“The Geometry Behind Poincaré’s Conventionalism” Jeremy ......Poincare’s famous sphere...

Preview:

Citation preview

  • 1

    “TheGeometryBehindPoincaré’sConventionalism”

    JeremyHeisUniversityofCalifornia,Irvine

    UnderReviewJuly2019

    HowdoesPoincaréargueforhisconventionalismaboutgeometry?Inparticular,

    whatfeaturesofgeometrydoeshisargumentrelyon?Accordingtosomecommon

    interpretations,Poincaré’sargumentdependsonfeaturesthatarenotuniqueto

    geometry.Forinstance,ononerecentreading(Gimbel2004),Poincare’s

    conventionalismamountstonothingmorethantrivialsemanticconventionalism:

    thetruthofageometricalsentencesuchas“thedistancefromAtoB>thedistance

    fromCtoD”dependsinteraliaonthemeaningoftheword“distance”;butwhich

    meaningweassigntotheword“distance”issimplyaconventionalfactaboutour

    language;sothetruthofthesentenceisamatterofconvention.Sinceitisclearthat

    thisargumentcouldberunforanysentence(thisiswhyitis“trivial”),this

    interpretationofPoincaré’sconventionalismturnsonlyonthemundanefactthat

    sentencesofgeometryarecomposedofwords.

    InterpretationsthatassimilatePoincaré’sargumenttoDuhemianarguments1

    basedonunderdeterminationalsoturnonafeaturethatisnotuniquetogeometry:

    1.Themetricofspaceisunderdeterminedbyouraprioriandempirical

    evidence.

    1ForexamplesofinterpreterswhoattributethisargumenttoPoincaré,seeStump1989,note52;BenMenahem2006presentsamoresophisticatedversionofthisreading.

  • 2

    2.Givensuchunderdetermination,onlyconventioncanbeusedtodecideona

    metric.

    3.Mattersofconventionarenotmattersoffact.2

    So,themetricofspaceisnotamatteroffact,butofconvention.

    Poincare’sfamoussphereargumentin“SpaceandGeometry”(1895/1913)3might

    becitedinsupportofpremise1.Poincareimaginesbeingslivingintheinteriorofa

    spherewithatemperaturefieldthatdecreasestoabsolutezeroattheboundaryof

    thesphereaccordingtotheformulaR2-r2,whereRistheradiusofthesphereandr

    isthedistanceofapointfromthecenter.Ifthesizesofbodiescontract

    proportionatelytotheirtemperature,nobodycouldtravelinfinitetimeandatfinite

    speedfromthecenterofthespheretoitsboundary,sincethebodywillgetsmaller

    andsmallerasittravelstowardtheboundary.Itwouldbeconsistentwithallofour

    aprioriandempiricalevidencetosayofsuchbeingsthattheyliveinaninfinite

    worldwherethemetricishyperbolic.Alternately,itwouldbeconsistentwiththe

    empiricalandapriorievidencetoclaimthattheyliveinafiniteregionwithina

    spacewherethemetricisEuclidean,aslongaswemodifyourusualphysicallawsto

    includethetemperaturefieldIdescribedabove.Furthermore,Poincarésupposes

    thatlightwithinthediscrefractswithanindexofrefractioninverselyproportional

    2AsPoincaréusestheterm“convention,”a“convention”isnotatruthandsoalsonotamatteroffact.See,e.g.,(1891/1913,39).3TheoriginalFrenchversionofthisessayappearedin1895.Itwaslightlyrevised–i.e.,oneparagraphwasremoved–andrepublishedin1902intheFrenchversionofScienceandHypothesis,whichwasthentranslatedintoEnglishin1905,andthenre-translatedintoEnglish(byGeorgeHalsted)inafarsuperiortranslationfrom1913.Icitepagenumbersfromthe1913Englishre-translation.ButIalsoincludethepublicationdateoftheoriginalessaysaswell,sincetheoriginalpublicationdateswillbeimportantinmydiscussionofRussellandPoincarébelow.

  • 3

    toR2-r2.Insuchaworld,beamsoflightwilltravelincirculararcswithinthesphere

    (seefigure1).Again,wecandescribethepathsofthelightbeamsasstraightlines

    thatobeyhyperbolicgeometry,orwecandescribethemascirculararcsthatobey

    Euclideangeometry–aslongaswemodifyourusualphysicallawstoincludethis

    lawofrefraction.Sinceourtotalphysicaltheory–includingourphysicallawsand

    ourgeometry--facesexperienceonlyasunit,wegettheusualDuhemianconclusion

    thatbothalternativesareconsistentwithallofourevidence,andsoitisonly

    conventionandnotmattersoffactthatdeterminewhichgeometrytochoosefor

    suchaworld.

    OntheDuhemianreading,therelevantfactaboutgeometrythatleadsto

    conventionalismisjustthefactthatgeometricalsentencesarepartofourtotal

    physicaltheory.ThismakestheDuhemianreadingveryunattractive.4Itwouldseem

    thenthateverysentenceineveryphysicaltheorywouldturnoutconventional,

    whichwouldjustcollapsethedistinctionbetweenmatteroffactandconventionand

    therebyleaveconventionalismwithoutmuchinterest.Moreover,therearepartsof

    ourtotalsciencethatPoincaréclearlythinksarenotconventional.Inparticular,

    Poincareseemstobelievethatitisnotaconventionthatspaceallowsfor

    displacementsthatformagroup,5andhealsobelievesthatallofarithmeticconsists

    ofsyntheticaprioritruths,notconventions.

    Becauseofthefailuresofthesereadings,BenMenahem2006hasarguedthat

    thisDuhemianargumentneedstobesupplementedbyspecificfactsabout

    geometry.Onherreading,whatisimportantaboutthespheremodelofhyperbolic 4SeeStump1989andFriedman1999.51895/1913,53.

  • 4

    geometryisthatitprovidesarecipeforsystematicallyredescribingeveryfactabout

    thegeometryofaEuclideanworldinhyperbolictermsandviceversa.Itthusgivesa

    convincingcasefortheunderdeterminationofthegeometryofphysicalspacebyall

    possibleevidence.Poincare’sargument,onherreading,doesnotemployorrequire

    ageneralDuhemianargument(based,say,onglobalconfirmationholismaboutour

    totalphysicaltheory),andsodoesnotgeneralizebeyondtheveryspecialcaseofthe

    metricofspace.

    Onedifficultywiththiskindofreading–adifficultyI’llreturntobelow–is

    thatthisargumentforconventionalismdependsonlyontheexistenceofEuclidean

    modelsofnon-Euclideanspaces,andthesemodelspredatedPoincare’swritingsin

    thephilosophyofgeometry.ThisreadingthusleavesitunexplainedwhyPoincaré

    wasledtoconventionalismwhenothergeometers(whoalsounderstoodthese

    modelsperfectlywell)werenot.

    Areadingthat,ifsuccessful,wouldexplainwhyPoincaréwasledto

    conventionalismwhenothergeometerswerenotisprovidedbyMichaelFriedman.

    AccordingtoFriedman1999,Poincaréargues(onphilosophicalgrounds)thatwe

    canknowapriorithesyntheticclaimthatspacehasagrouptheoreticstructurethat

    allowsforfreemobility.BytheHelmholtz-Lietheorem,6thisrequirementrestricts

    thepossiblegeometriestothosewithconstantnegative,positive,orzerocurvature,

    butdoesnotprivilegeoneoveranother.Moreover,FriedmanarguesthatPoincaré

    wascommittedtoahierarchyofthesciences,wherethesciencesareorderedby

    leveloffundamentalityinsuchawaythatnofactinamorefundamentalsciencecan

    6Stein1977.

  • 5

    bedeterminedbyafactofalessfundamentalscience.Thishierarchicalpicturethus

    rulesoutappealingtoempiricalfactstodecideonthecorrectgeometry.This

    readingthusgivesanargumentbyeliminationforconventionalism:

    1. Euclid'spostulateiseitherananalytictruth,asyntheticaprioritruth,an

    empiricaltruth,oraconvention.

    2. Theexistenceofmodelsofnon-EuclideangeometryshowthatEuclid's

    postulateisnotanalytic.

    3. Euclid’spostulateisnotsyntheticapriori,sincewecanknowapriori

    onlythatspacehasagrouptheoreticstructurethatallowsforfree

    mobility,which(byHelmholtz-Lie)doesnotdecidethetruthofEuclid’s

    postulate.

    4. Euclid'spostulatecannotbeanempiricaltruth,sincethesciencesare

    arrangedhierarchically.

    5. So,itisaconvention.

    Therearemanyfeaturesofthisinterpretationthatareattractive.Itexplains

    whyPoincaréwasledtohisconventionalismwhenothergeometerswerenot,and

    whyPoincarédidnotconsiderallofgeometrytobeconventional,letaloneall

    sciences.Moreover,thisreconstructionoftheargumentnicelycapturesthe

    argumentativestructureof“Non-EuclideanGeometries”(1891/1913)–Poincaré’s

    firstsustaineddefenseofconventionalism–whichclearlyarguesinaneliminative

    way.7Onemighttakeissuewithsomefeaturesofthisreconstruction,8butitisnot

    7AsimilareliminativeargumentappearsinPoincaré1887,214-6.8Inparticular,Dunlop2016arguesthatthereislittlegroundforattributingahierarchicalpictureofthesciencestoPoincaré.

  • 6

    mygoalinthispapertodecideonitsfidelity.(Indeed,asI’llclaimbelow,Idonot

    believethatthereisauniqueargumentthatPoincaréputsforwardfor

    conventionalism.Rather,hesupplementedhisargumentsandaddednewonesover

    thenearlytwentyyearsofhiswritingsonthephilosophyofgeometry.)Whatisnot

    wellknown,isthattherewasaquitedifferentinterpretationofPoincaréthatshares

    thesameinterpretivevirtuesandwasinfactofferedupinPoincaré’slifetimebyone

    ofhisforemostcritics.BertrandRussell,inhisearlybookEssayontheFoundations

    ofGeometry,arguedthatPoincaréwasledtohisconventionalismbyadistinctive,

    mathematicalinterpretationofthemodelsofnon-Euclideangeometry.This

    mathematicalinterpretationwascommontoPoincare,Klein,andCayley,but

    differedfromtheinterpretationthat,say,Beltramigaveofhismodel.

