c = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect)

Preview:

DESCRIPTION

Insights into d-wave superconductivity from quantum cluster approaches. c = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect). André-Marie Tremblay. CuO 2 planes. YBa 2 Cu 3 O 7- d. Experimental phase diagram. Hole doping. Electron doping. Stripes. - PowerPoint PPT Presentation

Citation preview

1

= -1

Perfect diamagnetism (Shielding of magnetic field)

(Meissner effect)

Insights into d-wave superconductivity from quantum cluster approaches

André-Marie Tremblay

2

CuO2 planes

YBa2Cu3O7-

3

Experimental phase diagram

n, electron density

Hole dopingElectron doping

Damascelli, Shen, Hussain, RMP 75, 473 (2003)

1.3 1.2 1.1 1.0 0.9 0.8 0.7 Optimal dopingOptimal doping

Stripes

4

Ut

Simplest microscopic model for Cu O2 planes.

t’t’’

LSCO

H ij t i,j c i c j c j

c i U i nini

The Hubbard model

No mean-field factorization for d-wave superconductivity

5

An effective model

Damascelli, Shen, Hussain, RMP 75, 473 (2003)

A. Macridin et al., cond-mat/0411092

6

T

U

A(kF,)

U

A(kF,)

Weak vs strong coupling, n=1

Mott transition (DMFT, exact d = )U ~ 1.5W (W= 8t)

LHB UHB

tEffective model, Heisenberg: J = 4t2 /U

7

U of order W at least, consider e and h doped

n, electron density Damascelli, Shen, Hussain, RMP 75, 473 (2003)

1.3 1.2 1.1 1.0 0.9 0.8 0.7

Mott Insulator

8

Theoretical difficulties

• Low dimension – (quantum and thermal fluctuations)

• Large residual interactions (develop methods)– (Potential ~ Kinetic) – Expansion parameter? – Particle-wave?

• By now we should be as quantitative as possible!

9

Theory without small parameter: How should we proceed?

• Identify important physical principles and laws to constrain non-perturbative approximation schemes– From weak coupling (kinetic)– From strong coupling (potential)

• Benchmark against “exact” (numerical) results.• Check that weak and strong coupling approaches

agree at intermediate coupling.• Compare with experiment

10

Mounting evidence for d-wave in Hubbard

• Weak coupling (U << W)– AF spin fluctuations mediated pairing with d-wave

symmetry• (Bourbonnais (86), Scalapino (86), Varma (86), Bickers et al.,

PRL 1989; Monthoux et al., PRL 1991; Scalapino, JLTP 1999, Kyung et al. (2003))

– RG → Groundstate d-wave superconducting• (Halboth, PRB 2000; Zanchi, PRB 2000, Berker 2005)

• Strong coupling (U >> W)– Early mean-field

• (Kotliar, Liu 1988, Inui et al. 1988)– Finite size simulations of t-J model

• Groundstate superconducting• (Sorella et al., PRL 2002; Poilblanc, Scalapino, PRB 2002)

11

Th. Maier, M. Jarrell, Th. Pruschke, and J. KellerPhys. Rev. Lett. 85, 1524 (2000)T.A. Maier et al. PRL (2005)

DCA

Paramekanti, M. Randeria, and N. TrivediPhys. Rev. Lett. 87, 217002 (2001)

Variational

Numerical methods that show Tc at strong coupling

12

Recent DCA results

• Finite-size studies U=4t– Maier et al., PRL 2005

• Structure of pairing Kernel– Maier et al., PRL 2006

13

Bumsoo KyungSarma Kancharla

Marc-André Marois Pierre-Luc Lavertu

David Sénéchal

14

Outside collaborators

Gabi Kotliar Marcello Civelli Massimo Capone

15

Outline

• Methodology• T = 0 phase diagram

– Cellular Dynamical Mean-Field Theory– Anomalous superconductivity : Non-BCS

• Pseudogap• A broader perspective on d-wave

superconductivity

16

Dynamical “variational” principle

tG G TrG0t 1 G 1G Tr ln G

GG

tGG G0t

1 G 1 0

G 1G0t

1

Luttinger and Ward 1960, Baym and Kadanoff (1961)

G + + + ….

