Bank of China DEVELOPMENTS IN COMPOSITE COLUMN DESIGN · Encased Composite Beam Columns Method 1...

Preview:

Citation preview

I.M. Pei, ArchitectLes Robertson, Structural Engineer

Bank of China(Hong Kong) DEVELOPMENTS IN

COMPOSITE COLUMN DESIGN

Tiziano Perea (GT)Roberto T. Leon (GT)

Jerome F. Hajjar (UIUC)Mark Denavit (UIUC)

AISC NASSC – NashvilleApril 2nd, 2008

OVERVIEWIntroduction• Advantages of composite columns• Applications in high-rise buildings

Background to 2005AISC SpecificationReason for changes

Reduction of conflicts with ACI 318

Issues for future work

Experimental program

Composite Columns in Tall Buildings

CBM Engineers - Houston

• Four super-columns tied by 5-story Virendeel trusses provide all the lateral resistance to the Norwest Center in Minneapolis

• Speed of construction = gravity load system followed by lateral load system and building finishes

• Concrete in columns used mostly for stiffness

Column Details

.

Beam B1:W840 x 299

Beam B2: W920 x 446

35M Dywidag bars to transferbearing forces (B1 and B2)

Reinforcing Cage 1:8 45M and 6 30M bars

(all exterior bars are 45M)

Cage 3: 7 45M and 3 30M bars

Shear studs to web of B1

Cage 2:14 45Mand 630M bars

W360 x 421column

P2

P3

P1(FBP)

P5

P4 (FBP)

Shear studs to flange of B2

Frames with SRC columns Phases in erection & construction

Source: Martinez-Romero, 2003

Construction Sequence

Composite Columns in Tall Buildings

Design for hurricane forces – Houston – Walter P. Moore & Assoc.

Buildings with SRC Columns (Martinez-Romero, 1999 & 2003)

Building: Avantel Firm: EMRSA Floors: 28 Use: Office Location: Mexico City Year: 1995

Source: Martinez-Romero, 1999

Structural steel:ASTM A-572-50

Concrete:fc’ = 5.7 ksi

Reinf. steel:Fy = 60 ksi

Source: Martinez-Romero, 1999

Concrete: Structural steel: Reinf. steel:fc’= 6 ksi ASTM A-572-50 Fy = 60 ksi

SRC-Section Drawings

Uses for Composite Columns

• Extra capacity in concrete column for no increase in dimension

• Large unbraced lengths in tall open spaces– Lower story in high rise buildings– Airport terminals, convention centers

• Corrosion, fireproof protection in steel buildings

• Composite frame – high rise construction• Transition column between steel, concrete

systems• Toughness, redundancy as for blast, impact

(from Larry Griffis)

Applications around the world

Full-scale 3stor, 3-bay braced frame tested in Taiwan

Applications around the world

Rectangular or circular composite columns with external diaphragms

Transition Floors

From concrete walls and columns to steel columns

S.D. Lindsey & Assoc.

Composite or hybrid system (concrete & steel)System which combines the advantages of concrete and structural steel

Concrete* Rigid * Economic* Fire resistant * Durable

Structural steel* High strength * Ductile* Easy to assemble * Fast to erect

Frames with CFT columns• Steel tube confines concrete• Concrete restricts the local buckling of the steel tube• Increase in strength & deformation of the concrete • Delay in the global buckling of the steel tube

Frames with SRC columns• Steel element supports the construction loads• The concrete gives final stiffness and fire resistant• Shear connections become FR once concrete is cast• System fast to erect & build • Redundancy & robustness

Configurations for Composite Columns

a) SRC b) Circular and Rectangular CFT

c) Combinations between SRC and CFT

Design Guide 6

• Concrete encased WF shapes

• Based on 1986 LRFD Spec

• 5, 8 KSI NW concrete• A36, A572 Gr 50 WF• 1%-4% Rebar

patterns

Design Guide 6

Mui(AISC05) = Mui(Design Guide) x 0.75/0.85

Adjust φc factor 0.85 to 0.75 ; φb=0.9 same

AISC Spec. (2005)New Composite Column Provisions

Changes in materials permittedRelaxation of slenderness limitsNew strength provisions for encased columnsNew strength provisions for CFT columnsNew provisions for force transferNew expressions for flexural stiffness

Φc = 0.75 (LRFD) (Change from 0.85)Ωc = 2.00 (ASD)

CompositeColumn Database

• Determine range of sizes and materials tested

• Assess robustness of data

• Extract useful information

• Determine types of tests needed

Leon and Aho, 2000

Databases in CCFT composite columns (Leon and Aho, 1996)(now: Goode et al., 2007 + Leon et al., 2005)

0.5<λ<1 1<λ<1.5λ<0.5

P/Po P/Po P/Po

M/Mo M/Mo M/Mo

λ

P/P

o

CCFT1375 Circular CFT

• 912 columns• 463 beam-columns

798 Rectangular CFT• 524 columns• 274 beam-columns

267 Encased SRC• 119 columns• 148 beam-column

Material Limitations

• Concrete Strength f’c– NW: 3 – 10 ksi – LW: 3 – 6 ksi– Higher values usable for stiffness

