Assembly, Characterizations, & Applications · 2008-07-21 · Polymer Chain Behavior...

Preview:

Citation preview

NANOCOMPOSITE THIN FILMS:Assembly, Characterizations, & Applications

Chaoyang Jiang

Department of Chemistry

The University of South Dakota

St. Louis, June 26, 2008

Forest Products &Nanocomposite

P. Monteiro@UC Berkeley

Nanocomposite Materials

3

Synthesis Composite

Poly(Styrene-butadiene-styrene) (SBS)offers many of the properties of natural rubber, such as flexibility, high traction, and sealing abilities, with increased resistance to heat, weathering, and chemicals.

Wood Fiber

S. Renneckar et.al.Cellulose, 2008, 15, 333.

Nanocomposite Materials

4

Nanotechnology R&D Priority for the forest product

NANOCOMPOSITE THIN FILMS:Assembly, Characterizations, & Applications

Layer‐by‐Layer Assembly

5

Spin assisted LbL

G. Decher, et al.Science 1997, 277, 1232.

K. Char, et al. Adv. Mater. 2001, 13, 1076.H.-L. Wang, et al. Adv. Mater. 2001, 13, 1167.

J. B. Schlenoff et al. Langmuir 2000, 16, 9968.

Spray assisted LbL

Layer‐by‐Layer Assembly

6

Rubner and Cohen

MITCEN, 2005, 83(38), 34.

Kotov, U MichiganNature Mater. 2003, 2(6), 413.

Saraf

U Nebraska Science, 2006, 312, 1501.

Layer‐by‐Layer Assembly

7

Cellulose Nanowire (from Tunicate), 3-4 nm, CNW/PEI LbL films, Antireflective properties

Kotov et.al. Langmuir 2007, 23, 7901.

Layer‐by‐Layer Assembly

8

Employ cellulose microfibers as a support to fabricate bioactive composites with organized enzyme multilayer.

The bio activity can be tuned by varying the number of enzyme layers.Lvov et.al. Biomacromolecules 2007, 8, 1987.

calcium carbonate

9

C. Jiang et al., Nature Mater.. 2004, 3(10), 721.

S. Markutsya, et al. Adv. Funct. Mater., 2005, 15(5), 771

Composite LbL Nanomembrane

Free‐standing LbL Films

10

b1

b2

c1 c2

a1

a2

a4

a3

c1 c2

C.Jiang, et.al. Adv. Mater. 2006, 18, 829.

Y. G. Guo, et. al., Adv. Funct. Mater.2005, 15, 196.

V. Kozlovskaya, et.al., Macromolecules

2005, 38, 4828.

11

Biomimetic Approach

un-cooled biological receptors with 30mK sensitivity

MembraneIR radiation

Temperature modulatedpressure

Golay cell design of IR detector

V. V. Tsukruk, et al.Biomacromolecules, 2001, 2, 304.

12

Sacrificial LayerAcetone

Sacrificial Layer method

Spin-assisted LbLFreely Suspended LbL

nanomembranes

Free‐standing LbL Thin Films

Free‐standing LbL Thin Films

13

0 4 8 120

20

40

60

80

Thic

knes

s (n

m)

Number of PAH-PSS bilayers

(PAH-PSS)nPAH/Au/(PAH-PSS)nPAH+ - + - + - +

2 nm

nGnn = 3, 5, 7, 9, 11, …

C. Jiang, et al.Nature Mater. 2004, 3, 721.

Nanomechanics  ‐‐ Bulging Tests

14

Range accuracyDeflection: 0-10 μm, ½ λ (~300 nm)Pressure: 100 kPa, 2 Pa

Pressuresensor

Laser

CCD Camera

SEM

C. Jiang, et al. Nature Mater. 2004, 3, 721.

15

Membrane deflection

Bulging Test

200 μm

16

Bulging results and elastic modulus

With Gold

Without Gold

3

4

4

22

20

14

4

20 11⎟⎠⎞

⎜⎝⎛

−+⎟

⎠⎞

⎜⎝⎛

⎥⎦

⎤⎢⎣

⎡+

−=

hd

ahEC

hd

ahC

ahECP

νσ

ν

Mechanical parameters for different freely suspended nanomembranesMembrane type and Gold content

Fabrication method

Membrane diameter(μm)

Elastic modulus(GPa)

9G9, 3.9% SA-LbL 400 6.6±3.39G9, 0.5% SA-LbL 400 4.3±2.09_9 , 0% SA-LbL 400 1.5±1.09G9, 4% LbL N/A * N/A** Film was broken into small piece, which can not be transfer to holey substrate.