    SincethesesystemsareallobtainedfromaEuclideanplane,byamere

    alterationinthedefinitionofdistance,CayleyandKlein[thoughnot

    Beltrami]tendtoregardthewholequestionasone,notofthenatureof

    space,butofthedefinitionofdistance.Sincethisdefinition,ontheirview,is

    perfectlyarbitrary,thephilosophicalproblemvanishes…,andtheonly

    problemthatremainsisoneofconventionandmathematicalconvenience.

    ThisviewhasbeenforcefullyexpressedbyPoincaré*:"Whatoughtoneto

    think,"hesays,"ofthisquestion:IstheEuclideangeometrytrue?The

    questionisnonsense."Geometricalaxioms,accordingtohim,aremere

    conventions:theyare"definitionsindisguise."9

    9Russell1897,§33.RussellisquotingPoincaré1891/1913,39.

  • 7

    RussellgoesontoarguethatwhatmatteredforPoincaréwasthatdistancewasnot

    aprimitivenotionasitwasforBeltrami,butwasmathematicallydefinedusing

    intrinsicallynon-metricnotionsdrawnfromadifferentareaofmathematics

    (namely,projectivegeometry).AsI’llexplainbelow,RussellclaimsthatPoincaré’s

    argumentdependsondefiningthedistancebetweentwopointsintermsofthe

    crossratioofthosetwopointsandtwootherarbitrarilychosenpoints.But,Russell

    claimed,distanceisinfactaprimitivenotionandsotheargumentfor

    conventionalismcollapses.

    ThereareafewfeaturesofthisreadingthatIwouldliketohighlight.First,it

    assimilatesPoincaré’smathematicalworktoearlierworkbyCayleyandKlein.

    Second,itclaimsthatPoincaré’sargumentforconventionalismdependsonvery

    specificfeaturesofhismathematicalwork.10Third,thereconstructiondependsin

    nowayonDuhemianunderdeterminationarguments,andinfactdoesnotturnon

    theapplicationofgeometrytophysics.Rather,theargumentturnsonthe

    applicationofonemathematicaltheorytoanother.Insteadofarguingthatthereisa

    10RussellisnottheonlyreadertoseePoincaré’sconventionalismasdependentonhisparticularmathematicalwork.Zahar(1997,185)arguesthat"strictlyinternalfactorsconnectedwithhisworkonFuchsianfunctionsgaverisetohisso-called'conventionalism.'"Zahar'sprincipalconclusionisthatPoincarédidnotemployRiemanniangeometryinhisinvestigationsoftheinvariantsinFuchsianfunctions.ThisexplainswhyPoincaréwasnottemptedtoconsiderRiemanniangeometriesofvariablecurvatureaslegitimategeometries(1891/1913,37)–animportantmoveinhisdefenseofconventionalism.IagreewithZahar'sreadingofPoincaré'smathematicalworlkonFuchsianfunctions,astherestofthispaperwillshow.However,IbelievethattheconnectionbetweenPoincaré'smathematicalworkandhiscommitmenttoconventionalismrunsdeeper.Afterall,therewerecontemporariesofPoincaré's(e.g.,HelmholtzandRussell)whoalsodeniedthatRiemanniangeometriesofvariablecurvaturewerelegitimategeometries,andyetdidnottakethefurtherstepandembraceconventionalism.ThereneedstobesomeexplanationforwhyPoincaréinparticulartookthisfurtherstep.

  • 8

    loosenessoffitintheapplicationofpuremathematicstothephysicalworld–thus

    leavingopenadegreeoffreedomthathastoberestrictedbyconvention–itturns

    ontheloosenessoffitindefiningdistance(apurelymathematicalnotioninmetric

    geometry)usingtermsdrawnfromanotherareaofpuremathematics.

    Inthispaper,Iwanttoexplainandcriticallyevaluatethisreading.InSection

    I,I’llexplainRussell’sobjectiontoPoincaré,itsphilosophicalmotivations,andwhy

    itultimatelyfailsasareadingofPoincaré.InsectionII,I’llarguethatthereisa

    successfulmodifiedRussellianreading.Thatis,thereispresentinPoincaréan

    argumentforconventionalismfromthepossibilityofalternativedefinitionsof

    distancewithinpuremathematics.Thisargumentdoesnotderivefromthe

    underdeterminationofphysicalgeometrybyexperience,butbytheapplicationof

    onemathematicaltheorytoanother.

    SectionI:EarlyRussellversusPoincaré

    Russell’scriticismofPoincaré’sconventionalismappearedinhis1897book,Essay

    ontheFoundationsofGeometry[EFG].Thisbookappearedfiveyearsbefore

    Poincaré’sclassictreatmentofthespaceprobleminPartTwoofScienceand

    Hypothesis[SH],whichcollectstogetherandre-arrangespapersthatwerepublished

    between1891and1900.InEFG,Russellcitestwopapersthateventually

    reappearedinSH:“Non-EuclideanGeometry”((1891/1913),whichwasreprinted

    withminor–thoughsignificant–deletionsaschapter3),and“SpaceandGeometry”

    ((1895/1913),whichwasreprintedaschapter4ofSH,withoneparagraph

  • 9

    deleted).11ThefirstchapterofEFGistitled“AShorthistoryofMetageometry”and

    arguesthatthehistoryofmathematicalworkonnon-Euclideangeometryshouldbe

    dividedintothreeperiods,withthesecondperiodcharacterizedbytheuseof

    differentialgeometrybyGauss,Riemann,andBeltrami,andthethirdperiod

    characterizedbytheuseofprojectivegeometrybyCayleyandKlein.Itisinthis

    contextthatRussellarguesthatconventionalistinterpretationsofmodelsofnon-

    Euclideangeometrymakesenseonlywhenthesemodelsareconstructedusing

    techniquescharacteristicofthethirdperiod,notthesecond.

    ToseewhatRussellisgettingat,weneedtoexaminethedifferentroutesthat

    BeltramiandKleintooktoconstructingtheirmodelsofhyperbolicgeometry.12

    Beltramiusedmethodsfromdifferentialgeometry,and(inhis1868Saggio)

    constructedamodelof2-dhyperbolicgeometryinEuclidean3-space.Beltrami

    beganwiththestandardwayofprojectingthedistancefunctiondefinedonpoints

    onthesouthernhemisphereofasphereontoaplane(figure2).Theinversefunction

    11Russellquotes1891/1913at§33(quotedabove).Hementions1895/1913inalongfootnoteto§100,whichgivesalonglistofthe“mostimportantrecentFrenchphilosophicalwritingsonGeometry.” ThatfootnotealsolistsPoincaré1897,whichisPoincaré’sreplytocriticismsofhisphilosophyofgeometryleveledbyLechalasandCouturat.Thispaperisdevotedlargelytoline-by-lineresponsestospecificclaimsofLechalasandCouturat,andcontainsnonewclaimsmateriallydifferentfromthosein1891/1913and1895/1913.Moreover,thereisnoevidencethatRussellengagedwiththispaperatallinEFG,beyondsimplylistingit.SoIwillfollowRussell’sleadinignoringitinthispaper. Twoparagraphsaredeletedfrom1891/1913inch.3ofSH.Thelastparagraphissimplymovedonepageovertobecometheopeningofch.4ofSH.Thepenultimateparagraph–apassagedevotedtothepossibilityofdeterminingthecorrectgeometryempiricallybymeasuringstellarparallaxes–ismovedtoch.5ofSH.Seenote16andpage37below.12MypresentationofBeltramiisderivedfromStillwell1996.

  • 10

    thatmapsthecoordinateofthepointontheplane(x,-R,z)backontothesphereis

    then

    𝑥!,𝑦!, 𝑧! =𝑅

    (𝑅! + 𝑢! + 𝑣! (𝑥,−𝑅, 𝑧)

    Nextwedefineaninduceddistancefunctionds2onpointsontheplanesothatthe

    distancebetween(x1,-R,z1)and(x2,-R,z2)isjustthestandardlengthofthegeodesic

    onthesurfaceofthesphereconnecting(x1’,y1’,z1’)and(x2’,y2’,z2’).(Thisisthekind

    ofinducedfunctionthatmapmakersareinterestedinwhentheyrepresent

    distancesonaglobeusingflatmapsinanatlas.)Beltramithennoticedthatthis

    induceddistancefunctiondependedonlyonx1,z1,x2,z2,andR2,andsowouldbe

    meaningfulifRwasreplacedwithR√-1.BeltramithenshowedthatreplacingRwith

    R√-1inducesonaplaneanon-Euclideanmetricthathasconstantnegative

    curvature,andthepointsprojectedfromContotheplanearenowallinsideadisk

    (figure3).

    Klein("Ontheso-calledNon-EuclideanGeometry":Klein1871])arrivedat

    thesamemodelutilizingtechniquesforbuildingadistancefunctiononthecomplex

    projectiveplaneusingonlyresourcesdrawnfromprojectivegeometry.Kleinstarted

    withanideafromVonStaudt.VonStaudtshowedhowtoinduceasetofrational

    coordinatesonthepointsonaprojectivelinebyrepeatedapplicationofthe

    quadrilateralconstruction,apurelyprojectiveconstructionthatrequiresonlypencil

    andstraightedge(figure4).Itwasawell-knowntheoremofprojectivegeometry

    thatthefourpointsonalinepickedoutbythequadrilateralconstructionhavethe

    samecrossratio:

  • 11

    𝐶𝑅 𝑃,𝐴,𝐵,𝑄 =𝑃𝐴𝑃𝐵 ×

    𝑄𝐵𝑄𝐴

    anditwaswellknownthatthecrossratiooffourpointswasinvariantunder

    projection.VonStaudtthenshowedthatiftwoofthesepointsarearbitrarilylabeled

    nand∞,thenrepeatedapplicationsofthisconstructionwillassignthestandard

    Euclideanmetrictothepointsontheline.Ingeneral,ifwetakeaprojectiveline

    withtwopointsfixed(suchasPQinfigure5),wecandefineafunctionthatassignsa

    distancebetweentwopoints:

    𝑑 𝐴,𝐵 = 𝑐[log𝐶𝑅(𝑃,𝐴,𝐵,𝑄)]

    Employingthelogofthecrossratioensuresthatthedistancefunctionhastheright

    additiveproperty

    𝑑 𝐴,𝐵 + 𝑑 𝐵,𝐶 = 𝑐[log𝐶𝑅(𝑃,𝐴,𝐵,𝑄)]+ 𝑐[log𝐶𝑅(𝑃,𝐵,𝐶,𝑄)]

    = 𝑐[log𝐶𝑅(𝑃,𝐴,𝐶,𝑄)] = 𝑑(𝐴,𝐶)

    sincethecrossratioofalinesegmentistheproduct,notthesum,ofcrossratiosof

    itsparts:

    𝐶𝑅 𝑃,𝐴,𝐵,𝑄 ×𝐶𝑅 𝑃,𝐵,𝐶,𝑄 = 𝐶𝑅(𝑃,𝐴,𝐶,𝑄)

    Adistancefunctionforthewholeplanecouldthusbedefinedpurely

    projectively,usingnoundefinednotionsfrommetricgeometry–ifonlywehada

    systematicwaytopickouttwoarbitrarypoints,nand∞,onanylineintheplane.