H.F. if approximate by first order

FLEX higher order

Universality

Then is grand potentialRelated to dynamics (cf. Ritz)

17

Another way to look at this (Potthoff)

t G Tr G Tr ln G0t 1

GG

tG G TrG0t 1 G 1G Tr ln G

M. Potthoff, Eur. Phys. J. B 32, 429 (2003).

t F Tr ln G0t 1

Still stationary (chain rule)

18

A dynamical “stationary” principleSFT : Self-energy Functional Theory

M. Potthoff, Eur. Phys. J. B 32, 429 (2003).

t t Tr ln G0 1 1 Tr ln G0

1 1.

With F Legendre transform of Luttinger-Ward funct.

t F Tr ln G0 1 1 #

For given interaction, F is a universal functional of no explicit dependence on H0(t). Hence, use solvable cluster H0(t’) to find F

Vary with respect to parameters of the cluster (including Weiss fields)

Variation of the self-energy, through parameters in H0(t’)

is stationary with respect to and equal to grand potential there

19

Variational cluster perturbation theory and DMFT as special cases of SFT

C-DMFTV-DCA, Jarrell et al.

Georges Kotliar, PRB

(1992).M. Jarrell,

PRL (1992).A. Georges,

et al.RMP (1996).

M. Potthoff et al. PRL 91, 206402 (2003).

Savrasov, Kotliar,

PRB (2001)

20

1D Hubbard model: Worst case scenario

Excellent agreement with exact results in both metallic and insulating limits

Capone, Civelli, SSK, Kotliar, Castellani PRB (2004)

Bolech, SSK, Kotliar PRB (2003)

Tests : CDMFT

21

Tests: Sin-charge separation d = 1

U/t = 4, = 0.2, n = 0.89

Kyung, Kotliar, Tremblay, PRB 2006

22

Test: CDMFT Recover d = infinity Mott transition

Parcollet, Biroli, Kotliar, PRL (2004)

/(4t)

23

Comparison, TPSC-CDMFT, n=1, U=4t

TPSC CDMFT

24

Outline

• Methodology• T = 0 phase diagram

– Cellular Dynamical Mean-Field Theory– Anomalous superconductivity : Non-BCS

• Pseudogap• A broader perspective on d-wave

superconductivity

25

Outline

• T = 0 phase diagram– Cellular Dynamical Mean-Field Theory– Anomalous superconductivity : Non-BCS

26

CDMFT + ED

Caffarel and Krauth, PRL (1994)

++

-

-

++

-

-

Sarma Kancharla

No Weiss field on the cluster!

27

Effect of proximity to Mott (CDMFT )

Kancharla, Civelli, Capone, Kyung, Sénéchal, Kotliar, A-M.S.T. cond-mat/0508205

Sarma Kancharla

D-wave OP

t’= t’’=0

28

Gap vs order parameter

Kancharla, Civelli, Capone, Kyung, Sénéchal, Kotliar, A-M.S.T. cond-mat/0508205

t’= t’’=0

29

Competition AFM-dSC – using SFT

See also, Capone and Kotliar, cond-mat/0603227, Macridin et al. DCA cond-mat/0411092

++

-

-

++

-

-

David Sénéchal

-

-

++

30

Preliminary

n, electron density Damascelli, Shen, Hussain, RMP 75, 473 (2003)

1.3 1.2 1.1 1.0 0.9 0.8 0.7

t’ = -0.3 t, t’’ = 0.2 tU = 8t

31

Outline

• Methodology• T = 0 phase diagram

– Cellular Dynamical Mean-Field Theory– Anomalous superconductivity : Non-BCS

• Pseudogap• A broader perspective on d-wave

superconductivity

32

Outline

• Pseudogap

33

Pseudogap (CDMFT)