• Structural Steel, Rebar– Fy = 75 ksi max

• Higher strength materials by testing or analysis

Confinement Effects

Kent-Park’s model Mander’s model

Sakino-Sun’s model

0.95f’c for CCFT only for simplicity

Encased Composite ColumnsNew Limitations

• Steel core = 0.01 x Ag min• 4 longitudinal continuous

bars w/ ties or spirals• Min transverse reinf ≥

0.009 in2 / in tie spacing• Min reinforcement Asr / Ag

= 0.004

Filled Composite ColumnsNew Limits

• HSS area = 0.01 Ag min (down from 0.04 in 1999)

• Rectangular HSS: b/t ≤ 2.26 [E/Fy]0.5

= 54.4 for 50 ksi (+20%)

• Round HSS:D/t ≤ 0.15 E/Fy = 87 for 50 ksi (+50%)

Slenderness

For Pe ≥ 0.44 Po:Pn = Po [ 0.658 Po/Pe]

For Pe < 0.44 Po:Pn = 0.877 Pe

Po = As Fy + Asr Fyr + 0.85 f’c Ac

Pe = p2 (EIeff) / (KL)2

> Note similar format to all steel column

Δο

L

Pn

Moments of Inertia - Composite Columns

SRC new effective stiffness:E Ieff = Es Is + 0.5 Es Isr + C1 Ec Ic

C1 = 0.1 + 2 [As / (Ac + As)] ≤ 0.3(concrete effectiveness factor)

CFT new effective stiffness:E Ieff = Es Is + Es Isr + C3 Ec Ic

C3 = 0.6 + 2 [As / (Ac + As)] ≤ 0.9(concrete effectiveness factor)

KL (m)P n

(kN

)

Effective stiffness (EIeff)

Alternatives:Concrete-only or a steel-only (not unusual in practice, too conservative!)Fiber element analysis: Nonlinearity (σ−ε, P-Δ, P−δ), buckling, confinement

(contact enforcement)Finite element analysis: Local buckling, effective confinement, cracking.

Steel-concrete contact (friction, bond stress, slip, adhesion, interference).

0.5eff s s s sr i c cEI E I E I C E Iβ= + + ⋅

β = f (creep & shrinkage) = f (ρ,KL/r) ≤ 0.6-0.9 (RFT-CFT), 0.3 (SRC)

AISC (2011?)

( )ccsrssseff IEIEIEEI 5.09.0 ++=EC-4 (2004)

( ) srsssssgceff IEIEIIEhe

hLEI 788.0729.0203.000334.0313.0 ++−⎟

⎠⎞

⎜⎝⎛ −+=

Mirza and Tikka (1999)

Design Methods Encased Composite Beam Columns

• Method 1: AISC Interaction Equations

• Method 2: Plastic Stress Distribution Method

• Method 3: Strain Compatibility Method(like ACI Column Design)

Encased Composite Beam ColumnsMethod 1 (Interaction Eq’s)

• Uses AISC Beam Column Interaction Eq’s• Strong and Weak Axis Bending• Requires only pure axial, pure moment

capacities (Po, Mn)• Conservative designs• Can use existing Design Guide 6

(conservative answers)

AISC Interaction Equations• For Pr /Pc ≥ 0.2,

– Pr /Pc + 8/9 (Mrx / Mcx + Mry / Mcy) ≤ 1.0

• For Pr /Pc < 0.2,– Pr /(2Pc) + (Mrx / Mcx + Mry / Mcy) ≤ 1.0

• Pr = required axial compressive strength• Pc = available axial compressive strength (φcPn or Pn/Ωc)• Mr = required flexural strength• Mc = available flexural strength (φbMn or Mn/Ωb)• φc = φb = 0.9

Encased Composite Beam ColumnsMethod 2 (Plastic Stress Distr)

• Plastic Capacity Equations– Points A,B,C,D (plus E weak axis only)– Defined on the Example CD (w/ manual)

• Strong and weak axis bending• Bar placement must conform to equations• Apply slenderness effects to P,M values• More capacity than Method 1

Rigid-plastic & strain-compatibility methods

Interaction diagram(AISC Commentary, 2005)

COMPOSITESTEEL

Interaction diagram: W8×31Fy=50ksi. (AISC Commentary, 2005)