    Buteverylineintersectsaconicinthecomplexprojectiveplaneintwopoints,and

    sowecandefinedistanceprojectivelyifwejustpickanarbitraryconicinthe

  • 12

    plane.13Infact,Cayley(“SixthMemoironQuantics”:Cayley1859)hadshownhowto

    constructthestandardEuclideandistancefunctioninthisway,inthespecialcase

    wheretheconicpickedoutisimaginaryanddegeneratesintoapointpair.Klein's

    ideawasthatdifferentkindsofmetricgeometrieswouldariseiftheconic(whichhe

    calledthe“fundamentalconic”)werechosendifferently.14Inparticular,heshowed

    thatifthefundamentalconicisimaginaryandnon-degenerate,thenwehave

    sphericalgeometry(spacesofconstantpositivecurvature),andifthefundamental

    conicisrealandnon-degenerate,thenwehavehyperbolicgeometryinthespace

    enclosedwithintheconic(spacesofconstantnegativecurvature).Thelattercaseis

    depictedinfigure5.ItiseasytoseethatBeltrami’smodelisamodelofthislatter

    Kleiniankind,wherethediskaroundtheoriginisaspecialcaseofareal,non-

    degenerateconic.

    KleinandBeltramithusproducedtheirmodelintwoconceptuallyquite

    distinctways.Beltramiusedtechniquesfromdifferentialgeometry,whose

    fundamentalobjectsarevariousspaceswithdistancefunctionsonthem;Kleinused

    techniquesfromprojectivegeometry,whosefundamentalobjectiscomplex

    projectiven-spacewithprojectiverelationsoutofwhichcanbeconstructedvarious

    distancefunctions.Russellwasabsolutelycorrect,then,toarguethatoneandthe 13Again,pickingaconicisprojectivelyacceptableaswell,sinceSteinerhadshownthatconicscanbeconstructedpoint-by-pointbytakingtheintersectionpointsoflinesthatstandtooneanotherinconstantcrossratios(Steiner1881,§41.I).14Klein’sadvanceoverCayleywastwofold.First,hegeneralizedCayley’sproceduretodistancefunctionsotherthanEuclideanones.Second,heusedthetechnicalresourcesfromVonStaudttoshowthatthedistancefunctionscouldbedefinedinapurelyprojectiveway.Thisremovedtheworryofcircularityindefiningdistanceintermsofcrossratio,whichwas–afterall–initiallydefinedastheproductofquotientsofstandardEuclideandistances.Athirdadvance,discussedbelow,isKlein’sinterpretationofhisclassificationofgeometriesgroup-theoretically.

  • 13

    samemodelcanbeunderstoodinmathematicallyquitedistinctways.Russell

    furtherassimilatedPoincaré’sapproachtoKlein’s.TounderstandRussell’sclaim,

    weneedtounderstandtherelationbetweenPoincaré’sspheremodel(a2-dversion

    ofwhichisfigure1)andtheKlein-Beltramimodel.

    AsI’llshowinsection2,Poincaréarrivedathismodel(inPoincaré1880a)

    whiletryingtorepresentgeometricallytheinversesofquotientsofsolutionsto

    secondorderlineardifferentialequations.Butthoughheproducedthismodelusing

    techniquesdistinctfrombothKlein’sprojectiveandBeltrami’sdifferentialmethods,

    heshowedgeometricallyhowitcouldbeconstructedfromtheKlein-Beltrami

    model.BeginbytakingaspherewhoseequatorialdiskisaKlein-Beltramimodel

    (figure6).Projecttheequatorialplaneontothesouthernhemispherebyparallel

    projectionsorthogonaltotheequatorialplane(figure7).Thestraightlinesinthe

    Klein-Beltramimodelarenowprojectedontocirculararcsthatmeettheequatorat

    rightangles.Thenprojectthebottomhemisphereontotheplanetangenttothe

    southpoleofthesphere,usingasthecenterofprojectionthenorthpoleofthe

    sphere(figure8).Thecirculararcsonthesouthernhemispherewillbeprojected

    ontocirculararcsofthedisk,andtherightanglesatwhichthecirculararcsonthe

    southernhemispheremeetthediskwillbeprojectedontorightangleswhere

    circulararcswithinthediskmeetthecircumferenceofthedisk.Theregionofthe

    planeboundedbytheprojectionoftheequatorofthespherewillbetheboundaryof

    Poincaré’smodel(figure1).

    RussellinterpretedPoincaré’sargumentforconventionalisminsuchaway

    thatitdependedonKlein’swayofconstructinghismodel.Therearethree

  • 14

    philosophicallysignificantfeaturesofKlein’sprocedurethatdistinguishitfrom

    Beltrami’s.First,inKlein’sconstructiontheEuclidean,hyperbolic,andspherical

    metricsarealldefinedononeandthesameunderlyingcomplexprojectiveplane.It

    thereforeseemsmorenaturaltodescribethesemetricgeometriesasthreedifferent

    waysoftalkingaboutthesameunderlyingreality.Second,inKlein’sconstruction

    thedistancefunctionisnotprimitive,butdefined.Itthereforeseemsnaturalto

    characterizethechoiceofametricasachoiceofadefinition,and–inasmuchas

    definitionsofwordsarearbitrary–asnotamatteroffact.15Third:

    Theprojectivegeometer…whenheintroducesthenotionofdistance,he

    definesit,intheonlywayprojectiveprinciplesallowhimtodefineit,asa

    relationbetweenfourpoints.(EFG,§37)

    RussellthereforereconstructsPoincaré’sargumentinthefollowingway.The

    Cayley-Kleinmetricdefinesd(A,B)intermsofthecrossratioofAandB,andtwo

    otherarbitrarilychosenpointsPandQ.Moreover,theproceduresforpicking

    arbitrarypointsP,Qonalinecorrespondtothethreegeometriesofconstant

    curvature.So,thechoiceamongthethreegeometriesofconstantcurvatureis

    arbitrary.

    OnRussell’sreading,Poincaré’sargumentforconventionalismdoesnot

    dependonanyfactsaboutphysicalgeometry,norontheunderdeterminationoftotal

    theoriesbyphysicalevidence.Thisisnotsurprising,sincePoincaré’sextended

    treatmentinScienceandHypothesisofthepurportedempiricalbasisofgeometryis

    15Onthesefirsttwopoints,seeEFG,§33,quotedabove.

  • 15

    ch.5(“ExperienceandGeometry”),whichappearedafterRussell’sbook.16Indeed,as

    DavidStump(1989,348)haspointedout,thereislittleindicationinthetextof

    1895/1913thatPoincaréintendedthesphereargumenttobemakingapointabout

    thewayinwhichphysicalgeometryisunderdeterminedbyourempiricalevidence.

    Instead,thesphereargumentissupposedtoshowthatwecanimaginespaces

    whereEuclid’saxiomfails.(Andinanycase,Russelldoesnotmentionthesphere

    argumentinEFG,despiteciting1895/1905.)Infact,Poincaréintroducesthesphere

    thoughtexperimentinthisway:

    Ifgeometricspacewereaframeimposedoneachofourrepresentations,consideredindividually,itwouldbeimpossibletorepresenttoourselvesanimagestrippedofthisframe,andwecouldchangenothingofourgeometry.Butthisisnotthecase;geometryisonlytheresumeofthelawsaccordingtowhichtheseimagessucceedeachother.Nothingthenpreventsusfromimaginingaseriesofrepresentations,similarinallpointstoourordinaryrepresentationsbutsucceedingoneanotheraccordingtolawsdifferentfromthosetowhichweareaccustomed.(1895/1913,49)

    Sothepointofthespheremodelisthatthestructureofspaceisnotsomethingthat

    isintrinsicinanygivenrepresentation,butemergesonlyfromthelawsof

    connectionamongrepresentations.AsPoincaréputsthepointafewpageslater

    (1895/1913,59),theobjectofgeometryisnotaformofsensibility,butaformof

    ourintellect.Andsowecanimagineadifferentgeometrybyimaginingaworld

    whereoursensationsrelatetooneanotheraccordingtodifferentlaws.Usingthe

    eliminativeargumentforconventionalismPoincaréintroducesin1887and 16Indeed,thebulk–i.e.sections4-7–ofPoincaré1902/1913(titled,“ExperienceandGeometry”)consistsofpassagesfromPoincaré1899and1900,wherePoincarédevelopedamoresustainedargumentagainsttheclaimthatEuclid’spostulateisanempiricaltruth,inresponsetoRussell’sclaiminEFGthatitstruthcouldbedecidedbyexperiment(EFG§140).Theexceptionis§3,aparagraphthatoriginallyappearedattheendofPoincaré1891/1913,butwasremovedwhenthechapterwasrepublishedinSH.Seealsop.37below.

  • 16

    1891/1913,thespheremodelisthereforeintendedtoshowthatEuclid’spostulate

    isnotasyntheticaprioritruth.

    RussellrejectsPoincaré’sconventionalismbecauseherejectsthesecondand

    thirdfeaturesofKlein’sprocedure.Inparticular,withrespecttothethirdfeature,

    Russellargues:

    Distance,intheordinarysense,remainsarelationbetweentwopoints,not

    betweenfour;anditisthefailuretoperceivethattheprojectivesensediffers

    from,andcannotsupersede,theordinarysense,whichhasgivenrisetothe

    viewsofKleinandPoincaré.(EFG,§37)

    Russellmaintainsthatdistanceisarelationbetweentwopointsbecausehewants

    geometrytoplayatranscendentalrole:toprovidetheformofexternality.Geometry

    should“permitknowledge,inbeingswithourlawsofthought,ofaworldofdiverse

    butinterrelatedthings”(§58).Distance,asaprimitivetwo-placerelation,allowsus

    todistinguishbetweentwopointswhilealsointerrelatingthem.Theabilityto

    perceivetwothingsatdistancefromoneanotheristhustheabilitytoperceive

    identityindifference–themostprimitiveabilitywithoutwhichwecouldnot

    cognizeobjectsofperception.Ifdistancewerearelationamongfourpoints,thenit

    wouldpresupposesomeperceptualwayofdistinguishingthosefourpointsfrom

    oneanother,andwouldthuspresupposetheformofexternalityinsteadof

    constitutingit.Andso:"BeltramiremainsjustifiedasagainstKlein"(§33).

