CCEA GCSE Specification in Further...

Preview:

Citation preview

GCSE

For first teaching from September 2017For first assessment in Summer 2018For first award in Summer 2019Subject Code: 2330

CCEA GCSE Specification in

Further Mathematics

Contents 1 Introduction 3 1.1 Aims 41.2 Keyfeatures 41.3 Priorattainment 41.4 Classificationcodesandsubjectcombinations

5

2 Specification at a Glance

6

3 Subject Content 7 3.1 Unit1:PureMathematics 73.2 Unit2:Mechanics 93.3 Unit3:Statistics 103.4 Unit4:DiscreteandDecisionMathematics 12

4 Scheme of Assessment 14 4.1 Assessmentopportunities 144.2 Assessmentobjectives 144.3 Assessmentobjectiveweightings 154.4 Reportingandgrading 154.5 Useofcalculators

15

5 Grade Descriptions

17

6 Curriculum Objectives 19 6.1 Cross-CurricularSkillsatKeyStage4 196.2 ThinkingSkillsandPersonalCapabilitiesatKeyStage4

20

7 Links and Support 22 7.1 Support 227.2 Examinationentries 227.3 Equalityandinclusion 227.4 Contactdetails 23

SubjectCodeQAN

2330603/1054/6

ACCEAPublication©2017

Thisspecificationisavailableonlineatwww.ccea.org.uk

CCEAGCSEFurtherMathematicsfromSeptember2017

3

1 Introduction ThisspecificationsetsoutthecontentandassessmentdetailsforourGCSEcourseinFurtherMathematics.Wehavedesignedthisspecificationtomeettherequirementsof:

• NorthernIrelandGCSEDesignPrinciples;and• NorthernIrelandGCEandGCSEQualificationsCriteria.FirstteachingisfromSeptember2017.WewillmakethefirstawardbasedonthisspecificationinSummer2019.Thisspecificationisaunitisedcourse.Theguidedlearninghours,asforallourGCSEs,are120hours.ThespecificationsupportstheaimoftheNorthernIrelandCurriculumtoempoweryoungpeopletoachievetheirpotentialandtomakeinformedandresponsibledecisionsthroughouttheirlives,aswellasitsobjectives:

• todeveloptheyoungpersonasanindividual;• todeveloptheyoungpersonasacontributortosociety;and• todeveloptheyoungpersonasacontributortotheeconomyandenvironment.Ifthereareanymajorchangestothisspecification,wewillnotifycentresinwriting.Theonlineversionofthespecificationwillalwaysbethemostuptodate;toviewanddownloadthispleasegotowww.ccea.org.uk

CCEAGCSEFurtherMathematicsfromSeptember2017

4

1.1 Aims Thisspecificationaimstoencouragestudentsto:

• developfurthertheirmathematicalknowledge,skillsandunderstanding;• selectandapplymathematicaltechniquesandmethodstomathematical,everydayandreal-worldsituations;

• reasonmathematically,interpretandcommunicatemathematicalinformation,makedeductionsandinferences,anddrawconclusions;

• extendtheirbaseinmathematicsfromwhichtheycanprogressto:- higherstudiesinmathematics;and/or- studiessuchasscience,geography,technologyorbusiness,whichcontainasignificantrequirementinmathematicsbeyondHigherTierGCSEMathematics;and

• designanddevelopmathematicalmodelsthatallowthemtouseproblem-solvingstrategiesandapplyabroaderrangeofmathematicstoavarietyofsituations.

1.2 Key features Thefollowingareimportantfeaturesofthisspecification.

• ItoffersopportunitiestobuildontheskillsandcapabilitiesdevelopedthroughthedeliveryoftheNorthernIrelandCurriculumatKeyStage3.

• ItcatersforstudentswhorequireknowledgeofmathematicsbeyondGCSEHigherTierMathematicsandwhoarecapableofworkingbeyondthelimitsoftheGCSEMathematicsspecification.

• Itisdesignedtobroadentheexperienceofstudentswhosemathematicalabilityisaboveaverageandwhowouldliketo:- studymathematicalcoursesatAS/Alevel;- studyothercoursesatAS/AlevelthatrequiremathematicsbeyondGCSEHigherTier;or

- extendtheirknowledgeofmathematics.• Itgivesstudentstheappropriatemathematicalskills,knowledgeandunderstandingtohelpthemprogresstofurtheracademicandvocationalstudyandtoemployment.