'85.0 cf yrF

0=DP

Plastic stress distribution or rigid-plastic methodyF

ysD FZM =

( )'85.02 c

cyrrysD fZFZFZM ++=

2'85.0 cc fA

+

cyrsr fhbhFchA 85.0422

⎟⎠⎞

⎜⎝⎛ ⋅+⎥

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −+

'85.0 cf yF yrF

yrrysccA FAFAfAP ++= '85.0

Plastic stress distribution or rigid-plastic method

0=AM

Plastic stress distribution method

∑ ≠= 0iC PP

CBC PPP =+

ccC AfP '85.0=

PNA

)(C

nh

'85.0 cf yF yrF

PNA

)(B

nh

∑ == 0iB PP

nhnh

)( CB +

Plastic stress distribution method

∑ ≠= 0iC PP

CBC PPP =−

( )ycnC FbfhP += '85.02

PNA

)(C

nh

'85.0 cf yF yrF

PNA

)(B

nh∑ == 0iB PP

( )yc

cn Fbf

Afh+

='85.02

'85.0 nhnh

)( BC −

Plastic stress distribution method '85.0 cf yF yrF

PNA

)(B

nh

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛+=Δ − 2

'85.02

2 ncnwyBD

bhfhtFM

BDDCB MMMM −Δ−==

PNA

)(D

nh

)( BD −

PNAnh( )'85.0

2 cc

yrrysD fZFZFZM ++=

( )'85.02 ccB

yrrBysBB fZFZFZM ++=

P

M

Strain-compatibilityRigid-plastic

A

E

C

D

B

ΛA= Aλ

2005 Simplified

Cd

O φbB = Bd

A d = φ c Aλ

CΛC= Cλ

C d = φ cC λ

Effect of

“bulge” is not used

Composite Column Models

Commentary - I4

Calculate section strength

Reduce by length effect

Apply resistance factor

⎫⎪⎬⎪⎭

P-M Interaction anchor points (AISC Examples, 2005)

Encased Composite Beam ColumnsMethod 3 (ACI Strain comp)

• Strain compatibility approach• Linear strain diagram with 0.003• Same as ACI Beam Column design• Use AISC φ factors (φc=0.85, φb=0.9)• Can convert WF to equivalent bars• Yields smaller values than Method 2

Fiber Element Analysis

Kent-Scott-Park model Elastic-perfectly-plastic model

δo = 0δo = L/1000

KL (m)

9

P n(k

N)

KL (m)

P n(k

N)

KL (m)

P n(k

N)

KL (m)

P n(k

N)

Pure-compression (flexural buckling limit state)

Composite Sections (short columns)

12 # 10 ESTR.#4@15

40

305

305

W14x90 IR356x134

368

368

40

635

635508

φ508

9

HSS20x0.375

584508

19

19

1919

508 305

508

15

15

b) 25x25SRC14x90 a) CCFT20x0.375

c) RCFT20x20x3/4 d) RCFT20x12x5/8

fc’ = 5 ksi 34.5 MPa

Es = 29000 ksi200 GPa

Ec = From CodeNTC (2004)AISC (2005)EC-4 (2004)AIJ (2004)

Pure-compression-strengthAISC curve vs. fiber analysis results

P n(k

N)

Mn (kN-m)

P-M Interaction Diagram for CCFT20x0.375

Fiber Analysis

Mn (kN-m)

P n(k

N)

9

FRMn (kN-m)

F RP n

(kN

)

9

Mn (kN-m)

P n(k

N)

FRMn (kN-m)

F RP n

(kN

)

P-M Interaction Diagrams

M1 and M2 curves

Net M1 and M2 curves

Experimental TestsNEES Project: Georgia Tech, U. Illinois, U. Minnesota

• 20 full-scale slender composite beam-columns(8 SRC, 4 CCFT, 4RCFT, 4SCFT)

• Data will fill gaps in U.S. database

Multi-Axial Sub-assemblage Testing System (MAST-UMN)

Strain C.

Plastic

2005Simp.

Axial capacity of MAST System

BC’s Configuration

Preliminary Test Series

Interior ColumnsExterior Columns

6END-C71C3(B)

6END-C11C3(B)

6END-C71C3(B)

6END-C11C3(B)

Actual Load Paths

Preliminary SRC Test Series

Preliminary CFT Test Series

Inelastic Static & Dynamic AnalysisLA 3 & 20 Story SAC frames (FEMA 355C, 2000)

W14x311W14x257W14x90

Steel Frame System

HSS-20x0.375fc’ = 5ksiFy = 42 ksi

CRC Frame System

26x26in12#10 (2.6%)#4@4inW14X90

SRC Frame System

AFM based on reduced EI*=0.8EIeff

Beam-column FEA (scaled displacements)

10x 10x

100x

Local buckling

Flexural buckling

Encased Columns – Improve Reliability

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Slenderness

Test

/ Pr

edic

ted

New Composite Column Procedures• Based on ultimate plastic capacity – simple plastic or

strain compatibility (mechanistic approach / EC4)• Provide transition from a RC to a composite column• Maintain current length effects approach– adjust EI

values• Improve reliability (from β = 2.4 to 2.7)• Relax local buckling - b/t < 56 (+20%); D/t < 121

(+50%)• Relax concrete material limits = 70 MPa• Relax steel material limits = 520 Mpa)• Provide better force transfer guidelines

Summary

More Information

• EJ has two papers by Leon, Kim and Hajjar (4th Quarter, 2007) and Leon and Hajjar (1st

Quarter, 2008) with all the details of the cahnges to the 2005 Specification

Recommended