ATP Lit Seminar5

Preview:

Citation preview

Hypervalent Iodine Reagents in Organic Synthesis

Andrew T. Parsons

March 23, 2007

Outline

• Background

• Iodine(III) reagents

• Iodine(V) reagents

• Conclusions

Hypervalent Iodine: An Introduction

Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523-2584.

• Hypervalent iodine: Species that exceed eight electrons in the valence shell, typically IIII and IV

– Can accommodate up to 12 valence electrons:

– Species with 10 valence electrons are more common:

I(OAc)2 I(OCOCF3)2 IOTs

HO

OI

AcO

O

OAcOAc

Dess-Martin periodinane

Hypervalent Iodine: A Brief History

• Both Iodine(III) and (V) compounds were first prepared by Willgerodt in 1886 and 1900, respectively

• Iodine(III) compounds are referred to as λ3-iodanes• Iodine(V) compounds are referred to as λ5-iodanes,

periodanes, or periodinanes

Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123-1178.

ICl2 IO O

iodoxybenzene:(caution: explosive)

(dichloroiodo)benzene

Structural Characteristics• λ3-iodanes:

• λ5-iodanes:

IO

AcO

OAc

OAc

OI

O-

OHO O

o-iodoxybenzoic acid10-I-4

pseudo-trigonal bipyramidal

Dess-Martin periodinane12-I-5

pseudo-octahedral

Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123-1178.

Ph I

Cl

Cl

(dichloroiodo)benzene10-I-3

pseudo-trigonal bipyramidal

Ph I

Ph

Cl-

diphenyliodonium chloride8-I-2

pseudo-tetrahedral

Outline

• Background

• Iodine(III) reagents

• Iodine(V) reagents

• Conclusions

Preparation of IIII Reagents• Most reagents are prepared directly from iodobenzene:

Varvoglis, A. Tetrahedron 1997, 53, 1179-1255.

I

I(OAc)2

Ac2O, H2O2

CF3CO2HI(OCOCF3)2H2O

IO

TsOH, H2O

I(OH)OTs

Cl2ICl2

HBF4, H2O

PhIOHBF4

Reactions of Iodine(III) Compounds

• Reactivity is driven by the electrophilic nature of IIII

– Typical reactions proceed through an initial nucleophilic attack of the iodine center:

– PhIX is an excellent leaving group, and therefore subsequent substitutions and reductive eliminations are prevalent

IX

XINu

X

+ X-

-Nu

INu

X

-R

PhI + X-

Nu R

Reactions of Iodine(III) Compounds: Oxygenations

Reactions of Iodine(III) Compounds: Oxygenations

• Iodosylbenzene, PhIO:– Useful for a number of different oxidations– Exists as a polymer, which is activated through depolymerization when treated with alcoholic solvents and base

– Can also be activated in the presence of a Lewis acid or Br - catalyst

– The active IIII species, PhI(OMe)2, can also be generated from PhI(OAc)2

(PhIO)nMeOH

IPh

OH

OMe

MeOHIPh

OMe

OMe

H2O+

Moriarty, R. M.; Hu, H.; Gupta, S. C. Tetrahedron Lett. 1981, 22, 1283. Moriarty, R. M. J. Org. Chem. 2005, 70, 2893-2903.

Oxidations with Iodosylbenzene

• Useful in the α-hydroxylation of ketones

• α-Hydroxylation of ketones can be carried out using CrO3, typically with higher yields

• PhIO is a non-toxic alternative to CrVI

Ar Me

O (PhIO)n

MeOH, KOH10 C

ArOH

OMeMeO

Moriarty, R. M.; Gupta, S. C.; Hu, H.; Berenschot, D. R.; White, K. B. J. Am. Chem. Soc. 1981, 103, 686-688.Moriarty, R. M.; Hu, H.; Gupta, S. C. Tetrahedron Lett. 1981, 22, 1283.

Oxidations with Iodosylbenzene

Moriarty, R. M.; Hu, H.; Gupta, S. C. Tetrahedron Lett. 1981, 22, 1283.