• Thisisaunitisedspecification.However,onlyUnit1:PureMathematicsisavailableinSummer2018.CentresshouldbeawarethatfirstawardisinSummer2019.ThelegacyspecificationforGCSEFurtherMathematicswillbeawardedforthelasttimeinSummer2018.

1.3 Prior attainment StudentstakingthisGCSEFurtherMathematicsspecificationshouldideallyhavecoveredallofthecontentintheCCEAGCSEMathematicsspecificationatHigherTier,includingallofthecontentofunitsM4andM8.

CCEAGCSEFurtherMathematicsfromSeptember2017

5

1.4 Classification codes and subject combinations Everyspecificationhasanationalclassificationcodethatindicatesitssubjectarea.Theclassificationcodeforthisqualificationis2330.Pleasenotethatifastudenttakestwoqualificationswiththesameclassificationcode,schools,collegesanduniversitiesthattheyapplytomaytaketheviewthattheyhaveachievedonlyoneofthetwoGCSEs.ThesamemayoccurwithanytwoGCSEqualificationsthathaveasignificantoverlapincontent,eveniftheclassificationcodesaredifferent.Becauseofthis,studentswhohaveanydoubtsabouttheirsubjectcombinationsshouldcheckwiththeschools,collegesanduniversitiesthattheywouldliketoattendbeforebeginningtheirstudies.

CCEAGCSEFurtherMathematicsfromSeptember2017

6

2 Specification at a Glance ThetablebelowsummarisesthestructureoftheGCSEFurtherMathematicscourse.Studentsmustcompletethemandatoryunit(Unit1)andtwoofthethreeoptionalunits(Units2,3and4).

Content

Assessment

Weightings

Availability

Unit1:PureMathematics(Mandatory)

Externalwrittenexaminationintheformofasinglequestion-and-answerbookletthatincludesaformulasheet2hours

50% Summerfrom2018

Unit2:Mechanics(Optional)

Externalwrittenexaminationintheformofasinglequestion-and-answerbookletthatincludesaformulasheet1hour

25% Summerfrom2019

Unit3:Statistics(Optional)

Externalwrittenexaminationintheformofasinglequestion-and-answerbookletthatincludesaformulasheet1hour

25% Summerfrom2019

Unit4:DiscreteandDecisionMathematics(Optional)

Externalwrittenexaminationintheformofasinglequestion-and-answerbooklet1hour

25% Summerfrom2019

Studentsmusttakeatleast40percentoftheassessment(basedonunitweightings)attheendofthecourseasterminalassessment.

CCEAGCSEFurtherMathematicsfromSeptember2017

7

3 Subject Content Wehavedividedthiscourseintofourunits.Thecontentofeachunitandtherespectivelearningoutcomesappearbelow.3.1 Unit 1: Pure Mathematics Inthisunit,studentsinvestigatealgebra,trigonometry,differentiation,integration,logarithms,matricesandquadraticinequalities.

Content

LearningOutcomes

Studentsshouldbeableto:

Algebraicfractions

• add,subtract,multiplyanddividerationalalgebraicfractionswithlinearandquadraticnumeratorsand/ordenominators;

Algebraicmanipulation

• manipulatealgebraicexpressions,includingtheexpansionofthreelinearbrackets;

Completingthesquare

• completethesquarewherethecoefficientof𝑥2willalwaysbe1;

• applycompletingthesquaretosolvingquadraticequationsandidentifyingminimumturningpoints;

Simultaneousequations

• formandsolvethreeequationsinthreeunknowns;

Quadraticinequalities

• solvequadraticinequalities,whicharerestrictedtoquadraticexpressionsthatfactorise;

Trigonometricequations

• sketchthegraphsofsin𝑥,cos𝑥andtan𝑥,wheretherangeof𝑥isasubsetof-360o𝑥360o;and

• solvesimpletrigonometricequationsthatleadtoamaximumoftwosolutionsinagivenrange.