    Russell’sinterpretationisnotcorrect.InhisreviewofEFG,Poincarépointed

    outthatRussellhadmisinterpretedhisargumentbymakingitdependentonthe

  • 17

    metricofCayleyandKlein(Poincaré1899,273).17Infact,inanotherpaper,

    publishedafterRussell’sbookbutbeforePoincaréknewofit,Poincareexplicitly

    deniedthattheproperwaytodefinedistancefromAtoBisintermsofthecross

    ratioofA,B,andtwootherpoints:

    [VonStaudt]obtain[s]themetricalproperties[by]definingaharmonic

    penciloffourstraightlines,takingasdefinitionthewell-knowndescriptive

    property.Thentheanharmonic[i.e.cross]ratiooffourpointsisdefined,and

    finally,supposingthatoneofthesefourpointshasbeenrelegatedtoinfinity

    theratiooftwolengthsisdefined.Thislastistheweakpointoftheforegoing

    theory,attractivethoughitbe.Toarriveatthenotionoflengthbyregarding

    itmerelyasaparticularcaseoftheanharmonicratioisanartificialand

    repugnantdetour.Thisevidentlyisnotthemannerinwhichourgeometric

    notionswereformed.(Poincaré1899,§XVII)

    DespitethefactthatRussell’sreadingmissesthemark,isthereamore

    successfulreadingofPoincaréthatsharesmanyofthefeaturesandvirtuesof

    Russell’stheory?SuchareadingwouldmakePoincaré’sargumentdependon

    specificfeaturesofhismathematicalworkingeometryandwouldexplainwhy

    conventionalismseemednaturaltohimwhenitdidnotforothergeometerswho

    understoodthemodelsofnon-Euclideangeometryequallywell.Itwoulddependon

    thespecificwayinwhichdistanceisdefinedusingresourcesfromadifferentareaof

    mathematics,andnotonthewaymathematicsisappliedinphysicalscience.Inthe

    nextsection,I’llarguethatthereissuchanargument.Inordertounderstand 17PoincaréwroteareviewofRussell’sbook(Poincaré1899)andafurtherpiece(Poincaré1900)inresponsetoRussell’sreply(Russell1900).

  • 18

    Russell’sreadingofPoincaré,wehadtolookatthedifferentmathematicalroutes

    thatBeltramiandKleintooktoarriveattheirmodels.Inthenextsection,we’lldo

    thesameforPoincaré.

    SectionII:FuchsianFunctions

    Poincaré’searliestargumentsforconventionalism,including1891/1913(which

    wasthefirstsustainedphilosophicaltreatmentofgeometry,andtheworkthat

    Russellcitesanddiscusses),explicitlydrawonhisearlierworkinpure

    mathematics.

    Ifgeometryisnothingbutthestudyofagroup,onemaysaythatthetruthof

    thegeometryofEuclidisnotincompatiblewiththetruthofthegeometryof

    Lobachevsky,fortheexistenceofagroupisnotincompatiblewiththatof

    anothergroup.(1887,215)

    Nothingremainsthenoftheobjection[thattheremaybeahidden

    contradictioninLobachevskiangeometry]aboveformulated.Thisisnotall.

    Lobachevski'sgeometry,susceptibleofaconcreteinterpretation,ceasesto

    beavainlogicalexerciseandiscapableofapplications;Ihavenotthetimeto

    speakhereoftheseapplications,noroftheaidthatKleinandIhavegotten

    fromthemfortheintegrationoflineardifferentialequations.(1891/1913,

    34).

  • 19

    Thefirstquotationisfromtheconcludingpagesof“Surleshypothèses

    fondamentalesdelagéométrie,”whichisamathematicalpaperthatendswitha

    pageandahalfofprogrammaticphilosophicalremarks.HerePoincaréclaimsthat

    thechoicetoacceptorrejectEuclid’spostulateisnotamatteroftruth,andhis

    argumentclearlydependsonthinkingofthevariousmetricgeometriesasarising

    fromselectingamongallthepossiblegroupsofcoordinatetransformationsonone

    andthesameunderlyingspace.Thesephilosophicalremarksarethefirststatement

    ofPoincaré’sconventionalism,andareexpandeduponinhisfirstpurely

    philosophicalessay,1891/1905.Inthelatteressay,Poincaréarguesthatwhat

    movesnon-Euclideangeometryfroma“merelogicalcuriosity”tosomethingmore,

    isnotitsphysicalapplications,butitsapplicationingrouptheoryandinthetheory

    ofdifferentialequations.

    TounderstandwhatPoincaréisgettingat,weneedtolookatPoincaré’s

    mathematicalworkfromtheearly1880s.Poincaré’sfirstapplicationofhyperbolic

    geometrywasinthetheoryofFuchsianfunctions.Fuchsianfunctionsarea

    generalizationofellipticfunctions,whichwereoneofthemostwidelystudied

    topicsinnineteenthcenturymathematics.18Inordertokeeptrackoftheirorigins

    andapplications,weneedtointroduceellipticfunctionsinthecontextofelliptic

    integralsandellipticcurves.Anellipticintegralisanintegraloftheform

    𝑅 𝑡, 𝑝(𝑡) 𝑑𝑡

    18SeeBottazziniandGray2013,Ch.1.Foradiscussionofthephilosophicalsignificanceofellipticfunctions,seeTappenden2006.MypresentationhereisindebtedtoStillwell2010,chapter12.

  • 20

    whereRisarationalfunction19andp(t)isapolynomialofdegree3or4.An

    especiallysimpleexampleofsuchanintegralisthelemniscaticintegral

    𝑑𝑡1− 𝑡!

    !

    !

    whichgivesthearclengthofthelemniscateofBernoulli.TheCartesianequationof

    Bernoulli’slemniscateis

    𝑥2 + 𝑦! ! = 𝑥2 − 𝑦!

    anditsgraphisfigure9.

    TheseintegralshavebeenstudiedsinceLeibniz.Theyappearinvery

    elementarysettings:e.g.,theintegralthatgivesthearclengthofanellipseisan

    ellipticintegral–hencethename.Earlyon,itwasdiscoveredthattheycannotbe

    expressedintermsofelementaryfunctions,whichfrustratedtheintuitivenatural

    idea(beginningwithLeibnizhimself)thatthesolutionofeveryintegrationproblem

    shouldbeexpressedintermsofelementaryfunctions.20Abreakthroughcame

    around1800whenGauss(and,later,AbelandJacobi)studiedtheirinversesand

    consideredtheirbehaviorinthecomplexplane.Theinverseofanellipticintegralis

    calledanellipticfunction.Forexample,theinverseoftheleminscaticintegralGauss

    calleda"lemniscaticsinefunction,"standardlyabbreviatedsl(x),onanalogywith

    thesinefunction.Recallthatthesinefunctionistheinverseof

    sin!! 𝑥 =𝑑𝑡1− 𝑡!

    !

    !

    19Arationalfunctionisaquotientofpolynomials.20Afunctioniselementaryifitcanbedefinedbyarithmeticaloperationsonafinitenumberofexponentials,logarithms,constants,andnthroots.

  • 21

    whichistheequationforthearclengthofacircle.21Thesinefunction,togetherwith

    itsfirstderivative–thecosinefunction–,canbeusedtoparameterizetheequation

    ofacircle

    𝑥2 + 𝑦! = 𝑟!

    withx=cost=sin'tandy=sint.Justassintcanbeusedtoparameterizethe

    equationofacircle,sotoocanellipticfunctionsbeusedtoparameterizethe

    equationofcertaincurves.Thatis,iff(x)isanellipticintegral,thentherearecurves

    thatcanbeparameterizedsothat

    𝑥 = 𝑓!!(𝑢)

    and

    𝑦 = 𝑓!!′(𝑢)

    wheref-1(x)isanellipticfunction.Thosecurvesthatcanbeparameterizedby

    ellipticfunctionscametobecalledellipticcurves.22

    MathematiciansbeforeRiemannstandardlydefinedellipticfunctionsin

    termsoftheirpowerseriesexpansions.AbelandJacobiinthe1820sdiscoveredthat

    ellipticfunctionsaredoublyperiodic,andafterRiemannmathematiciansbeganto

    definethemsoastohighlighttheirdoubleperiodicity.Consideragainthe

    elementarysinefunction.Thesinefunctionissinglyperiodic(seefigure10):itis

    invariantundersubstitutions

    𝑥 ↦ 𝑥 + 2𝑛𝜋

    21Thisiswhysin-1iscalled“arcsin.”22Infact,anycubiccurvecanbeparameterizedbyanellipticfunction–aresultannouncedbySteinerbutfirstprovenbyClebschin1864.

  • 22

    Interpretedgeometrically,thismeansthatwecanslidetheentireplane2πunits

    alongthexaxisntimeswithoutchangingwhichpointslieonthefunctionsinx.

    Gaussnoticedthatthelemniscaticsinefunctionisdoublyperiodicinthecomplex

    plane:

    𝑓 𝑥 = 𝑓(𝑤 +𝑚𝜔! + 𝑛𝜔!)

    withm,nintegersandω1andω2complexnumbers.Thiscanberepresented

    geometricallybyaplanetiledbyparallelograms,asinfigure11.Themappingof*-

    pointstopointsonthecurvewillbeunaffectedby

    𝑥 ↦ 𝑥 +𝑚𝜔! + 𝑛𝜔!

    Interpretedgeometrically,thismeansthatwecanslidetheentirecomplexplaneω1

    unitsalongoneaxisntimesandω2unitsalongtheotheraxismtimeswithout

    changingthevaluesoftheellipticfunction.Thesemappingsarejustrigid

    (Euclidean)translationsoftheplanethatkeepthetilingintact.Therigid

    translationsthusformagroup,witheachelementofthegroupcorrespondingtoa

    tile.Forexample,theparallelogramwhosebottomleftcorneristheorigin

    correspondstothegroupidentity,thatis,theoperationthatleavesallpointsonthe

    planeunaffected.Theparallelogramwhosebottomleftcorneristhepoint(ω1,0)

    correspondstotherigidtranslationthatmoveseverypointtotherightbyω1.And

    soon.