Ar Me

O (PhIO)nMeOH, KOH Ar

OHOMeMeO H+

Ar

O

OH

O

OH

O

OHO

OH

O

OH

Me MeO F60% 45% 50% 70%

O

OH

Cl

O

OH

Br

O

OH

I

O

OH

O2N63% 70% 71% 48%

Mechanism of α-Hydroxylation

Moriarty, R. M. J. Org. Chem. 2005, 70, 2893-2903.

R1 R2O -OMe

R1 R2O

R1 R2O

I PhMeO

R1 R2

I PhMeO

OMeO-OMe

R1

R2

OMeO-OMe

R1 R2

OH

OMeMeO

PhI + -OMe

I Ph

OMe

OMe

Applications in Total Synthesis• Synthesis of (-)-Xialenon

• Carrying out this transformation using a Rubottom oxidation provided a dr of 3:1

TBSO

O 1. PhI(OAc)2KOH, MeOH

2. 10% H2SO470%, over 2 steps TBSO

O

OHTBAF

HO

O

OH

dr = 7:1 (-)-Xialenon

Hodgson, D. M.; Galano, J.-M.; Christlieb, M. Tetrahedron 2003, 59, 9719-9728.Rubottom, G.M.; Gruber, J.M. J. Org. Chem. 1978, 43, 1599-1602

Catalytic α-Acetoxylation of Ketones

R

O

R

O

OAc

PhI (0.10 equiv),mCPBA (2.0 equiv) BF3OEt2 (3 equiv)

AcOH-H2O, rt

O

46%

OAc

O

OAc

F55%

Ph

O

OAc

Me

58%

Ph

O

OAc

O

OEt

49%

OAc

O

63%

Ph

O

OAc

58%

R1 R1

Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005, 127, 12244-12245.

Catalytic Cycle

PhI

[PhI(III)]

R

O

IPh

OAc

AcOH

R

O

OAc

R

OH

R

O

MeH+

mCPBA

mCBA

AcOH +

BF3OEt2

Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005, 127, 12244-12245.

Oxidative Rearrangements of Aryl Alkenes

• Koser’s reagent induces an oxidative rearrangement of aryl alkenes to afford α-aryl ketones

Ar

R1H

R2

95% MeOH R1Ar

R2

OPhI(OH)OTs

Justik, M. W.; Koser, G. F. Tetrahedron Lett. 2004, 45, 6159-6163.

Oxidative Rearrangements of Aryl Alkenes

O

Me

Me

Me

O

84% 89%

O

Me

MeO

92%

O

Me

NC

82%

O

Me

59%

F3C

O

85%

Ph

O

84%

Ph

O

Me

70%

Justik, M. W.; Koser, G. F. Tetrahedron Lett. 2004, 45, 6159-6163.

Ar

R1H

R2

95% MeOH R1Ar

R2

OPhI(OH)OTs

Oxidative Rearrangements of Aryl Alkenes

R1

Ar

R2IPh

OH

OTs

Ar

R1

R2

IPh

HO

Ar

R1

R2

IPh OMe

HH

OMe

R1R2

ArH

MeOH, H2OOMe

R1R2

ArH OMe

TsOH, H2OR1

O

Ar

R2

PhI

H2O-OTs

MeOH

Justik, M. W.; Koser, G. F. Tetrahedron Lett. 2004, 45, 6159-6163.

Oxidative Cleavage of Alkenes

• Works well for electron-rich olefins• Reaction times typically 0.5-5 h• Safer than ozonolysis, cheaper than transition-metal

reagents

R1

R2R3

R PhIO (2.2 equiv), HBF4 (2.2 equiv)

CH2Cl2-HFIP-H2O (9:3:1), rtO

R3

R+ O

R1

R2

Miyamoto, K.; Tada, N.; Ochiai, M. J. Am. Chem. Soc. 2007, 129, 2772-2773.

Oxidative Cleavage of Alkenes

R1

R2R3

R PhIO (2.2 equiv), HBF4 (2.2 equiv)

CH2Cl2-HFIP-H2O (9:3:1), rtO

R3

R+ O

R1

R2

Miyamoto, K.; Tada, N.; Ochiai, M. J. Am. Chem. Soc. 2007, 129, 2772-2773.