CCEAGCSEFurtherMathematicsfromSeptember2017

8

Content

LearningOutcomes

Studentsshouldbeableto:

Differentiation

• differentiateexpressionsthatarerestrictedtointegerpowersof𝑥;

• applydifferentiationto:- gradients;- findingequationsoftangentsandnormalsatpointsonacurve;

- simpleoptimisationproblems;and- elementarycurvesketchingofaquadraticorcubicfunction;

Integration

• demonstrateknowledgethatintegrationistheinverseprocesstodifferentiation;

• integrateexpressionsthatarerestrictedtointegerpowersof𝑥,(𝑥≠-1);

• formandevaluatedefiniteintegrals;• applyintegrationtofindingtheareaunderacurve;

Logarithms • demonstrateunderstandingoflogarithmsasanaturalevolutionfromindices;

• solveproblemsusing:- thelawsoflogarithms;and- log/loggraphsincontext;

• solveindicialequationsusinglogarithms;

Matrices • add,subtractandmultiplymatrices;• findtheinverseof2×2matrices;• solvematrixequations;and• usematricestosolve2×2simultaneousequations.

CCEAGCSEFurtherMathematicsfromSeptember2017

9

3.2 Unit 2: Mechanics Inthisunit,studentsexplorekinematics,vectors,forces,Newton’sLawsofMotionandmoments.

Content

LearningOutcomes

Studentsshouldbeableto:

Kinematics

• draw,interpretandusedisplacement/timegraphsandvelocity/timegraphs;

• useconstantaccelerationformulae;

Vectors

• demonstrateunderstandingofthedefinitionofvectorandscalarquantities;

• calculatethemagnitudeanddirectionofavector;• useiandjvectorsincalculations;

Forces

• demonstrateunderstandingthatforceisavector;

• identifyallforcesactingonabody;• resolveforcesintocomponents;

• findtheresultantofasetofforces;• demonstrateunderstandingofandapplytheconceptofequilibrium;

Newton’slawsofmotion

• applyF=matothefollowingscenarios:- abodyinhorizontalorverticalmotion;- abodyonaninclinedplane;and- twoconnectedbodiesinrectilinearmotion;(F=µRwillnotbetested–ifincluded,frictionwillbegivenasavalueorasavalueperunitmass,whereappropriate.)

Moments • demonstrateunderstandingofthePrincipleofMomentsandequilibriumofarigidbody(restrictedtoahorizontaluniformrodsupportedbyoneortwopivots).

CCEAGCSEFurtherMathematicsfromSeptember2017

10

3.3 Unit 3: Statistics Inthisunit,studentsinvestigatecentraltendencyanddispersion,probability,thebinomialandnormaldistributionsandbivariateanalysis.

Content

LearningOutcomes

Studentsshouldbeableto:

Centraltendencyanddispersion

• calculatethemeanandstandarddeviationfromdataorestimatesofthesefromgroupeddata;

• calculatethemeanandstandarddeviationforcombinedsetsofdata;

• demonstrateknowledgeoftheeffectonthemeanandstandarddeviationofalineartransformationonasetofdata;

Probability

• calculatecombinedprobabilitiesusingtheadditionrule,toincludeeventsthatmaynotbemutuallyexclusive;

• calculateandinterpretconditionalprobabilitiesusingexpectedfrequencies,two-waytables,treediagramsandVenndiagrams;

• usethemostappropriatemethodtosolvecomplexproblems,includingtheconstructionanduseofVenndiagramsandtreediagrams;

Binomialdistribution

• usePascal’striangletoexpand(p+q)nwheren 8;• understandandusethebinomialexpansiontocalculateprobabilitiesinreal-lifecontexts;

Normaldistribution

• recognisethatthedistributionofmanyreal-worldvariablestakestheshapeofabellcurve;and

• calculateasingleprobabilityfromthenormaldistribution

usingtablesandz= (𝑥−μ)σ wherethemeanandstandarddeviationaregiven.

CCEAGCSEFurtherMathematicsfromSeptember2017

11

Content

LearningOutcomes

Studentsshouldbeableto:

Bivariateanalysis • calculateandinterpretSpearman’sRankCorrelationCoefficient;

• drawthelineofbestfitbyeyepassingthrough(𝒙, 𝒚);and• calculateandusetheequationofthelineofbestfit.

CCEAGCSEFurtherMathematicsfromSeptember2017

12

3.4 Unit 4: Discrete and Decision Mathematics Inthisunit,studentsexplorecounting,logic,linearprogramming,timeseriesandcriticalpathanalysis.