    Thetheoryofellipticfunctionsprovidedagreatsimplificationand

    unificationinthetheoryoffunctions.Forinstance,inlecturesdeliveredin1874-5,

    Weiserstrass23showedthatanyanalyticfunctionofasinglecomplexvariablethat

    23SeeBottazinniandGray2013,424-9.

  • 23

    admittedanalgebraicadditionformulawasexpressibleasarationalfunctionofthe

    simplestellipticfunction,whichWeierstrasscalled℘

    𝓅 𝑧 =1

    𝑧 +𝑚𝜔! + 𝑛𝜔! !

    !

    !,!!!!

    whichparameterizestheellipticcurve

    𝑦! = 4𝑥! − 𝑔!𝑥 − 𝑔!.

    Butcouldthistheorybefurthergeneralized?Aretherefruitfulgeneralizationsof

    ellipticfunctions–generalizationsthatwouldparameterizealargerclassof

    algebraiccurvesandfurthersimplifythetheoryofcomplexfunctions?Inpapers

    from1880LazarusFuchstriedtodopreciselythis.Fuchsbeganwithsecondorder

    lineardifferentialequationswithrationalcoefficients:

    𝑦!! + 𝑃 𝑧 𝑦! + 𝑄 𝑧 𝑦 = 0

    wherePandQarerationalfunctions.Sincethefunctionissecondorderandlinear,

    allofitssolutionscanbeexpressedaslinearcombinationsoftwosolutions,f(z)and

    ϕ(z).Fuchsthenclaimed(Fuchs1880)thatthequotientofthesetwosolutions

    𝜁(𝑧) =𝑓(𝑧)𝜑 𝑧

    couldundercertainconditionsbeinvertedtoformawell-defined,single-valued,

    meromorphic24function:

    𝐹 = 𝜁!!.

    24Ameromorphicfunctionisafunctionthatisholomorphicexceptatisolatedpoints.Aholomorphicfunctionisafunctionthatiscomplexdifferentiableintheneighborhoodofeverypointinthecomplexplane.(AsPoincaréshowed,theisolatedpointsatwhichaFuchsianfunctionisnotholomorphicarethepointsontheboundaryofthedisk.)

  • 24

    ItisthisfunctionFthatisanalogoustoanellipticfunction,with𝜁akintoanelliptic

    integral.

    Inhisprizeessaysubmittedon28May1880,25Poincaré–thenayoungand

    unknownmathematician–showedthattheconditionsFuchsidentifiedwereneither

    necessarynorsufficientforFtobesingle-valued,well-defined,andmeromorphic

    (1880a,331).Underwhatconditions,then,doesFexistwiththespecified

    properties?PoincarébeganwiththefactthatanyFwouldbeinvariantunderlinear

    fractionaltransformations

    𝐹 𝑧 = 𝐹 !"!!!"!!

    .26

    So,insteadofbeingdoublyperiodic,Fwouldbeinvariantunderlinearfractional

    transformations:

    𝑧⟼ !"!!!"!!

    .

    Hefurthershowed(Poincaré1880a,346ff.)thatthepathofFwouldbeconfined

    insideacurvilinearpolygon oαγα’untilitspathcrossesaboundary(say,oα),at

    whichpointFwouldtraceoutanidenticalpathwithinthenewcurvilinearpolygon

    oαγ1α’1.WhenFcrossesaboundaryofthisnewpolygon(say,oα’1),itagainrepeats

    itspathwithinyetanewcurvilinearpolygonoα1γ2α’1–andsoon(seefigure12).

    Eachofthesepolygonscanbegeneratedfromtheoriginalpolygonbyrepeated

    applicationsoflinearfractionaltransformations,andareboundedbyarcsofcircles

    25MyunderstandingofPoincaré’sworkonFuchsianfunctionsdrawsonaseriesofworksbyJohnStillwellandJeremyGray:(Stillwell1985),(Gray1986,ch.6),(Gray1999),(BottazziniandGray2013),(GrayandWalter1997),(Gray2013).26(1880a,318).ThisfactfollowsmoreorlessimmediatelyfromthefactthatFistheinverseofthequotientofsolutionstoadifferentialequation,whereeverysolutionisalinearcombinationoftwosolutions,f(z)andϕ(z).

  • 25

    thatmeetatrightanglesacircleHH’centeredontheorigin.Therewillfurthermore

    beaninfinitenumberofthesepolygons,whichwillcovertheinteriorofthecircle

    HH’(figure1).ItfollowsthatFonlyexistswithinthediskHH’.(1880a,352).

    ButisFsingle-valued,asFuchsclaimed?Thisalldependsonwhetherthe

    curvilinearpolygonsgeneratedwithinthediskasFtracesitspatheveroverlap:if

    thepolygonsdooverlap,thenFwillbemulti-valuedintheoverlappingregion

    (1880a,351).Toshowthatthereisnooverlap,Poincarétakesthediskcoveredin

    curvilinearpolygonsandprojectsitstereographicallyandthenorthogonallyonto

    theequatorialplaneofthesphereinthewaydescribedinsection1(seefigures6,7,

    and8).Thecurvilinearpolygonsareprojectedontorectilinearpolygons,andsince

    simpleelementarygeometricalreasoningshowsthattheserectilinearpolygonsdo

    notoverlap,therectilinearpolygonsdon’teither.Fisthuswell-defined,single

    valued,andmeromorphic.

    Poincarécalledthesefunctions“Fuchsianfunctions.”Moreformally

    (Poincaré,1881a,47-8):aFuchsianfunctionisanymeromorphicfunctionthatis

    invariantundera“Fuchsiangroup,”whereaFuchsiangroupisadiscontinuous27

    groupoflinearfractionaltransformationsonthecomplexplanethatleaveinvariant

    acirclearoundtheorigin.Thatis,aFuchsiangroupisagroupofoperationsonthe

    complexplanethatleavethetessellationofthediskHH’intocurvilinearpolygons

    intact.EachFuchsiangroupcorrespondstoawayoftessellatingthediskHH’with

    curvilinearpolygons,andeachelementofagroupcorrespondstoacurvilineartile.

    27Agroupisdiscontinuousifitdoesnotcontainaninfinitesimaloperation.Fuchsiangroupshavetobediscontinuous,becausetheycorrespondtowaysofmovingthepointswithinthediskthatleavethetilingintact,andnotileisinfinitesimal.

  • 26

    Inhisprizeessay,PoincaréhadfoundanexampleofaFuchsianfunction–a

    functionwhoseFuchsiangroupcorrespondstothetessellationofthediskwitha

    certainkindofquadrilateral.ButthiswasjustoneexampleofaFuchsianfunction,

    andjustonewayoftessellatingHH’.Inthecaseofellipticfunctions,the

    correspondingtessellationsoftheplanearesimpletounderstand,sincetheyareall

    akintoparallelogramtessellations.28ThetessellationscorrespondingtoFuchsian

    groups,ontheotherhand,areinfinitelyvarious,andtheprojectofprovinggeneral

    propertiesofFuchsianfunctionscouldnotproceedunlessthereweresomegeneral

    waytosurveyallofthewaysthatHH’couldbetessellatedintocurvilinearpolygons

    whosesidesarecirclesmeetingHH’inrightangles.29AsPoincaréputitinapaper

    from1881:“ItisnecessaryfirsttoconstructallFuchsiangroups;thisIhavedone

    withtheaidofnon-Euclideangeometry”(1881a,48).

    Inthemonthaftersubmittinghisprizeessay,Poincarérealizedthatthe

    rectilinearpolygonsontowhichhehadprojectedthecurvilinearpolygonsofHH’in

    factweretheKlein-Beltramimodelofhyperbolicgeometry,andsothetessellations

    28Stillwell1985,19.29TherelationbetweenFuchsiangroupsandFuchsianfunctionsisrathersubtle.Fuchsianfunctionscannotbepairedup1-1withFuchsiangroups,anditneedstobeshownthatforeveryFuchsiangroupthereexistFuchsianfunctions.Onthefirstpoint,PoincarédiscoveredthatanytwoFuchsianfunctionsthatcorrespondtothesameFuchsiangrouparerelatedalgebraically(1881b)–afactthateventuallyledhimtohisfamousuniformizationtheorem.Onthesecondpoint,PoincaréprovedthateveryFuchsianfunctioncouldbeconstructedasthequotientoftwo“theta-Fuchsian”functionsthatcorrespondtothesameFuchsiangroup,whereatheta-FuchsianfunctionΘisameromorphicfunctionsuchthat

    Θ𝑎𝑧 + 𝑏𝑐𝑧 + 𝑑 = Θ(𝑧)(𝑐𝑧 + 𝑑)

    !!withmaninteger.Theexistenceoftheta-Fuchsianfunctionscouldthenbeprovedbytheconvergenceofaninfiniteseries.(Thisresultisannouncedin1881a,andprovedsystematicallyin1882b).

  • 27

    ofHH’inducedbyFuchsiangroupswerealsomodelsofhyperbolicgeometry.30Ina

    supplementtotheprizeessaywrittenonJune281880(Poincaré1880b),Poincaré

    describedthesituationasfollows:

    Thereisadirectconnectionbetweentheprecedingconsiderationsandthe

    non-EuclideangeometryofLobachevskii.Whatindeedisageometry?Itis

    thestudyofagroupofoperationsformedbythedisplacementsonecan

    applytoafigurewithoutdeformingit.InEuclideangeometrythisgroup

    reducestorotationsandtranslations.Inthepseudo-geometryof

    Lobachevskiiitismorecomplicated…TostudythegroupofoperationsM

    andN[viz,theoperationsthatmoveonepolygoninHH’ontoanother]is

    thereforetohavetodothegeometryofLobachevskii.Thepseudogeometry,

    asaconsequence,isgoingtofurnishuswithaconvenientlanguagefor

    expressingwhatwewillhavetosayaboutthisgroup.31

    TherelationbetweenFuchsiangroupsandnon-Euclideanisometrieswaslaidout

    systematicallyinsections1and2of1882a.There,Poincarédefinedtwofigures

    withinHH’ascongruentiftheycanbetransformedintooneanotherbyalinear

    fractionaltransformationwherea,b,c,anddarerealnumbers.32Heusedthis

    30Thisrealization–which,Poincaréclaimed,hithimoutoftheblueashewasboardingabusonaminingexpedition--wasfamouslydescribedinPoincaré1909.JeremyGrayhasshownthatthisrealizationmusthavetakenplacebetweenMay29andJune281880(1986,266-8).31QuotedandtranslatedinGray1986,258-9.Graydiscoveredthesesupplements,whichwerepreviouslyunpublished,anddescribedtheircontentsinGray1986.Theyhavesincebeenpublished(inFrench)asPoincaré1997.32Therequirementthata,b,c,anddberealnumbersforcesthelinearfractionaltransformationtokeeptherealaxisinvariant,andthusmodelsnon-Euclideangeometryinthehalfofthecomplexplanelyingabovetherealaxis.Infact,in1882a,PoincarérepresentsFuchsiangroupsusingtheupper-halfplanemodelinsteadof

  • 28

    notiontodefinestraightline,length,area,anddistance.Thepreviouslyintractable

    problemofidentifyingFuchsiangroupshadthusbeenreducedtothetractable

    problemofidentifyingnon-Euclideanisometries.