OO

79%

O

O

Me

76%

O

OPh

80%

O

O

F3C

71%

O

F3C

67%

O

O2N61%

O

OMe

53%

OnC11H23

54%

Oxidative Cleavage of Alkenes

• Suggests that an epoxidation precedes cleavage

Miyamoto, K.; Tada, N.; Ochiai, M. J. Am. Chem. Soc. 2007, 129, 2772-2773.Moriarty, R. M.; Gupta, S. C.; Hu, H.; Berenschot, D. R.; White, K. B. J. Am. Chem. Soc. 1981, 103, 686-688.

PhIO (2.2 equiv), HBF4 (2.2 equiv)

CH2Cl2-HFIP-H2O (9:3:1), rt25 h

O+

O

39% 34%

O2N O2NO2N

Oxidative Cleavage of Alkenes

• Suggests that an epoxidation precedes cleavage

Miyamoto, K.; Tada, N.; Ochiai, M. J. Am. Chem. Soc. 2007, 129, 2772-2773.

OPhIO (1.1 equiv), HBF4 (1.1 equiv)

CH2Cl2-HFIP-H2O (9:3:1), rt88%

OO2N O2N

PhIO (2.2 equiv), HBF4 (2.2 equiv)

CH2Cl2-HFIP-H2O (9:3:1), rt25 h

O+

O

39% 34%

O2N O2NO2N

Reactions of Iodine(III) Compounds: Oxidation of Phenols

• Previously:

OH

PhIX2

O

NuR R

Nu

typically PhIX2 = PhI(OAc)2 or PhI(OCOCF3)2

Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123-1178.

Application to Spirocyclizations• Tether a nucleophile to the phenol:

• Possible applications in natural product synthesis

OH

Y NuH

PHIX2

solvent

O

Y Nu

Spirocyclization of Phenols: Early Studies

OH

YHO

PhI(OCOCF3)2

O

YO

O

O

59%

O

OO

O

80%

O

O

O

86%

K2CO3, CH3CN0 C to rt, 10 min

Tamura, Y.; Yakura, T.; Haruta, J.-I.; Kita, Y. J. Org. Chem. 1987, 52, 3927-3930.

Mechanism

O

O

O

O

O

O

IPh

F3COCO

OCOCF3 OCOCF3, PhI

O

O

O

PhI(OCOCF3)2

Tamura, Y.; Yakura, T.; Haruta, J.-I.; Kita, Y. J. Org. Chem. 1987, 52, 3927-3930.

Current Standard: Catalytic Spirocyclizations

Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem. Int. Ed. 2005, 44, 6192-6196.

OH

O

O

OArI(OCOCF3)2 (0.05 equiv)

mCPBA (1.5 equiv)CF3CO2H (1.0 equiv)

CH2Cl2, rtHO2C

O

O

O

Br

O

O

O

Me

O

O

O

Me O

O

O

Me

O

O

O

Br Br

Me O

O

O

Br Me

Me

66% 76% 73% 77% 91% 80%

R R

Catalytic Cycle

Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem. Int. Ed. 2005, 44, 6192-6196.

Ar-IIII

Ar-ImCPBA

mCBA

OH

CO2H

O

O

O

ArI(OCOCF3)2

Applications in Total Synthesis• Synthesis of Aranorosin:

OH

HN

CO2H

Cbz

PhI(OAc)2

MeOH, 0 C O

OHNCbz

O

40%NH

OO

O

O

OOH

HO

Aranorosln

Wipf, P.; Kim, Y.; Fritch, P. C. J. Org. Chem. 1993, 58, 7195-7203.

PhI(OCOCF3)2-Promoted Formation of Lactols

Kita, Y.; Matsuda, S.; Fujii, E.; Horai, M.; Hata, K.; Fujioka, H. Angew. Chem. Int. Ed. 2005, 44, 5857-5860.

O

R1

R

PhI(OCOCF3)2 (1.0 equiv)

H2O:CH3CN (1:4)0 C to rt

OH

n

O

R

OH

n

R1 O

or ORO

HO

n

if R1 = H

PhI(OCOCF3)2-Promoted Formation of Lactols

Kita, Y.; Matsuda, S.; Fujii, E.; Horai, M.; Hata, K.; Fujioka, H. Angew. Chem. Int. Ed. 2005, 44, 5857-5860.

