexanecarboxamide

O

CH3

- substututed amide: N-alkyl----amide

Esters: RCO2R'

OEthyl acetate

O

EtO OEt

O O

Diethyl malonate

O

O

tert-Butyl cyclohexanecarboxylate

- name alkyl group attached to oxygenthen -ic acid → -ate

21.2 Nucleophilic Acyl Substitution Reactions

R Y

O O-

YNu

RNu-

R Nu

O+ Y-

tetrahedral intermediate(alkoxide anion)

Nucleophilic acyl substitution: Y = OR', Cl, OCOR', NR'2

- addition-elimination mechanism: different from SN2 mechanism

Relative Reactivity of Carboxylic Acid Derivatives

C

O

< < <

more reactive

RRR

C

O

HRR

C

O

HHR

C

O

HHH

Steric effect:

R NH2

O

R OR'

O

R Cl

O

R O

O O

R< < <

more reactive

Electronical effect:

- strongly polarized derivatives are more reactive- leaving group ability

Conversion of a more reactive derivatives to less a reactive derivatives; but reverse direction is not possible

R NH2

OR OR'

O

R Cl

O

R O

O O

R

- only ester and amides are commonly found in nature- acid chloride and acid anhydride undergo nucleophilic attack by water

R NH2

O

R OR'

O

R H

O

R R'

O

R OH

OH2O

R'OH

NH3

[H-]

R'MgX further

reaction

further

reaction

Hydrolysis

Alcoholysis

Aminolysis

Reduction

Grignardreaction

R Y

O

Kinds of Nucleophilic Acyl Substitutions

21.3 Nucleophilic Acyl Substitution Reactions of Carboxylic Acids

R NH2

O

R OR'

O

R O

O

R Cl

O O

R'R OH

O

Conversion to acid chloride

R OH

O SOCl2

CHCl3 R Cl

O

R OH

OR O

OCl

SCl

O

SCl

O

HR O

OS

Cl

O

Cl

Cl-

+ HCl

base

R O

OS

Cl

O

ClR Cl

OCl-SO2 ++

mechanism:

Conversion to acid anhydride:- acyclic anhydrides are difficult to prepare- acetic anhydride is commonly used H3C O

O O

CH3

Acetic anhydride

COOH

COOH 200oCO

O

O

+ H2O

- 5, 6-membered cyclic anhydrides are obtained by high temperature dehydration

Fisher esterification: acid-catalyzed, HCl, H2SO4

R OH

O cat. H2SO4

R'OH R OR'

O+ H2O

Alkylation of carboxylates with 1o alkyl halides

Conversion to esters:

R ONa

O R'-X

R OR'

O+ NaX

mechanism

R OH

O cat. H2SO4

H3O+

R OH

OH

HO-R'

OH

OHROR

H

O

OROR H

H

H

R OR'

O+

H2O

- reversible process: use excess of alcohol for complete esterification

- substitution of OH by OR'

R OH

O cat. H2SO4

R O*CH3

O+ H2OCH3O*H+

Conversion to amide

R OH

O

R O-

O

NH4+

NH3

- amines are base: direct conversion to an amide is not possible

21.4 Chemistry of Acid Halides

R OH

O SOCl2

CHCl3 R Cl

O

R Cl

O Ar-H

AlCl3 R Ar

O

Preparation

Reactions

acid bromide, acid iodide: unstable

Friedel-Craft acylation:

Reactions

R NH2

O

R OR'

O

R H

O

R R'

O

R OH

OH2O

R'OHNH3

[H-]

R'MgX further

reaction

further

reaction

Acid

Ester

Amide

Aldehyde

Ketone

R

OH

R R'

OH

R'

10 Alcohol

30 Alcohol

R Cl

O

Hydrolysis:

R Cl

O

H2O

O-

ClHOR

HR O

O

H

HR OH

OBase

+ HCl

- use base (pyridine, NaOH) to neutralize HCl

Alcoholysis: Ester formation

R Cl

O

R OR'

OR'OH

pyridine NH

Cl-+

(or Et3N)

- use base (pyridine, Et3N) to neutralize HCl formed- reactivity: 1o > 2o > 3o alcohol

H3C Cl

O

pyridineHO

OH

HO

O CH3

O

- selective esterification of unhindered alcohol

Aminolysis

R Cl

O

R NHR'

O2 R'NH2+ R'NH3

+ Cl-

- use 2 equiv. of amine

Cl

O

HN(CH3)2

2 eq.