    Withthisapplicationofnon-Euclideangeometry,Poincaréwasableto

    achieveextraordinaryresultsthatgeneralizeinpowerfulwaystheresultsobtained

    usingellipticfunctions.Thisisbecause,asPoincaréputitinthesupplementfrom

    June281880,“theFuchsianfunctionsaretothegeometryofLobachevskiiwhatthe

    doublyperiodicfunctionsaretothatofEuclid”(1880b,translatedinGray1986,

    269).Morespecifically,aFuchsiangroupwherethelinearfractionaltransformation

    issuchthat(a+d)2=4isagroupofdiscontinuousEuclideanisometries(Poincaré

    1882a,58)–namely,thegroupoftranslationsthatkeepsthetilingoftheplaneinto

    parallelogramsintact(figure11).InthiswayFuchsianfunctionscomprise“avery

    extensiveclassoffunctionsofwhichtheellipticfunctionsareaspecialcase”(1881b,

    54).Justasellipticfunctionshadbeenusedtointegratealgebraicdifferentials,

    Poincaréshowedthatamuchwiderclassofequations,lineardifferentialequations

    withalgebraiccoefficients,couldbesolvedusingFuchsianfunctions(1882a,55).I

    notedabovethatellipticfunctionscanparameterizecertainkindsofalgebraic

    curves,so-calledellipticcurves–aclassthatincludesallcubicsandsomeother thePoincarédiskmodel.(TheupperhalfplanemodelresultsfromthePoincarédiskbyprojectingitstereographicallybackontothesouthernhemisphere(figure8),switchingthesouthernandnorthernhemispheresonthesphereandthenprojectingthenorthernhemispherefromapointontheequatorontoaplanetangenttothesphereatthepointontheequatoroppositethepointofprojection.)Heswitchedfromthedisktothehalf-planemodelinresponsetoanobjectionfromKlein,whodoubtedthateveryFuchsiangroupcouldberepresentedasanon-Euclideantessellationofthediskmodel(Gray1986,280,285-7).Poincaréusesthehalf-planemodelto“translate”hyperbolicgeometryintoEuclideangeometryin1891/1913,33-34.

  • 29

    specialcases.In1881,Poincaréannouncedthediscoveryofhisuniformization

    theorem,thatanyalgebraiccurvewhatsoevercanbeparameterizedbyFuchsian

    functions.Thatis,ifA(x,y)=0istheequationofanalgebraiccurve,itcanbe

    rewrittenasA(f(t),φ(t))=0,withfandφFuchsianfunctions(Gray1999,81).

    SectionIII:FromFuchsianFunctionstoConventionalism

    WenowunderstandwhatPoincarémeantwhenhespokeofthe“applications”of

    hyperbolicgeometry,and“theaidthatKleinandIhavegottenfromthemforthe

    integrationoflineardifferentialequations.”Poincarédidnotsimplyfindamodelof

    non-Euclideangeometryinasurprisingplace.Rather,thisapplicationofhyperbolic

    geometryincomplexanalysisprovideddeepandpowerfultheoremsinthetheory

    ofalgebraiccurvesandthetheoryoflineardifferentialequations–resultsthat

    couldnothavebeenobtainedotherwise.Thisworkwasthehighpointofthe

    extremelyactiveandfruitfulnineteenthcenturyworkincomplexanalysisthat

    beganwithGauss.Itbroughttogetheranalysis,geometry,andalgebraina

    surprisingandmutuallyilluminatingway.

    ItisfurtherclearthatthismathematicalworkonFuchsianfunctions

    providedPoincaréthemotivationforhisconventionalism.Toseethepossibilityof

    applyingnon-Euclideangeometry,Poincaréhadtomaketwonovelconceptual

    moves.First,hehadtothinkofthegroupofoperationsthatleavethevaluesofa

    Fuchsianfunctioninvariantaswaysofmovingaspatialobject–thegraphofthe

    function–aroundinspacewithoutchangingitsshapeorsize.Second,hehadto

  • 30

    conceiveofgeometryasfundamentallythestudyofthegroupofrigidmotionsof

    bodiesinspace.Asheputthissecondpointinhisfirstsupplementtohisprizeessay,

    whichhewrotejustoneortwoweeksafterseeingthatFuchsiangroupsarenon-

    Euclideanisometries:

    Whatindeedisageometry?Itisthestudyofagroupofoperationsformedby

    thedisplacementsonecanapplytoafigurewithoutdeformingit.(1880b,

    translatedinGray1986,258)

    Butoncegeometryisconceivedofinthisway,itisashortsteptoconcludingthat

    Euclideangeometryisnomoretruethannon-Euclideangeometry.Afterall,many

    differentkindsofgroupsofrigidbodycoordinatetransformationscanbedefinedon

    oneandthesamecomplexplane.Andthisisapointthat,again,Poincaréasserts

    explicitlyinPoincaré1887–amathematicalpaperthatappearedfouryearsbefore

    hisfirstphilosophicalpaper:

    Ifgeometryisnothingbutthestudyofagroup,onemaysaythatthetruthof

    thegeometryofEuclidisnotincompatiblewiththetruthofthegeometryof

    Lobachevsky,fortheexistenceofagroupisnotincompatiblewiththatof

    anothergroup.(1887,215,quotedabove)

    Afterall,thechoiceofagroupofdisplacementsinthecomplexplaneamountsto

    choosingwhichwaytotessellatetheplane.Butoneandthesamecomplexplanecan

    betessellatedinmanyways.Itmakesnomoresensetoask“Whichistherightway

  • 31

    totessellatetheplane,figure1orfigure11?”thanitdoestoask“Whicharethetrue

    functionsinthecomplexplane,ellipticorFuchsianfunctions?”33

    Thiswayofconceivingofgeometry–asthestudyofthegroupofrigid

    displacementsofbodies–iscontroversial.Itisafarcryfromtheolderviewthat

    geometryisthestudyofextensivemagnitude,anditisalsoopposedtothenewer

    viewthatgeometryisfundamentallythestudyofspace.34Moreover,itisalso

    opposedtoRussell’sviewthatgeometryisfundamentallythestudyofdistance,

    wheredistanceisaprimitivenotionnotdefinableintermsofothernotions.In 33TherearetwowaysinwhichPoincaré’spresentationofhisconventionalisminhislater,philosophicalpapersrefinestheargumentpresentedintheoffhandphilosophicalcommentshemakesin1880band1887.First,in1887PoincarésaysthatEuclideangeometryis“nomoretrue”thanitsnon-Euclideanrivals.Itakethistobealessperspicuouswayofsayingwhathecametosaylater,thatthechoiceofametricforspaceisnotamatteroftruthorfalsehoodatall,butinsteadamatterofconvention(wheremattersofconventionareopposedtomattersoffact).Second,thegroupofrigiddisplacementsinspaceisacontinuousgroup,notadiscontinuousgroup.Poincaréwaswellawareofthisfactfromhisearliestdiscussionsin1881aand1882a,wherehewouldfirstdefinethehyperbolicgroupof(continuous)displacementsandthendefineaFuchsiangroupbytakingadiscontinuoussubgroupthatleavesthefundamentalcircleHH’invariant.Inhislater,philosophicalpapers,suchas1898,hewouldmakeclearthatgeometryisthestudyofthecontinuousgroupofdisplacements–whichisaLiegroup,notaFuchsiangroup.Itakethesetwochangestoberefinementsoftheargumentfirstadumbratedintheseoffhandphilosophicalcommentsinhismathematicalpapers,thoughnotrefinementsthatinanywayalterthespiritoftheargument.34ForPoincare,spaceisnottheprimitivenotionofgeometry–thenotionofagroupofdisplacementsis.Hemakesthispointexplicitlyin1895/1913.There,afterdescribing“aparticularclassofphenomenawhichwecalldisplacements,”heassertsthatthe“lawsofthesephenomenaconstitutetheobjectofgeometry”(48);“itisfromthepropertiesofthisgroupwehavederivedthenotionofgeometricspace”(52). JeremyGrayhasnicelyemphasizedthedistinctivenessofPoincaré’sconceptionofgeometry.CommentingonPoincaré1898,hewrites:“Poincaréinsistedonananalysisofdistancethatwastheopposite,headmitted,oftheoneheldbyHelmholtz,Lie,andalmosteveryoneelse.Thesemathematicianssaidthatthematterofthegroupexistedbeforeitsform,thematterbeingthree-dimensionalmanifoldofspace.Whereasforhimself,saidPoincaré,theisomorphismclassofthegroupweusetoconstructspacecomesfirst”(Gray2013,56).

  • 32

    1882a,Poincarébeginswiththeideaofalinearfractionaltransformationthat

    leavesthefundamentalcircleinvariant.Hethendefinestwofiguresascongruentif

    theycanbetransformedintooneanotherbysomechosenlinearfractional

    transformationthatleavesthecircleinvariant.Last,thedistancefromAtoBequals

    thedistancefromCtoDifthecirculararcthatconnectsAandBiscongruenttothe

    circulararcthatconnectsCtoD.ForPoincaré,distanceisnotprimitive,butis

    defined.