O

R1

R

PhI(OCOCF3)2 (1.0 equiv)

H2O:CH3CN (1:4)0 C to rt

OH

n

O

R

OH

n

R1 O

or ORO

HO

n

if R1 = H

O

O

OH

49%

O

O

OH

66%

OO

Et

HO

74%

OO

Ph

HOO

OMe

HO

72% 65%

Applications in Total Synthesis• Synthesis of (+)-Tanikolide

O

C11H23

OH

C11H23

O

PhI(OCOCF3)2

H2O72%

OO

C11H23

HO

2 steps

O O

OH

C11H23

(+)-Tanikolide

Kita, Y.; Matsuda, S.; Fujii, E.; Horai, M.; Hata, K.; Fujioka, H. Angew. Chem. Int. Ed. 2005, 44, 5857-5860.

Applications in Total Synthesis

OH

R

O

HOCOCF3

O

R

O

I

OCOCF3Ph

OH2

HOCOCF3OH2

R

HO

OI

O

Ph

PhI

HO

R

O

O

OO

R

HO

PhI(OCOCF3)2

Kita, Y.; Matsuda, S.; Fujii, E.; Horai, M.; Hata, K.; Fujioka, H. Angew. Chem. Int. Ed. 2005, 44, 5857-5860.

• Synthesis of (+)-Tanikolide

Carbon-Carbon Bond Forming Reactions

Carbon-Carbon Bond Forming Reactions: Cyclizations with PhI(OCOR)2

• PhI(OCOR)2 reagents have been shown to promote attack by carbon nucleophiles:

NH

O

O

PhI(OCOCF3)2

CF3CH2OHNH

O

O

ORO

Kita, Y.; Takada, T.; Ibaraki, M.; Gyoten, M.; Mihara, S.; Fujita, S.; Tohma, H. J. Org. Chem. 1996, 61, 223-227.

C-C Bond Forming Cyclizations

HOCOCF3

PhI(OCOCF3)2

NH

O

O

HO

N

O

O

HO

IPh OCOCF3

PhI, HOCOCF3

N

O

O

O H

NH

O

O

O

74%

Kita, Y.; Takada, T.; Ibaraki, M.; Gyoten, M.; Mihara, S.; Fujita, S.; Tohma, H. J. Org. Chem. 1996, 61, 223-227.

Applications in Total Synthesis• Synthesis of (±)-Stepharine

N

OH

MeO

MeOO

CF3

N

O

MeO

MeOO

CF3

IOAc

Ph

N

O

MeO

MeO

O

CF3

NaBH4NH

O

MeO

MeO

90%

(±)-Stepharine

PhI(OAc)2

TFE, 0 C

PhI, -OAc

Honda, T.; Shigehisa, H. Org. Lett. 2006, 8, 657-659.

C-C Bond Forming Reactions: C-H Activation

Kalyani, D.; Deprez, N.; Desai, L. V.; Sanford, M.S. J. Am. Chem. Soc. 2005, 127, 7330-7331.

Deprez, N.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972-4973.

N N

Ph

R R

R2R1

[Ph2I]BF4 (1.1-2.5 equiv)Pd(OAc)2 (0.05 equiv)

Solvent, 100 C

R NR1

O

R NR1

O

R2

[Ph2I]BF4 (1.1-2.5 equiv)Pd(OAc)2 (0.05 equiv)

Solvent, 100 C

NH

NH

[Ph2I]BF4 (1-3.0 equiv)IMesPd(OAc)2 (0.05 equiv)

AcOH, rt

Ph

R2

R R

C-C Bond Forming Reactions: C-H Activation

NMe

Ph

75%

N

Ph CHO

51%

NO

O

Ph

83%

N

O

Ph

83%

OMe

HNMe

O

Cl

Ph

67%

NH

PhNH

Ph

AcO

81% 71%

NH

Ph

69%

Kalyani, D.; Deprez, N.; Desai, L. V.; Sanford, M.S. J. Am. Chem. Soc. 2005, 127, 7330-7331.Deprez, N.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972-4973.