Content

LearningOutcomes

Studentsshouldbeableto:

Counting

• demonstrateunderstandingofandusetheadditionandmultiplicationprinciplestocounteventsinseriesandparallelrespectively;

• calculatethenumberofwaysofarrangingrobjectsfromnobjects;

• calculatethenumberofwaysofchoosingrobjectsfromnobjects;

Logic • demonstrateunderstandingoftheconceptofBooleanvariables,includingformingcompoundexpressionsusinglogicaloperatorsAND,ORandNOT;

• usetruthtablestoprovetheequivalenceofpropositionalstatements(involvingnomorethanthreevariables);

Linearprogramming

• modelreal-lifescenariosaslinearprogrammingproblems;

• usegraphicalmethodstomaximiseorminimiseanexpressioninvolvinguptofiveinequalitiesinoneortwovariables(solutionsmayberealnumbersorrestrictedtointegers);

Timeseries

• demonstrateunderstandingofwhywesmoothdata;

• calculateappropriatemovingaverages(usingthree,fourorfivepoints);and

• drawatrendlineanduseittomakepredictions(theplottingoforiginaldatawillbegiven).

CCEAGCSEFurtherMathematicsfromSeptember2017

13

Content

LearningOutcomes

Studentsshouldbeableto:

Criticalpathanalysis

• demonstrateunderstandingofhowanactivitynetworkrepresentsaproject(usingactivitiesonanarc);

• constructanactivitynetworkfromaprecedencetable;• identifythecriticalpathbyfindingtheearliestandlatesteventtimes;

• calculatefloattimes;and• performbasicschedulingusingGanttcharts.

CCEAGCSEFurtherMathematicsfromSeptember2017

14

4 Scheme of Assessment 4.1 Assessment opportunities Fortheavailabilityofexaminations,seeSection2.Thisisaunitisedspecification;candidatesmustcompleteatleast40percentoftheoverallassessmentrequirementsattheendofthecourse,intheexaminationseriesinwhichtheyrequestafinalsubjectgrade.Thisistheterminalrule.Candidatesmayresitindividualassessmentunitsoncebeforecash-in.ThebetterofthetworesultswillcounttowardstheirfinalGCSEgradeunlessaunitisrequiredtomeetthe40percentterminalrule.Ifitis,themorerecentmarkwillcount(whetherornotitisthebetterresult).ResultsforindividualassessmentunitsremainavailabletocounttowardsaGCSEqualificationuntilwewithdrawthespecification.4.2 Assessment objectives Therearethreeassessmentobjectivesforthisspecification(AO1,AO2andAO3).AO1 UseandapplystandardtechniquesCandidatesshouldbeableto:

• accuratelyrecallfacts,terminologyanddefinitions;• useandinterpretnotationcorrectly;and• accuratelycarryoutroutineproceduresorsettasksrequiringmulti-stepsolutions.

AO2 Reason,interpretandcommunicatemathematicallyCandidatesshouldbeableto:

• makedeductions,inferencesanddrawconclusionsfrommathematicalinformation;

• constructchainsofreasoningtoachieveagivenresult;• interpretandcommunicateinformationaccurately;• presentargumentsandproofs;and• assessthevalidityofanargumentandcriticallyevaluateagivenwayofpresentinginformation.

AO3 SolveproblemsinmathematicsandothercontextsCandidatesshouldbeableto:

• translateproblemsinmathematicalornon-mathematicalcontextsintoaprocessoraseriesofmathematicalprocesses;

• makeanduseconnectionsbetweendifferentpartsofmathematics;• interpretresultsinthecontextofthegivenproblem;• evaluatemethodsusedandresultsobtained;and• evaluatesolutionstoidentifyhowtheymayhavebeenaffectedbyassumptionsmade.

CCEAGCSEFurtherMathematicsfromSeptember2017

15

4.3 Assessment objective weightings ThetablebelowsetsouttheassessmentobjectiveweightingsforeachassessmentcomponentandtheoverallGCSEqualification.

AssessmentObjective

UnitWeighting(%) OverallWeighting(%)

ExternalAssessment

Unit1 Unit2 Unit3 Unit4

AO1 35–45 35–45 35–45 35–45 40

AO2 25–35 25–35 25–35 25–35 30

AO3 25–35 25–35 25–35 25–35 30

TotalWeighting 100 100 100 100 100

4.4 Reporting and grading Wereporttheresultsofindividualassessmentunitsonauniformmarkscalethatreflectstheassessmentweightingofeachunit.Wedeterminethegradesawardedbyaggregatingtheuniformmarksthatcandidatesobtaininindividualassessmentunits.WeawardGCSEqualificationsonagradescalefromA*toG,withA*beingthehighest.Theninegradesavailableareasfollows:

Grade A* A B C* C D E F GIfcandidatesfailtoattainagradeGorabove,wereporttheirresultasunclassified(U).4.5 Use of calculators Candidatesmustuseelectroniccalculatorswithtrigonometric,logarithmicandrelevantstatisticalfunctions.Pleasenotethatcandidatesmustshowthefulldevelopmentoftheiranswerstoobtainfullcredit.Calculatorsmustbe:

• ofasizesuitableforuseonthedesk;• eitherbatteryorsolarpowered;and• freeoflids,casesandcoverswhichhaveprintedinstructionsorformulae.