    Inthisway,RussellgetssomeofPoincaré’sargumentright,andsomeofit

    wrong.AsIexplainedinsectionI,hepurportedtoidentifythreeimportantfeatures

    ofPoincaré’sargument:first,thedifferentgeometriesarealldefinedinthesame

    underlyingcomplexplane;second,distanceisadefined,notprimitivenotion;third,

    distanceisafour-placerelation,notatwoplacerelation.Russellbelievedthatthe

    argumentforconventionalismreliedessentiallyonthethirdpurportedfeature,

    whichherejectedasartificial.WecannowseethatRussellgotPoincarébadly

    wrong.MissingfromRussell’sinterpretationistheallimportantnotionofagroupof

    rigiddisplacements;instead,heassimilatesPoincaré’smathematicalworktoKlein’s

    approach,whichremainedweddedtoprojectivewaysofthinkingthatPoincaré

    rejected.Still,thoughRussell’sthirdclaimmissesthemark,heiscorrecttoseethat

    Poincaré’sargumentdoesrelyonthefirsttwopoints:bothEuclideanandnon-

    EuclideangeometryareconstructedinPoincaré’swaybytakingthesame

    underlyingcomplexplaneanddefininganotionofdistanceintermsofsomemore

    fundamentalmathematicalnotionthatisimportedfromanotherareaof

    mathematics.

  • 33

    InsectionI,InotedthatPoincaré’searliestargumentsforconventionalism–

    theargumentsthatRussellknewwhenwritingEFG–arepresentedasargumentsby

    elimination:somefeatureofgeometryiseitherananalytictruth,asyntheticapriori

    truth,empiricaltruth,oraconvention;butitisnotanyofthefirstfourdisjuncts;so,

    itisaconvention.Theinterpretivequestion,again,iswhichdisjunctPoincaréwas

    hopingtoeliminatebyinvokinghismodelsofhyperbolicspaceinEuclideanspace.It

    isuncontroversial,ofcourse,thatthesemodelsshowthatthereisnocontradiction

    innegatingEuclid’saxiomofparallels,andsoEuclid’saxiomscannotallbeanalytic.

    Butarethesemodelsintendedtodomorethanthis?OnDuhemianreadings,these

    modelsdemonstratefurthertheempiricalunderdeterminationofgeometry,andso

    showthatgeometryisnotempirical.IarguedinsectionI,ontheotherhand,that

    Poincaré’sdiscussionofthemodelin1895/1913makesclearthatheintendeditto

    underminetheclaimthatEuclid’saxiomofparallelsisasyntheticaprioritruth.

    Furtherconfirmationofthisreadingisprovidedbythepassage–quotedalreadyin

    thefirstparagraphofsectionII–wherePoincarépointstothe“applications”ofnon-

    Euclideangeometryinthetheoryoflineardifferentialequations.There,after

    concludingthatEuclid’saxiomisnotananalytictruthhesays,“Thisisnotall.

    Lobachevski'sgeometry,susceptibleofaconcreteinterpretation,ceasestobea

    logicalexerciseandiscapableofapplications”(emphasisadded).The

    “interpretation”ofhyperbolicgeometryisofcoursetheuseofmodelsofnon-

    Euclideangeometryinthecomplexplane.Inotherwords,theexistenceofthese

    modelsshowsthatnon-Euclideangeometrydoesnotcontraveneanyanalytictruth;

    theirapplicationshowsthatnon-Euclideangeometryisnotjustlogicallypossible–

  • 34

    itdoesnotviolateanysyntheticaprioritrutheither.Amathematiciansuchas

    BeltramiwhocouldproduceamodelofhyperbolicgeometryinEuclideangeometry

    wouldbeabletoseethatitislogicallypossible.Amathematicianwhounderstood

    theapplicationsofhyperbolicgeometrywouldbeabletoseethatitisreallypossible

    aswell.

    WecanfruitfullycomparewhatPoincarésaysaboutLobachevskii’sgeometry

    withthe“geometries”ofvariablecurvatureproposedbyRiemann.Afewpageslater,

    Poincaréwrites“thesegeometriesofRiemann,inmanywayssointeresting,could

    neverthereforebeotherthanpurelyanalytic”(1891/1913,37)However,though

    mostmathematiciansthinkofLobachevski'sgeometryalso“onlyasamerelogical

    curiosity,”Poincarédisagrees,arguingthatitsimpossibilityisnotshownby

    “syntheticapriorijudgments,asKantsaid”(37).Anotherwayofputtingthisclaimis

    thatRiemann’sgeometries,butnotLobachevskii’s,areinconsistentwithsome

    necessaryfeatureofgeometry.Andthisnecessaryfeatureofgeometryisprecisely

    whatPoincaréidentifiedinJune1880,whenhefirstannounceshisdiscoverythat

    hisgraphicalrepresentationsofFuchsiangroupsaremodelsofLobachevskiian

    geometry:thatgeometryisthestudyofagroupofoperationsformedbythe

    displacementsonecanapplytoafigurewithoutdeformingit.Riemann’sgeometries

    ofvariablecurvature,sincetheydonotallowdisplacementwithoutdeformation,

    arethusnotreallygeometries.Theyarejustlogic,notgeometry.

    Butwhyconceiveofgeometryasfundamentallythestudyofgroupsofrigid

  • 35

    displacements?35NoargumentisgiveninthemathematicalpapersPoincaré1880b

    and1887,norinhisfirstphilosophicalpaper,1891/1913.However,onevery

    powerfulmotivationforthisconceptionisprovidedbytheapplicationsthat

    PoincarémadeofhyperbolicgeometryinthetheoryofFuchsianfunctions.These

    applicationsrequiredthinkingofFuchsiangroupsaslikegroupsofdisplacementsof

    rigidbodies,andgeometryasthestudyofsuchgroups.Thinkingofgeometryinthis

    wayallowsustotransfergeometricreasoningaboutcomplexellipticfunctionsinto

    geometricreasoningaboutFuchsianfunctions–itallowsustomaketheall-

    importantanalogybetweenellipticfunctionsandFuchsianfunctions.The

    extraordinarypoweroftheresultsobtainedmakesthisreconceptualizationvery

    attractive.Furthermore,thiswayofthinkingofgeometryalsoallowedforPoincaré

    tounifyalgebra,geometry,andthetheoryoffunctionsinahighlyilluminatingway–

    thekindofwaythatwouldstronglysuggesttoaworkingmathematicianthathehad

    hitontherightwayofthinkingofgeometry.

    Thispaperbeganwithaquestion,"HowdoesPoincaréargueforhis

    conventionalismaboutgeometry?"Thispaperhasidentifiedoneway–infact,the

    35Thehistoricalquestion–Fromwhomdidhegetthisidea?–isnoteasytoanswer.OnemightbetemptedtoconcludethathegotitfromKlein’sErlangerProgramm,ifonlytherewereanyhistoricalevidencethatPoincaréknewofKlein’sworkinJune1880.WhentheKlein-Poincarécorrespondencebeginsoneyearlaterin1881,itisclearthatPoincarédidnotknowKlein’swork,norindeedvirtuallyanyGerman-languagework.AmoreplausiblehypothesisisthatPoincaréwasinspiredtodevelopthisideafromreadingHelmholtz’sessays,whichweretranslatedintoFrenchinthe1870s(Gray2013,40).Intheseessays,Helmholtz–thoughhecertainlydoesnotdeveloptheviewthatgeometryisthestudyofthegroupofdisplacements–arguesthatwecometoknowEuclid’saxiomfrommovingarigidmeasuringrodthroughspace.

  • 36

    earliestway,whichwascontainedalreadyinhismathematicalpapersfromthe

    1880s--thatPoincaréarguedforconventionalism.Thislineofargumentis

    distinctiveinasmuchasitinnowayreliesonDuhemianunderdetermination,indeed

    doesnotdependonfactsabouttheapplicationofgeometrytophysicalscienceatall.

    Instead,thisargumentarisesnaturallyfromreflectingontheverypowerfulresults

    Poincaréobtainedbyapplyingonemathematicaltheory(metricgeometry)to

    another(thetheoryofFuchsianfunctions).Moreover,Ibelievethatthe

    mathematicalresultsdescribedinthispaperexplainclearlywhyPoincaré,having

    donethekindofmathematicalworkthathehaddone,foundconventionalismso

    natural,whereasothermathematicianswhowerealsoawareofEuclideanmodelsof

    hyperbolicgeometryweredrawntootherphilosophicalviews.Whatinitiallyand

    powerfullydrewPoincarétoconventionalism,then,werenotjustphilosophical

    reflectionsonspace,geometry,andphysics,butveryspecificfeaturesofhisworkin

    puremathematics.

    Ofcourse,Poincaré'sargumentsforconventionalismevolvedandwere

    expandedovertime,partiallyasaresponsetocriticisms,andpartiallyasaresultof

    Poincaré–whosewide-ranginggeniusventuredintonearlyallofthesciences–

    expandinghisreflectionsonspaceandgeometryintophysicsandpsychology.For

    example,aswe'veseen,Poincaré'sargumentfortheconventionalityofaspatial

    metricwasoftenposedasaquadrilemma.Theexistenceofmodelsofnon-Euclidean

    geometryshowthatthetruthofaparticularmetriccannotbeanalytic;thepowerful

    applicationsofbothEuclideanandhyperbolicmetricsincomplexanalysisshowthat

    itcannotbesyntheticapriori;andsince(Poincaréarguedinitially)itcouldnot

  • 37

    possiblybeempirical,itmustbeconventional.However,inPoincaré'searliest

    philosophicalpapers(1891/1913,38and1895/1913,53),theargumentagainst

    empiricismisweakandundeveloped.Heargues,briefly,thatgeometryisanexact

    andunrevisablescience,whereasallempiricalsciencesareonlyapproximatelytrue

    andaresubjecttoconstantrevision.Partiallyasaresultofreadingandreviewing

    Russell1897(whicharguedthatmetricgeometryisempirical),Poincarébeganto

    refineandexpandhisargumentsagainstempiricism.Theseargumentsarecollected

    inCh.5ofScienceandHypothesis(Poincaré1902/1913),whichconsistslargelyof

    reprintedsectionsofhisexchangewithRussell(Poincaré1899andPoincaré

    1900).36Furthermore,geometryisintimatelyconnectedwithperceptual

    psychology,sinceweperceiveobjectsinspaceandgeometricalnotions(suchas

    point,line,anddistance)appearinperceptualpsychologyaswell.Poincarébeganin

    1895/1913(andcontinuinginchapters3and4ofPoincaré1905)toputtogethera

    richtheoryoftheoriginsofspatialnotionsinperception–atheorythatreinforces 36Asmentionedearlier(notes11and16)thepenultimateparagraphofPoincaré1891/1905–apassagedevotedtothepossibilityofdeterminingthecorrectgeometryempiricallybymeasuringstellarparallaxes–wasmovedtoch.5ofSH,whereitappearsontheopeningpage(page81)ofthepaper,followedinthesubsequentpagesbyotherparagraphsthathadappearedinPoincaré1899and1900.Inthispassage,Poincarépointsoutthat,ifLobachevskiangeometryweretrue,theparallaxofdistantstarswouldhaveapositivelimit,providedthatlightraystravelalwaysinstraightlines.Butshouldexperimentsshowthatindeedstellarparallaxesdohaveapositivelimit,weareleftwithtwochoices:rejectEuclideangeometryorrejecttheclaimthatlightraystravelinstraightlines.Thelatterwouldbemoreadvantageous,andso"Euclideangeometryhasnothingtofearfromnewexperiments." Poincarédoesnotconnectthislineofreasoningtothespheremodelin1895/1913,which(asremarkedabove)isusedtoshowthatwecanimagineanon-Euclideanworld.Thereasoninginthispassageisverybrief,thoughclearlysuggestive.Thereisgoodreason,then,whyPoincaréneededtofurtherexpandanddeepenhisarguments(inthepaperspublishedin1899andlater)againsttheclaimthatthemetricofspaceisempirical.