Mechanism of C-H Activation

N

PdNC X

PhI

HXPdX2

2

PdNC X

Ph

X

PdX2

2

N

Ph

NCPh

[Ph2I]X

Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300-2301.Kalyani, D.; Deprez, N.; Desai, L. V.; Sanford, M.S. J. Am. Chem. Soc. 2005, 127, 7330-7331.

Outline

• Background

• Iodine(III) reagents

• Iodine(V) reagents

• Conclusions

Preparation of IV Reagents

Boeckman, Jr., R.K.; Shao, P.; Mullins, J.J. Org. Synth. 2000, 77, 141-152. Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537-4538.

I

O

OHOxone, H2O

I

O

O

OHO

o-Iodoxybenzoic acid(IBX)

Ac2O, AcOH I

O

O

OAcAcO OAc

Dess-Martin periodinane(DMP)

70 C, 3 h 85 C to rt72%81%

• Caution: There have been reports of violent explosions occurring upon heating of these reagents to >200 °C

Oxidations of Alcohols: A Brief Overview

• DMP and IBX have been widely used for the mild oxidation of alcohols to ketones and aldehydes:

Zoller, T.; Breuilles, P.; Uguen, D. Tetrahedron Lett. 1999, 40, 6253-6256.Myers, A. G.; Zhong, B.; Movassaghi, M.; Kung, D. W.; Kwon, S. Tetrahedron Lett. 2000, 41, 1359-1362.Smith, A.B., III; Kanoh, N.; Ishiyama, H.; Minakawa, N.; Rainier, J.D.; Hartz, R.A.; Cho, Y.S.; Moser, W.H.J. Am. Chem. Soc. 2003, 125, 8228-8237.

HONHFmoc

R

DMP, CH2Cl2-H2O, rt

99% ee

>90%O

NHFmoc

R99% ee

Swern: >95% (50% ee)TEMPO: >80 % (95% ee)

OHR1

R

OR1

RIBX

DMSO, rt86-100%

O

HO

MeMe

O

O

MeMe

DMP

CH2Cl2, rt

Dehydrogenation of Saturated Aldehydes and Ketones with IBX

R

OIBX (2.0-3.0 equiv)

R

O

R1 R1DMSO

Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2000, 122, 7596-7597.

Dehydrogenation of Saturated Aldehydes and Ketones with IBX

R

OIBX (2.0-3.0 equiv)

R

O

R1 R1DMSO, 65-85 C

Me

O

85%

O

TIPS

H

H85%

NO

84%

O

83%

O

O

68%

O

58%

Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2000, 122, 7596-7597.

Mechanism of Dehydrogenation by IBX

• Single electron transfer is likely operative:

Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. J. Am. Chem. Soc. 2002, 124, 2245-2258.

R

HO

R1

I

O

O

OHO

I

O

O

OHO

HO

R

R1

I

O

O

OHOHO

R

R1 H

H2O +

R

O

R1

OI

O

OH

I

O

O

OHOHO

R

R1 H

IBA

Applications in Total Synthesis

• Efforts toward the synthesis of Phomoidride B

O

OH

H

TBSO

O

MeO

OOMe

O

OH

H

TBSO

O

MeO

OOMe

IBXDMSO-Tol80 C, 3 h

52%

CO2MeMeO2C O

H

O

OO

HO2C

H

O

R

R

OO

Phomoidride B

Ohmori, N. J. Chem. Soc., Perkin Trans. 1 2002, 755-767.

Tandem Conjugate Addition/Dehydrogenation with IBX

Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T.Angew. Chem. Int. Ed. 2002, 41, 996-1000.

N

O

MeO

IBXMPO =O

I

O

O OH

CuBrSMe2, RMgX;then TMEDA, TMSCl

O

n

OTMS

nR

IBXMPO (2 equiv)in DMSO, rt

O

nR

THF, -78 to -25 C

not isolated

Tandem Conjugate Addition/Dehydrogenation with IBX

Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T.Angew. Chem. Int. Ed. 2002, 41, 996-1000.

1. CuBrSMe2, RMgX;then TMEDA, TMSCl

THF, -78 to -25 C

2. IBXMPO (2 equiv)in DMSO, rt.

O O O O

OO

I

O O

NC

90% 97% 94%

47%

98% 98%

O

n

O

nR

Cyclization of N-Aryl Amides Carbamates, and Ureas Using IBX

Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233-2244.