N(CH3)2

O

+ Me2NH2+ Cl-

CO

ClMeO

MeO

MeO

HN O

aq. NaOHCO

NMeO

MeO

MeO

O + NaCl

- for valuable amines; use external bases

Reduction:

R Cl

O 1. LiAlH4

2. H3O+R CH2 OH

- little practical value: acid is more readily available and reduced to alcohol

R Cl

O

H-

O-

ClHR R H

O

R O-

H-

H HH3O+

R OH

H H

Reaction of acid chloride with organometallic reagents

R Cl

O 1. 2 R'MgX

2. H3O+ RC

OH

R' R'

R Cl

O

R'MgX

O-

ClR'R R R'

O

R'MgX

R OH

R' R'

Diorganocopper reagent: Gilman reagent

R Cl

O R'2CuLiR R'

O

R CuR'2

O

Cl

OEt2CuLi

ether, -78oC

O

92%

- diorganocopper reaction occurs only with acid chlorides- carboxylic acid, ester, anhydride, amide do not react with diorganocopper reagents

21.5 Chemistry of Acid Anhydride

R ONa

O

R' Cl

O+

R O R'

O O

ether+ NaCl

Preparation

Reactions

R NH2

O

R OR'

O

R H

O

R O

OR OH

OH2O

R'OH NH3

[H-] further

reactionAcid

Ester Amide

Aldehyde

R

OH

10 AlcoholR'

O

H3C O CH3

O OOH

O

OH

Ac2O

Pyridine OH

O

O

CH3O

+ AcOH

Aspirin

- Acetic anhydride is commonly used- selective reaction is possible if two functional groups have different reactivity

H3C O CH3

O O

NH2 Pyridine+ AcOH

HO HO

HN

O

Acetaminophen

- AcCl: highly reactive, HCl (NaCl) as by-product- Ac2O/pyr: moderate reactivity, AcOH (AcONa) as by-product

21.6 Chemistry of Esters

O

O

O

O OCOROCOROCOR

from pineapples from bananna A fat(R = C11-17 chains)

OO

O

O

Dibutyl phthalate (a plasticizer)

- fragrant odors of fruits and flowers

industrial use- Ethyl acetate (solvent)- dialkyl phthalate (plasticizer: keep polymers from becoming brittle)

R Cl

O

R OR'

OR OH

O

R'OH

H+

R'OH

pyrR ONa

OR'-X

SN2

1o alkyl halides

Preparation of esters

Reactions of esters

R NH2

O

R OH

R''

R H

O

R OR'

O

R OH

OH2O

NH3

[H-] further

reactionAcid

30 AlcoholAmide

Aldehyde

R

OH

10 Alcohol

R''

R''MgX

Hydrolysis:

R OR'

O

NaOH

O-

OR'HOR

R O

O

H

R O-

O

R'O-+

R'OH+

Na+

Na+

Na+

acid salt

H3O+

R OH

O

Saponification: basic hydrolysis

R OR'

O

R OH

O+

or H3O+

H2O

NaOHR'OH

Acid-catalyzed hydrolysis: reversible

R OR'

O H+

H3O+

R OR'

OH OH

OR'HOR

H

O

OHOR R'

H

H

R OH

O+

H2O

H2O

R'OH +

Aminolysis: not often used, acid chloride method is commonly used

R OCH3

O

R NH2

O+

NH3 CH3OH

not so reactive to amine

- NaBH4 cannot reduce ester under normal condition

Reduction: LiAlH4

R OCH3

O

R OH+ CH3OH

LiAlH4

ether

R OR'

O

H-

O-

OR'HR R H

O

R O-

H-

H HH3O+

R OH

H H

LiAlH4

etherO

O

OH

OH

- intermediate aldehyde is more reactive than ester

O

O

O

OHDIBAL

-78oC

- intermediate aldehyde can be isolated by DIBAH (i-Bu2AlH)

R OCH3

O

R H1. DIBAL toluene O

2. H3O+

Grignard addition: add 2 equivalent of RMgX, yield 3o alcohol product

- intermediate ketone is more reactive than ester

2 eq. MeMgBr

etherOMe

O

Me

OH

Me

2 eq.MeMgBr

etherO

O

H3C OHH3C OH

21.7 Chemistry of Amides

R NR'2

O

R NHR'