  • 38

    theargumentforconventionalismbycapturingtheobjectivityofspatialperceptions

    ingroup-theoreticterms.

    Theselaterdevelopmentsarepowerfulandsuggestive.Itisnotsurprising,

    then,thatdebateovertheconventionalismofgeometrybegantofocusmoreon

    Poincaré'sreflectionsontherelationsbetweengeometry,physics,andpsychology,

    asopposedtohisoriginalargumentsbasedontherelationsbetweengeometryand

    otherbranchesofpuremathematics.Inconcertwithotherhistoricaldevelopments

    –hereweshouldcertainlyincludethereceptionandexpansionofPoincaré's

    argumentsbylogicalempiricistssuchasSchlickandReichenbach–theconnections

    betweenPoincaré'sconventionalismandhismathematicalworkinFuchsian

    functionswasde-emphasized,leadingtothesortofreadingsrecountedinthe

    openingpagesofthispaper.Buttheseconnectionsareworthremembering,

    becausetheymotivateadistinctiveargumentforconventionalismbasedonthe

    loosenessoffitbetweentwomathematicaltheories.Andtheyshowclearlythatit

    wasnoaccidentalfactthatamathematicianwhoobtainedthekindofresultsusing

    thekindofmethodsPoincaréemployedwasledtoconventionalism.

  • 39

    WORKSCITED

    Beltrami,E.1868."Saggiodiinterpretazionedellegeometrianon-Eucliden,"GiornalediMath.,VI:284-312.Ben-Menahem,Yemima.2006.Conventionalism.CambridgeandNewYork:CambridgeUniversityPress.Bottazzini,UmbertoandJeremyGray.2013.Hiddenharmony--geometricfantasies:theriseofcomplexfunctiontheory.NewYork,NY:Springer.Cayley,Arthur.1859.“SixthMemoironQuantics.”PhilosophicalTransactionsoftheRoyalSocietyofLondon149:61-90.Dunlop,Katherine.2016."PoincaréOnTheFoundationsOfArithmeticAndGeometry.Part1:Against“Dependence-Hierarchy”Interpretations."HOPOS:TheJournaloftheInternationalSocietyfortheHistoryofPhilosophyofScience6:274-308.Friedman,Michael.1999."Poincaré'sConventionalismandtheLogicalPositivists."InReconsideringLogicalPositivism(CUP),71-86.Fuchs,Leonard.1880."UbereineKlassevonFunktionenmehrererVariablenwelchedurchUmkehrungderlntegralevonLösungenderlinearenDifferentialgleichungenmitrationalenCoeffizientenentstehen."JahrschriftfürreineundangewandteMathematik89:150-169.Gimbel,Steven.2004."Un-conventionalwisdom:theory-specificityinReichenbach’sgeometricconventionalism."StudiesinHistoryandPhilosophyofModernPhysics35:457-481.Gray,Jeremy.1985.LineardifferentialequationsandgrouptheoryfromRiemanntoPoincare.Boston:Birkhaüser.Gray,Jeremy.1999.Non-Euclideangeometryinthetheoryofautomorphicfunctions.editedbyJeremyGrayandAbeShenitzer.IntroductionbyJeremyGray.Providence,R.I.:AmericanMathematicalSociety.Gray,Jeremy.2013.HenriPoincaré:ascientificbiography.Princeton,NJ:PrincetonUniversityPressKlein,Felix.1871."Ontheso-calledNon-EuclideanGeometry."Tr.ByJohnStilwellinStillwell1996,69-110.Poincaré,Henri.1880a."ExtractfromanuneditedmemoirofHenriPoincaré."Ed.byN.E.Nörlund.TransbyJohnStillwell.InStillwell1985,305-356.

  • 40

    Poincaré,Henri.1880b."PremierSupplément."InPoincare1997,31-74.Poincaré,Henri.1881a."Surlesfonctionsfuchsiennes."Comptesrendusdel'AcademedesSciences92(14Feb1881):333-335.TranslatedbyStillwellas"OnFuchsianFunctions,"inPoincaré1985,47-50.Poincaré,Henri.1881b."Surlesfonctionsfuchsiennes."Comptesrendusdel'AcademedesSciences92:(21Feb1881):395-398.TranslatedbyStillwellas"OnFuchsianFunctions,"inPoincaré1985,51-54.Poincaré,Henri.1882a."TheoriedesgroupesFuchsiens."ActaMathematicaI:1-62.TranslatedbyJohnStillwellas"TheoryofFuchsianGroups,"inStillwell1985,55-127.Poincaré,Henri.1882b."MemoiresurlesfonctionsFuchsiennes."ActaMathematicaI:193-294.TranslatedbyJohnStillwellas"OnFuchsianFunctions,"inStillwell1985,128-254.Poincaré,Henri.1887.“Surleshypothèsesfondamentalesdelagéométrie.”BulletindelaSociétémathématiquedeFrance15:203-216.Poincaré,Henri.1891/1913."Lesgéométriesnoneuclidiennes."Revuegénéraledessciencespuresetappliquées2(1891):769-774.Reprinted,withminoralterations,inPoincaré1902.TranslatedbyHalstedas“TheNon-EuclideanGeometries,”inPoincaré1913,29-39.Poincaré,Henri.1895/1913."L'espaceetlagéométrie."Revuedemétaphysiqueetdemorale3(1895):631-646.Reprinted,withminoralterations,inPoincaré1902.TranslatedbyHalstedas“SpaceandGeometry,”inPoincaré1913,40-54.Poincaré,Henri.1897."Réponseàquelquescritiques."Revuedemétaphysiqueetdemorale5:59-70.Poincaré,Henri.1898."OntheFoundationsofGeometry."Monist9(1898):1-43.ReprintedinWilliamEwald,ed.,FromKanttoHilbert,vol.2(1996,OUP),982-1011.Poincaré,Henri.1899."Desfondementsdelagéométrie;àproposd'unlivredeM.~Russell."Revuedemétaphysiqueetdemorale7:251-279.Poincaré,Henri.1900."Surlesprincipesdelagéométrie;réponseàM.~Russell."Revuedemétaphysiqueetdemorale8:73-86.Poincaré,Henri.1902.LaScienceetl'hypothèse.Flammarion.

  • 41

    Poincaré,Henri.1902/1913.“ExperienceandGeometry.”InPoincaré1902.TranslatedbyHalstedinPoincaré1913,55-65.Poincaré,Henri.1905.LaValeurdelascience.Flammarion.Poincaré,Henri.1909."L'inventionmathématique."Annéepsychologique15:445-459.Poincaré,Henri.1913.TheFoundationsofScience.Trans.byGeorgeBruceHalsted.NewYork:theSciencePress.Poincaré,Henri.1985.PapersonFuchsianFunctions.Trans,withanintroduction,byJohnStilwell.SpringerVerlag.Poincaré,Henri.1997.Troissupplémentssurladécouvertedesfonctionsfuchsiennes.J.GrayandS.Walter,eds,Berlin:AkademieVerlag.Russell,Bertrand.1897.EssayontheFoundationsofGeometry.CUP.Russell,Bertrand.1900."Surlesaxiomsdelagéométrie."Revuedemétaphysiqueetdemorale7:684-707.Stein,Howard.1977.“SomePhilosophicalPre-HistoryofGeneralRelativity."InFoundationsofSpace-TimeTheories,MinnesotaStudiesinPhilosophyofScience,Vol.8,J.Earman,C.Glymore,J.Stachel(eds.).UniversityofMinnesotaPress.Steiner,Jakob.1881.SystematischeEntwicklungderAbhängigkeitgeometrischerGestaltenvoneinander.InGesammelteWerke.Vol.1.,editedbyK.Weierstrass(Berlin:G.Reimer).Stillwell,John.1985."Translator'sIntroduction."InHenriPoincaré,PapersonFuchsianFunctions.Trans,withanintroduction,byJohnStilwell.SpringerVerlag.Stillwell,John.1996.SourcesofHyperbolicGeometry.AmericanMathematicalSociety.Stillwell,John.2010.MathematicsanditsHistory.Springer.Stump,David.1989,"HenriPoincaré'sPhilosophyofScience."StudiesinHistoryandPhilosophyofModernPhysics20:335–363.Tappenden,Jamie.2006."TheRiemannianBackgroundtoFrege'sPhilosophy."InTheArchitectureofModernMathematics:EssaysinHistoryandPhilosophy.Ed.byJ.FerreirósandJ.J.Gray.OUP.

  • 42

    Zahar,Elie.1997.“Poincaré’sPhilosophyofGeometry,orDoesGeometricConventionalismDeserveItsName?”StudiesinHistoryandPhilosophyofModernPhysics28:183–218.

  • Figures

    Figure1:thePoincaréDiskmodelofhyperbolicgeometry

    Figure2:Projectionontotheplaneofthedistancefunctiononasphere

  • Figure3:BeltramiModelofHyperbolicGeometry

    Figure4:Thequadrilateralconstruction

  • Figure5:TheKleinmodel

    Figure6:TheBeltrami-Kleinmodelontheequatorialplane

  • Figure7:TheBeltrami-Kleinmodelprojectedontothesouthernhemisphere

    Figure8:TheBeltrami-KleinmodelprojectedontothePoincarémodel

    Figure9:TheLemniscateofBernoulli

  • Figure10:Thesinefunction

    Figure11:Tessellationofthecomplexplanebyellipticfunctions

    Figure12:TessellationofthediskinthecomplexplanebyaFuchsianfunction

Recommended