CCEAGCSEFurtherMathematicsfromSeptember2017

16

Calculatorsmustnot:

• bedesignedoradaptedtoofferanyofthesefacilities:- languagetranslators;- symbolicalgebramanipulation;- symbolicdifferentiationorintegration;or- communicationwithothermachinesortheinternet;

• beborrowedfromanothercandidateduringanassessmentbyexaminationforanyreason;or

• haveretrievableinformationstoredinthem,including(butnotlimitedto):- databanks;- dictionaries;- mathematicalformulae;or- text.

CCEAGCSEFurtherMathematicsfromSeptember2017

17

5 Grade Descriptions Gradedescriptionsareprovidedtogiveageneralindicationofthestandardsofachievementlikelytohavebeenshownbycandidatesawardedparticulargrades.Thedescriptionsmustbeinterpretedinrelationtothecontentinthespecification;theyarenotdesignedtodefinethatcontent.Thegradeawardeddependsinpracticeupontheextenttowhichthecandidatehasmettheassessmentobjectivesoverall.Shortcomingsinsomeaspectsofcandidates’performanceintheassessmentmaybebalancedbybetterperformancesinothers.

Grade

Description

A Candidatescharacteristically:

• performproceduresaccurately;• interpretandcommunicatecomplexinformationaccurately;• makedeductionsandinferencesanddrawconclusions;• constructsubstantialchainsofreasoning,includingconvincingargumentsandformalproofs;

• generateefficientstrategiestosolvecomplexmathematicalandnon-mathematicalproblemsbytranslatingthemintoaseriesofmathematicalprocesses;

• makeanduseconnections,whichmaynotbeimmediatelyobvious,betweendifferentpartsofmathematics;and

• interpretresultsinthecontextofthegivenproblem.

C Candidatescharacteristically:

• performroutinesingle-andmulti-stepprocedureseffectivelybyrecalling,applyingandinterpretingnotation,terminology,facts,definitionsandformulae;

• interpretandcommunicateinformationeffectively;• makedeductions,inferencesanddrawconclusions;• constructchainsofreasoning,includingarguments;• generatestrategiestosolvemathematicalandnon-mathematicalproblemsbytranslatingthemintomathematicalprocesses,realisingconnectionsbetweendifferentpartsofmathematics;

• interpretresultsinthecontextofthegivenproblem;and• evaluatemethodsandresults.

CCEAGCSEFurtherMathematicsfromSeptember2017

18

Grade

Description

F Candidatescharacteristically:

• recallandusenotation,terminology,factsanddefinitions;• performroutineprocedures,includingsomemulti-stepprocedures;

• interpretandcommunicatebasicinformation;• makedeductionsandusereasoningtoobtainresults;• solveproblemsbytranslatingsimplemathematicalandnon-mathematicalproblemsintomathematicalprocesses;

• providebasicevaluationofmethodsorresults;and• interpretresultsinthecontextofthegivenproblem.

CCEAGCSEFurtherMathematicsfromSeptember2017

19

6 Curriculum Objectives ThisspecificationbuildsonthelearningexperiencesfromKeyStage3asrequiredforthestatutoryNorthernIrelandCurriculum.ItalsooffersopportunitiesforstudentstocontributetotheaimandobjectivesoftheCurriculumatKeyStage4,andtocontinuetodeveloptheCross-CurricularSkillsandtheThinkingSkillsandPersonalCapabilities.Theextentofthedevelopmentoftheseskillsandcapabilitieswillbedependentontheteachingandlearningmethodologyused. 6.1 Cross-Curricular Skills at Key Stage 4

Communication

Studentsshouldbeableto:

• communicatemeaning,feelingsandviewpointsinalogicalandcoherentmanner,forexamplebyusingappropriatemathematicallanguageandnotationinresponsetoopen-endedtasks,problems,structuredquestionsorexaminationquestions;