C. Jiang, et al. Nature Mater. 2004, 3, 721.

400 μm

Bulging Test

17

Micropattern in Nanomembrane

Au NP

C. Jiang, et al. Adv. Mater. 2005, 17, 1669.

Gold Nanoparticle Arrays

18

13 nm

1 μm 1 μm

6 nm

19

Localized Mechanical Testing

C. M. Stafford, et al. Nature Mater. 2004, 3, 545.A. Nolte, et al. Macromolecules 2005, 38, 5367.

C. Jiang, Nano Letters. 2006, 6, 2254.

30 μmLocation λ (μm) E (GPa)

With Gold 3.52 4.35Without Gold 2.76 2.08

10 μm

Elastic modulus

20

SERS in Nanomembranes

PressureSensor

Pump

Sealedchamber

50/50Beam

splitterNotchfilter

Laser

CCD

Nanomembrane

C.Jiang, et al. Adv. Mater. 2005, 17, 1669.

nSO3

-Na+

Confocal Raman microscope

21

0 2000 4000 60001580

1582

1584

1586

1588

1590

1592

Ram

an s

hift

(cm

-1)

Deflection (nm)

1 2 3 4 5

1100 1200 1300 1400 1500 1600 1700

1500

2000

2500

3000

3500

4000

80604020

5

0

Rel

ativ

e in

tens

ity

Raman shift (cm-1)

SO3

SO3

SO3

SO3SO3

SO3

SO3

SO3

SO3 SO3

SO3

SO3SO3

SO3

SO3

SO3SO3

SO3

SO3

SO3

SO3

SO3

SO3 SO3SO3

SO3

SO3

SO3

SO3

SO3SO3SO3

SO3

SO3

SO3

SO3

SO3

SO3SO3

SO3

SO3

SO3

SO3

SO3

SO3

SO3

SO3SO3

Polymer Chain Behavior

Outstanding mechanical properties of SA-LbL films

Chain-like Au-NP aggregation + spreading of polymer chains

Bridging multiple nanoparticles through stretched backbones

C.Jiang, et al.Phys. Rev. Lett. 2005, 95, 115503.

22

LbL film with Silver Nanowires

2.5%

15.0%

R. Gunawidjaja, Adv. Funct. Mater. 2006, 16, 2024.

Density of Silver nanowires can tune the mechanical properties of LbL thin films.

23

Buckling patterns “stop” at the location where silver nanowire appears.

Buckling Patterns of Ag LbL Films

5 μm 20 μm

24

3D NanomembranesMicro-sculptured nanomembranes

< 200 nm

Optical Grading with 3D Nanofilm

Y. Lin, et. al. Adv.Mater. 2007, 19, 3827.

26

Sensitive LbL Composites Films 

27

0.0

0.5

1.0

1.5

2.0

2.5

0 400 800 1200 1600

average fit

Pressure (Pa)

Def

lect

ion

(μm

) A1 A2 A3 A4

Membrane Diameter

(μm)

Elastic Modulus

(GPa)

200 5.3±0.4

100 5.6±0.2

75 6.3±1.0

50 6.8±1.2

Micromechanical Tests

C. Jiang, et al. Adv. Funct. Mater. 2006, 16, 27.

200μm

A1 A2 A3 A4

B1

C1

D1

28

Microcavity Arrays

Half-inch wafer64×64 cavity array

Over 4000 membranes

600μm

29

Uniform Thermal Behavior

30

298 299 300 301-400

-200

0

200

400

Def

lect

ion

(nm

)

Temperature (K)

Experimental Finite Element Analysis

Thermal Bulging

Finite Element Analysis

180 nm/K

Heat

Cool

Heat

Cool

C.Jiang, et al. Chem. Mater. 2006, 18, 2632.

31

Laser

CCDCamera

Light

785 nm50-150 mW

Laser focus to500 μm diameter

NIR Sensing Tests

Applications for Nanofilms

32

Develop multilayer ultra-thin membranes with more flexible polyelectrolyte to achieve higher sensitivity.

Increase thermal isolation and design novel substrates for high resolution imaging application.

Using SERS properties and design portable and sensitive chemicaldetector

Infrared detector with ability to detect NIR radiations in different wavelength.

Biological and medical application, eg. drug release and delivery.

Summary

33

Layer-by-Layer assemblya versatile method in fabricating multilayer nanomembranes with a variety of nanoscale building blocks, including cellulose nanocrystals and other forest products.

Surface-enhanced Raman spectroscopyMolecular information within the nanoscale composite thin film; confocal technique can provide spatial resolutions for compositenanomembranes

Free-standing LbL nanomembraneswith functional nanostructures are suitable for sensing applications in mechanical, thermal, and optical areas.

34

Acknowledgements

Nanoscale Interdisciplinary Research Team (NIRT) Dr. Vladimir V. Tsukruk (GT) (PI)Dr. Zhiqun Lin (ISU)Dr. Nicholas A. Kotov (U Michigan)Dr. Chang Liu (UIUC/NW)Dr. Eugene Zubarev (Rice U)

$$$AFOSR, NASA, NSF, ARO. Forest Product Laboratory

NSF 05-06832Bioinspired Flex Nanomembranes for Multifunctional Microsensors.

Materials Chemistry @USD

35

Recommended