HN X

ONX

O

Me

R

R

IBX (4.0 equiv)

THF:DMSO (10:1)90 C

where X = CH2, O, NR

Cyclization of N-Aryl Amides and Carbamates Using IBX

Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233-2244.

HN X

ONX

O

Me

R

R

IBX (4.0 equiv)

THF:DMSO (10:1)90 C

N

O

Me

86%

N

O

H H Br

86%

NO

O

Me

HH

72%

NO

O

Ph Ph

76%

NN

O

Ph

Me

84%

NCO2Me

OPh

93%

Mechanism

NH

O

IBXSET N

O

H

H+

N

O

N

O

N

O

HN

Me

O

5-exo-trig

Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233-2244.

Oxidation of Carboxamides to Nitriles

O

NH2R

IBX (2.5 equiv)Et4N+ Br- (2.5 equiv)

CH3CN, 60 CR CN + CO2

Bhalerao, D. S.; Mahajan, U. S.; Chaudhari, K. H.; Akamanchi, K. G. J. Org. Chem. 2007, 72, 662-665.

Oxidation of Carboxamides to Nitriles

Bhalerao, D. S.; Mahajan, U. S.; Chaudhari, K. H.; Akamanchi, K. G. J. Org. Chem. 2007, 72, 662-665.

CN

O2N

CN

CNS CN

MeO

MeO

CN

75% 85% 95% 72% 80% 60%

CN

O

O

NH2R

IBX (2.5 equiv)Et4N+ Br- (2.5 equiv)

CH3CN, 60 CR CN + CO2

Proposed Mechanism

Bhalerao, D. S.; Mahajan, U. S.; Chaudhari, K. H.; Akamanchi, K. G. J. Org. Chem. 2007, 72, 662-665.

OI

OHO

O

Br

OI OH

O

O

Br

H2NR

O

NR

O

H

Br

OI

O

O

+

O

N

C

R

OI

O

HO

OI

O

O

O

NH

R

H

HN RR CN

CO2

I

CO2H

+

IBX

H2O

Conclusions

• Hypervalent Iodine compounds are versatile reagents that can promote a number of different transformations

• Alternative to toxic metal reagents

• Disadvantages: – Enantioselective transformations are largely

elusive– Safety concerns with some reagents

Acknowledgements

Cory BauchAshley BermanMary Robert NahmJustin PotnickRebecca Duenes

Matthew CampbellShanina SandersAndy SatterfieldSteve GreszlerChris Tarr

The Johnson Research Group:

Prof. Jeff Johnson

Greg BoyceGeanna MinDan SchmittMike SladeAustin Smith

Mechanism of Tandem Conjugate Addition/Dehydrogenation with IBX

Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T.Angew. Chem. Int. Ed. 2002, 41, 996-1000.

N

O

MeO

O

I

O

O OH

R

R1

OX

N

O

MeO

O

I

O

O O

R

R1

XOH

SETN

O

MeO

O

I

O

O O

R

R1

N

O

MeO

O

I

O

O O

R

HR1

NO

MeO

OI

O

HO

+

R

O

R1

Mechanism of THF Activation

OI

O

O OH

O

H2O

OI

O

OO

SETO

I

O

OO

OI

O

OO

H

NAr

O

OI

O

OO

OI

O

OOO

I

O

OH

+O

Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233-2244.

Support of a SET Mechanism in IBX Mediated Dehydrogenations

Ph

Ph

HO

IBX

Ph

Ph

HO

IO

O

HO

OH Ph

Ph

O

Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. J. Am. Chem. Soc. 2002, 124, 2245-2258.

• Hammet analysis shows the reaction is only slightly dependent on the electronics of aryl-containing substrates (ρ= -.75, σp

+)

Support of a SET Mechanism in IBX Mediated Cyclizations

Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233-2244.

Ph

HN

O

Et

1. SET

2. 5-exo-trig N

O

Et

N

O

Et

Ph

N

O

Et

SET

N

O

Et

N

O

Et

-Hrearomatization

N

O

Et

Support of a SET Mechanism in IBX Mediated Cyclizations

N

O

PhSBu3SnH

AIBN (cat.)