O

R Cl

O

NH3 R'2NH

R NH2

OR'NH2

Preparation

- amide bonds are stable, used for protein building

H2N

R

O

OHN

R

ON

R'

ON

R"

O

Amino acids A protein (polyamide)

HHH

Reactions

Hydrolysis: require severe conditions, synthetically not useful

R NHR'

O

R OH

O+

or H3O+

H2O

NaOH

heat

RNH2

slow(inefficient)

- NaBH4 cannot reduce amides

Reduction: LiAlH4

R NH2

O

R NH2

1. LiAlH4

2. H3O+

R NH2

O

H-

O

NH2HR R NH2

H HAl

R NH2H-

H

mechanism

- oxygen atom leaves as an aluminate anion

NH

O

NH1. LiAlH4

2. H3O+

R NHR'

O

R NHR'1. LiAlH4

2. H3O+

21.8 Thiol Esters and Acyl Phosphate: Biological Carboxylic Acid Derivatives

Acetyl CoA(a thiol ester)

N

NN

NNH2

O

OHOPOO-

O

O-

OPOO-

OPOO-

NH

NH

SH3C

OH

OO

O

Thioester

CR SR'O

Acyl phosphate

CR OO

PO

O-

O-

H3C SCoA

O Nu-

H3C Nu

O+ -SCoA

H3C SCoA

OOHO

HO

OHNH2

OH

+ OHO

HO

OHNH

OH

CH3

O

+ HSCoA

Glucosamine

C2-O3POCH2CH OO

PO

O-

O-HO

3-Phosphoglyceroyl phosphate

C2-O3POCH2CH HO

HO

Glyceraldehyde 3-phosphate

NADH

"H-"+ PO4

3-

Mg2+

21.9 Polymers and Polyesters: Step-Growth Polymers

Chain-growth polymers: chain-reaction process of one type of monomer

RIn +R

n

Step-growth polymers: polymerization between two difunctional molecules

A B A B n

Step-growth polymers:

H2N(CH2)nNH2 + CO

Cl (CH2)n CO

Cl CO

HN(CH2)nNH (CH2)n CO

A diamine A diacid chloride A polyamide(Nylon)

HO(CH2)nOH + CO

HO (CH2)n CO

OH CO

O(CH2)nO (CH2)n CO

A diol A diacid A polyester

Nylons: polyamide = diamine + diacid

HOOH

O

OAdipic acid

+ H2NNH2

Hexamethylenediamine

HN

NH

O

O n

+ 2n H2O

Nylon 66

heat

N

OH

Caprolactam

HN

O

n

Nylon 6, Perlon

Fibers,large cast articles

Fibers,clothing, tire cord, bearings

Polyesters: dialcohol + diacid

MeO2C CO2Me + HOOH

Dimethyl terephthalate Ethylene glycol

200oC

C COO

OO

n+ 2n CH3OH

Polyester, Dacron, Mylar

Fibers,clothing, tire cord, film

Polycarbonate: dialcohol + carbonate

O O

O CCH3

CH3

HO OH+

Diphenylcarbonate Bisphenol A

300oC

CCH3

CH3

O O CO

n

+ 2n PhOH

Lexan

- high impact strength; machinery housing, telephone, safety helmet

Polyurethane: dialcohol + diisocyanate

+

Toluene-2,6-diisocyanate Poly(2-buteno-1,4-diol)

HO(CH2CH=CHCH2)nOHNN C OCO

CH3

HN

HN

CH3

O

O

O

O(CH2CH=CHCH2)nO

n

Spandex

- foams, fibers, coatings

21.10 Spectroscopy of Carboxylic Acid Derivatives

IR Spectroscopy

1735 cm-1RCOOR'1800 cm-1RCOCl

1650-1850 cm-1CO

NMR Spectroscopy

200 ppmaldehyde, ketone160-180 ppm~ 2 ppm,

acid derivatives13C NMRCHCOY1H NMR

1H NMR Spectrum

β-Lactam AntibioticsChemistry @ Work

β-lactam antibiotics: four membered lactam ring; block bacterial cell wall synthesis

N

SN

OO

CH3

CH3

H H

CO2Na

H

Penicillin G

N

N

OO

H HH

Cephalexin(a cephalosporin)

NH2S

CH3COOH

Chapter 21

Problem Sets

32, 36, 37, 42, 53, 62

Recommended