Bumsoo KyungKyung, Kancharla, Sénéchal, A.-M.S. T, Civelli, Kotliar PRB (2006)

5% 5%

See also Sénéchal, AMT, PRL 92, 126401 (2004).

t’ = -0.3 t, t’’ = 0 tU = 8t

15%

10%

4%

Armitage et al.PRL 2003Ronning et al. PRB 2003

34

Other properties of the pseudogap

Effect of U

Pseudogap size function of dopingSee also Sénéchal, AMT, PRL 92, 126401 (2004).

Kyung, Kancharla, Sénéchal, A.-M.S. T, Civelli, Kotliar PRB in press

Bumsoo Kyung

35

Outline

• Methodology• T = 0 phase diagram

– Cellular Dynamical Mean-Field Theory– Anomalous superconductivity : Non-BCS

• Pseudogap• A broader perspective on d-wave

superconductivity

36

Outline

• A broader perspective on d-wave superconductivity

37

One-band Hubbard model for organics

Y. Shimizu, et al. Phys. Rev. Lett. 91, 107001(2003)

meV 50t meV 400 U

H. Kino + H. Fukuyama, J. Phys. Soc. Jpn 65 2158 (1996), R.H. McKenzie, Comments Condens Mat Phys. 18, 309 (1998)

t’/t ~ 0.6 - 1.1

38

Layered organics (BEDT-X family)

( t’ / t )

n = 1

39

Experimental phase diagram for Cl

F. Kagawa, K. Miyagawa, + K. Kanoda PRB 69 (2004) +Nature 436 (2005)

Diagramme de phase (X=Cu[N(CN)2]Cl)S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

40

Perspective

U/t

t’/t

41

Experimental phase diagram for Cl

F. Kagawa, K. Miyagawa, + K. Kanoda PRB 69 (2004) +Nature 436 (2005)

Diagramme de phase (X=Cu[N(CN)2]Cl)S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

42

Mott transition (C-DMFT)

Parcollet, Biroli, Kotliar, PRL 92 (2004)Kyung, A.-M.S.T. (2006)

See also, Sénéchal, Sahebsara, cond-mat/0604057

43

Mott transition (C-DMFT)

Kyung, A.-M.S.T. (2006)

See also, Sénéchal, Sahebsara, cond-mat/0604057

44

Normal phase theoretical results for BEDT-X

PI

M

Kyung, A.-M.S.T. (2006)

45

Experimental phase diagram for Cl

F. Kagawa, K. Miyagawa, + K. Kanoda PRB 69 (2004) +Nature 436 (2005)

Diagramme de phase (X=Cu[N(CN)2]Cl)S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

46

Theoretical phase diagram BEDT

Y. Kurisaki, et al. Phys. Rev. Lett. 95, 177001(2005) Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003)

X= Cu2(CN)3 (t’~ t)

Kyung, A.-M.S.T. cond-mat/0604377

OP

Sénéchal

Sénéchal, Sahebsara, cond-mat/0604057

Sahebsara

Kyung

47

AFM and dSC order parameters for various t’/t

3.910.411.6Tc

1.060.840.68t’/t

Cu2(CN)3Cu(NCS)2Cu[N(CN)2]BrX

3.910.411.6Tc

1.060.840.68t’/t

Cu2(CN)3Cu(NCS)2Cu[N(CN)2]BrX

•Discontinuous jump

•Correlation between maximum order parameter and Tc

AF multiplied by 0.1

Kyung, A.-M.S.T. cond-mat/0604377

48

d-wave

Kyung, A.-M.S.T. cond-mat/0604377

Sénéchal, Sahebsara, cond-mat/0604057

49

Prediction of a new type of pressure behaviorSénéchal, Sahebsara, cond-mat/0604057

t’/t=0.8t

AF

SL

dSC•All transitions first order, except one

with dashed line•Triple point, not SO(5)

Kyung, A.-M.S.T. cond-mat/0604377

50

Références on layered organics

H. Morita et al., J. Phys. Soc. Jpn. 71, 2109 (2002).

J. Liu et al., Phys. Rev. Lett. 94, 127003 (2005).

S.S. Lee et al., Phys. Rev. Lett. 95, 036403 (2005).