• makeoralandwrittensummaries,reportsandpresentations,takingaccountofaudienceandpurpose,forexamplethroughtheuseofvariedlearningactivitiesappliedtoawiderangeofcontextsthatrequirestudentstoorganiseandrecorddata,justifychoiceofstrategytosolveproblems,articulateprocesses,proofsetc.andprovidefeedbackfromcollaborativelearningactivities;

• participateindiscussions,debatesandinterviews,forexamplebysharingideas,investigatingmisconceptions,exploringalternativestrategies,justifyingtheirchoiceofstrategy,negotiatingdecisionsandlisteningtoothers;

• interpret,analyseandpresentinformationinoral,writtenandICTformats,forexamplebydevelopingamathematicalsolutiontoaproblemandcommunicatingideas,strategiesandsolutions;and

• exploreandrespond,bothimaginativelyandcritically,toavarietyoftexts,forexamplebyusingopen-endedtasksandactivities.

CCEAGCSEFurtherMathematicsfromSeptember2017

20

UsingMathematics

Studentsshouldbeableto:

• usemathematicallanguageandnotationwithconfidence,forexamplecalculus,matricesandforcediagrams;

• usementalcomputationtocalculate,estimateandmakepredictionsinarangeofsimulatedandreal-lifecontexts,forexamplesimplifyingexpressionsinalgebra;

• selectandapplymathematicalconceptsandproblem-solvingstrategiesinarangeofsimulatedandreal-lifecontexts,forexamplemovingaveragesinafinancialcapabilitycontextorapplyingNewton’slawstoquestionsrelatingtodynamics;

• interpretandanalyseawiderangeofmathematicaldata,forexamplecalculatinganestimateforthemeanandstandarddeviationfromagroupedfrequencydistribution;

• assessprobabilityandriskinarangeofsimulatedandreal-lifecontexts,forexampletreediagramsorVenndiagrams;and

• presentmathematicaldatainavarietyofformatsthattakeaccountofaudienceandpurpose,forexamplenumerical,graphicalandalgebraicrepresentations.

UsingICT

Studentsshouldbeabletomakeeffectiveuseofinformationandcommunicationstechnologyinawiderangeofcontextstoaccess,manage,selectandpresentinformation,includingmathematicalinformation,forexamplecalculators,suitablesoftwarepackagestoexploregeometry,algebraicfunctionsorcalculus,researchingdataonline,analysingdataandworkingwithformulaeinspreadsheets.

6.2 Thinking Skills and Personal Capabilities at Key Stage 4

Self-Management

Studentsshouldbeableto:

• planwork,forexamplebyidentifyingappropriatestrategies,workingsystematicallyandpersistingwithopen-endedtasksandproblems;

• setpersonallearninggoalsandtargetstomeetdeadlines,forexamplebyidentifying,prioritisingandmanagingactionsrequiredtodevelopcompetenceandconfidenceinmorechallengingmathematics;

• monitor,reviewandevaluatetheirprogressandimprovetheirlearning,forexamplebyself-evaluatingtheirperformance,identifyingstrengthsandareasforimprovementandseekingsupportwhererequired;and

• effectivelymanagetheirtime,forexamplebyplanning,prioritisingandminimisingdistractionsinordertomeetdeadlinessetbyteachers.

CCEAGCSEFurtherMathematicsfromSeptember2017

21

WorkingwithOthers

Studentsshouldbeableto:

• learnwithandfromothersthroughco-operation,forexamplebyengagingindiscussionsandexplainingideas,challengingandsupportingoneanother,creatingandsolvingeachother’squestionsandworkingcollaborativelytosharemethodsandresultsduringsmallgrouptasks;

• participateineffectiveteamsandacceptresponsibilityforachievingcollectivegoals,forexamplebyworkingtogetheronchallengingsmallgrouptaskswithsharedgoalsbutindividualaccountability;and

• listenactivelytoothersandinfluencegroupthinkinganddecision-making,takingaccountofothers’opinions,forexamplebyparticipatingconstructivelyinsmallgroupactivities,articulatingpossibleproblem-solvingstrategiesandpresentingawellthoughtoutrationaleforoneapproach.