NO

H

H

Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233-2244.

Nomenclature• Hypervalent compounds are characterized according to

the Martin-Arduengo designation, N-X-L, where:– Number of valence electrons, N– Identity of the hypervalent atom, X– Number of ligands, L

• For example, (diacetoxyiodo)benzene:

I(OAc)2

(diacetoxyiodo)benzene10-I-3

Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123-1178.

Oxygenation of Silyl Enol Ethers

• Typically assisted by a Lewis acid catalyst

• Similar reactions can be carried out using Tl(lll)– Highly toxic– Tl(III) is approximately three times more expensive

than I(III)

R

OTMS PhIO, BF3OEt2, ROH

R

O

OR

Moriarty, R. M.; Duncan, M. P.; Prakash, O. J. Chem. Soc. Perkin Trans. 1 1987, 1781-1784.

Hydroxylation of Silyl Enol Ethers

O

OH

O

OHO

OH

O

OH

O

OH

Me Cl O2N

Me

OO

OH

O

OH

O

OH

65% 72% 68% 70%

74% 78% 80% 83%

R

OTMS PhIO, BF3OEt2, H2O

R

O

OH0 C, 4h

Moriarty, R. M.; Duncan, M. P.; Prakash, O. J. Chem. Soc. Perkin Trans. 1 1987, 1781-1784.

Mechanism of Hydroxylation

• Similarly to the α-hydroxylation of ketones, the reaction initiates through a nucleophilic attack at I(III)

• A second nucleophilic attack on the I(III) bearing followed by elimination affords PhI and the product

R1

OR3Si I Ph

OBF3

R3SiF

R1

O

IOBF2

Ph

OH2

R1 OH

O

+ PhI

+H + -OBF2

Moriarty, R. M.; Duncan, M. P.; Prakash, O. J. Chem. Soc. Perkin Trans. 1 1987, 1781-1784.

Progress Towards Asymmetric α-Hydroxylation of Ketones

NN

O O

Mn

tBu tBu

Cl tButBu

R

SiR2Me2

R1 R1

O

R

OH

1. 1 (7 mol %), PhIO (1.5 equiv)PPNO (0.3 equiv), CH2Cl2

2. HCl, MeOH

S,S-1

Adam, W.; Fell, R. T.; Stegmann, V. R.; Saha-Moller, C. R. J. Am. Chem. Soc. 1998, 120, 708-714.

• Reaction is hampered by low conversion• Only modest enantioselectivity obtained

Progress Towards Asymmetric α-Hydroxylation of Ketones

Adam, W.; Fell, R. T.; Mock-Knoblauch, C.; Saha-Moller, C. R. Tetrahedron Lett. 1996, 37, 6531-6534.Adam, W.; Fell, R. T.; Stegmann, V. R.; Saha-Moller, C. R. J. Am. Chem. Soc. 1998, 120, 708-714.

Et

O

Ph

OH

Me

O

Ph

OH

Me

O

SEt

OH

81% (56% ee) 81% (60% ee) 35% (18% ee)

Ph

O

Me

OH

92% (39% ee)

Ph

O

Me

OH

54% (67% ee)

When SiR3 = TMS

When SiR3 = TBS

(R,R-1)

(R,R-1)

(S,S-1)(S,S-1)(S,S-1)

NN

O O

Mn

tBu tBu

Cl tButBu

1

α-Oxygenation of Silyl Enol Ethers• In a similar fashion, other oxygen nucleophiles can be employed:

PhIO, TMSOTf

Ph

OSiR3

Ph

O

OTfCH2Cl2, -78 C to rt

70%

Moriarty, R. M.; Epa, W. R.; Penmasta, R.; Awasthi, A. K. Tetrahedron Lett. 1989, 30, 667-669.

• Synthesis of (±)-Cephalotaxine

Yasuda, S.; Yamada, T.; Hanoaka, M. Tetrahedron Lett. 1986, 27, 2023-2026.

NOO

(PhIO)nMeOH, KOH

N O

HO

MeO

MeO

N

HO

MeO

OO

H H H

(±)-Cephalotaxine

NH

OO OO

2 stepsOH

O

Recommended