B. Powell et al., Phys. Rev. Lett. 94, 047004 (2005).

J.Y. Gan et al., Phys. Rev. Lett. 94, 067005 (2005).

T. Watanabe et al., cond-mat/0602098.

51

Summary - Conclusion• Ground state of CuO2

planes (h-, e-doped)– V-CPT, (C-DMFT) give

overall ground state phase diagram with U at intermediate coupling.

– Effect of t’.• Non-BCS feature

– Order parameter decreases towards n = 1 but gap increases.

– Max dSC scales like J.– Emerges from a

pseudogaped normal state (Z) (scales like t).

Sénéchal, Lavertu, Marois, A.-M.S.T., PRL, 2005 Kancharla, Civelli, Capone, Kyung, Sénéchal, Kotliar, A-M.S.T. cond-mat/0508205

52

Conclusion

• Normal state (pseudogap in ARPES)– Strong and weak

coupling mechanism for pseudogap.

– CPT, TPSC, slave bosons suggests U ~ 6t near optimal doping for e-doped with slight variations of U with doping.

U=5.75

U=5.75

U=6.25

U=6.25

53

Conclusion

• The Physics of High-temperature superconductors d-wave) is in the Hubbard model (with a very high probability).

• We are beginning to know how to squeeze it out of the model!

• Insight from other compounds

• Numerical solutions … DCA (Jarrell, Maier) Variational QMC (Paramekanti, Randeria, Trivedi).

• Role of mean-field theories (if possible) : Physics

• Lot more work to do.

54

Conclusion, open problems

• Methodology:– Response functions– Tc (DCA + TPSC)– Variational principle– First principles– …

• Questions:– Why not 3d?– Best « mean-field » approach.– Manifestations of mechanism– Frustration vs nesting

55

Bumsoo KyungSarma Kancharla

Marc-André Marois Pierre-Luc Lavertu

David Sénéchal

56

Outside collaborators

Gabi Kotliar Marcello Civelli Massimo Capone

57

Mammouth, série

58

André-Marie Tremblay

Sponsors:

59

Recent review articles

• A.-M.S. Tremblay, B. Kyung et D. Sénéchal, Low Temperature Physics (Fizika Nizkikh Temperatur), 32,561 (2006).

• T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

• G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C.A. Marianetti, cond-mat/0511085 v1 3 Nov 2005

60

C’est fini…enfin

C’est fini…Merci

61

MDC in CDMFT

Kancharla, Civelli, Capone, Kyung, Sénéchal, Kotliar, A-M.S.T. cond-mat/0508205

Ronning et al. PRB 200315%

10%

4%

Armitage et al.PRL 2003

4%

7% 7%

t’ = -0.3 t, t’’ = 0 tU = 8t

62

AF and dSC order parameters, U = 8t, for various sizes

dSC

Sénéchal, Lavertu, Marois, A.-M.S.T., PRL, 2005

AF

1.3 1.2 1.1 1.0 0.9 0.8 0.7

t’ = -0.3 tt’’ = 0.2tU = 8t

Aichhorn, Arrigoni, Potthoff, Hanke, cond-mat/0511460

63

Hole-doped (17%)

t’ = -0.3tt”= 0.2t

= 0.12t= 0.4t

Sénéchal, AMT, PRL 92, 126401 (2004).

64

Hole-doped 17%, U=8t

65

Electron-doped (17%)

t’ = -0.3tt”= 0.2t

= 0.12t= 0.4t

Sénéchal, AMT, PRL in press

66

Electron-doped, 17%, U=8t

Recommended