ProblemSolving

Studentsshouldbeableto:

• identifyandanalyserelationshipsandpatterns,forexamplemakelinksbetweencauseandeffects,forexamplebyconsideringtheratesofchangeofafunctionwithrespecttooneofitsvariablesthroughthestudyofcalculus;

• proposejustifiedexplanations,forexamplebyprovingamathematicalstatementistrue;

• analysecriticallyandassessevidencetounderstandhowinformationorevidencecanbeusedtoservedifferentpurposesoragendas,forexampleusingdatatomakepredictionsaboutthelikelihoodoffutureeventsoccurring;

• analyseandevaluatemultipleperspectives,forexamplemodellingreal-lifescenariosasfurthermathematicsproblems;

• weighupoptionsandjustifydecisions,forexampleusingthemostappropriatemethodtosolvecomplexmathematicalproblems;and

• applyandevaluatearangeofapproachestosolveproblemsinfamiliarandnovelcontexts,forexamplebychoosingtheappropriatediagrammaticmethodinprobabilityortheuseofconstantaccelerationformulaeversususeofvelocity/timegraphs.

Thereisanemphasisonproblemsolvinginthisspecification,whichwillrequirethedevelopmentofalloftheseskills.

AlthoughnotreferredtoseparatelyasastatutoryrequirementatKeyStage4intheNorthernIrelandCurriculum,ManagingInformationandBeingCreativemayalsoremainrelevanttolearning.

CCEAGCSEFurtherMathematicsfromSeptember2017

22

7 Links and Support 7.1 Support Thefollowingresourcesareavailabletosupportthisspecification:

• ourMathematicsmicrositeatwww.ccea.org.ukand• specimenassessmentmaterials.Wealsointendtoprovide:

• pastpapers;• markschemes;• ChiefExaminer’sreports;• planningframeworks;• centresupportvisits;• supportdaysforteachers;and• aresourcelist.7.2 Examination entries EntrycodesforthissubjectanddetailsonhowtomakeentriesareavailableonourQualificationsAdministrationHandbookmicrosite,whichyoucanaccessatwww.ccea.org.ukAlternatively,youcantelephoneourExaminationEntries,ResultsandCertificationteamusingthecontactdetailsprovided.7.3 Equality and inclusion Wehaveconsideredtherequirementsofequalitylegislationindevelopingthisspecificationanddesignedittobeasfreeaspossiblefromethnic,gender,religious,politicalandotherformsofbias.GCSEqualificationsoftenrequiretheassessmentofabroadrangeofcompetences.Thisisbecausetheyaregeneralqualificationsthatpreparestudentsforawiderangeofoccupationsandhigherlevelcourses.Duringthedevelopmentprocess,anexternalequalitypanelreviewedthespecificationtoidentifyanypotentialbarrierstoequalityandinclusion.Whereappropriate,wehaveconsideredmeasurestosupportaccessandmitigatebarriers.Wecanmakereasonableadjustmentsforstudentswithdisabilitiestoreducebarrierstoaccessingassessments.Forthisreason,veryfewstudentswillhaveacompletebarriertoanypartoftheassessment.

CCEAGCSEFurtherMathematicsfromSeptember2017

23

Itisimportanttonotethatwhereaccessarrangementsarepermitted,theymustnotbeusedinanywaythatunderminestheintegrityoftheassessment.YoucanfindinformationonreasonableadjustmentsintheJointCouncilforQualificationsdocumentAccessArrangementsandReasonableAdjustments,availableatwww.jcq.org.uk7.4 Contact details Ifyouhaveanyqueriesaboutthisspecification,pleasecontacttherelevantCCEAstaffmemberordepartment:

• SpecificationSupportOfficer:JoanJennings(telephone:(028)90261200,extension2552,email:jjennings@ccea.org.uk)

• SubjectOfficer:EleanoreThomas(telephone:(028)90261200,extension2209,email:ethomas@ccea.org.uk)

• ExaminationEntries,ResultsandCertification(telephone:(028)90261262,email:entriesandresults@ccea.org.uk)

• ExaminerRecruitment(telephone:(028)90261243,email:appointments@ccea.org.uk)

• Distribution(telephone:(028)90261242,email:cceadistribution@ccea.org.uk)

• SupportEventsAdministration(telephone:(028)90261401,email:events@ccea.org.uk)

• Moderation(telephone:(028)90261200,extension2236,email:moderationteam@ccea.org.uk)

• BusinessAssurance(ComplaintsandAppeals)(telephone:(028)90261244,email:complaints@ccea.org.ukorappealsmanager@ccea.org.uk).

© CCEA 2017

Recommended