Ancillary Load Reduction Task Overview - NREL · PDF file– Ford Lincoln Navigator...

Preview:

Citation preview

Ancillary Load Reduction Task OverviewAncillary Load Reduction Task OverviewJohn Rugh, Task LeaderJohn Rugh, Task Leader

Desikan BharathanDesikan BharathanJasonJason LustbaderLustbaderMatthew KeyserMatthew Keyser

Center for Transportation Technologies & SystemsCenter for Transportation Technologies & SystemsNational Renewable Energy LaboratoryNational Renewable Energy Laboratory

August 2004August 2004

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

Demand for Fuels Outstrips SupplyDemand for Fuels Outstrips SupplyDomestic Production with Transportation Use (1970Domestic Production with Transportation Use (1970--2020)2020)

0

2

4

6

8

10

12

14

1970 1980 1990 2000 2010 2020

GAP

Source: Transportation Energy Data Book: Edition 19, DOE/ORNL-6958, September 1999, and EIA Annual Energy Outlook 2000, DOE/EIA-0383(2000), December 1999

Mill

ions

of B

arre

ls p

er D

ay

Domestic Oil ProductionHeavy Trucks

Automobiles

Light Trucks

Pas

seng

er V

ehic

les

Vehicle Ancillary Load ReductionGoal

To work with industry to reduce energy use for vehicle climate control by 50% in the short-term and 75% in the long-term while maintaining passenger thermal comfort and safety.

Cool Car - ApproachTo develop integrated analysis tools and testing to analyze advanced climate control systems for a diverse supplier base from a systems perspective (thermal comfort, fuel economy, tailpipe emissions)

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

Energy Used in Conventional Vehicle

Input100% (48.8)

Rolling5.0% (2.4)

Acc.2.8% (1.4)

Engine79.3% (38.6)

Aero.5.3% (2.6)

Driveline3.4% (1.7)

Braking2.5% (1.2)

21.3 city, 39 highway: 26.7 mpgge

w/AC10% (5.6)

Reduce Size of Existing AC SystemsWithout

AC

Energy Usage for Composite FTP & Highway Numbers in ( ) are MJ

Measured Insight and PriusFuel Economy Impacts from A/C

Measured Insight and PriusFuel Economy Impacts from A/C

53% increase in fuel use

43% increase in fuel use

Percent of Time AC UsedCooling + Demisting, 32.6%

1014

19

15

27

17

25

18

31

26

49

40

23

50

17

26

42

40

25

21

41

32

23

19

26

19

38

18

52

33

2024

37

28

50

3033

3225

23

26

69

41

57

2129

58 43

43

6

15

27

17

25

18

31

26

49

40

23

50

17

26

42

40

25

21

41

32

23

19

26

19

38

18

52

33

2024

37

28

16

50

3033

3225

23

26

69

41

57

28

21

2129

58 43

43

6

Percent of TimeAC for Cooling

+ Dehumidification

6.3 to 17.917.9 to 19.619.6 to 22.922.9 to 25.125.1 to 25.925.9 to 28.428.4 to 32.132.1 to 37.837.8 to 41.441.4 to 49.249.2 to 57.357.3 to 69.3

Modeled U.S. Mobile AC Fuel Use7.0 billion gallons used for air conditioning annually

Equivalent to 5.5% of the national fuel use, or ~9.5% of the imported crude oil!

1014

19

7

37

78

64

9

187

43

735

179

17

127

15

238

66

109

229

273

61

52

167

22

40

12

219

17

85

144

86186

21

118

176

9575

142242

26

68

68

251

753

76730

216 86

167

1

7

37

78

64

9

187

43

735

179

17

127

15

238

66

109

229

273

61

52

167

22

40

12

219

17

85

144

86186

21

118

86

176

9575

142242

26

68

68

251

753

19

61

76730

216 86

167

1

Million GallonsCooling &

Dehumidification

1 to 1717 to 2626 to 5252 to 6868 to 7878 to 8686 to 142142 to 176176 to 216216 to 242242 to 730730 to 753

European Union and Japan:Fuel Used for Cooling and Demisting

EU: 6.9 billion liters (1.8 billion gallons, 16 billion kg CO2) used for air conditioning annually, Equivalent to 3.2% of the total fuel use

Japan: 1.7 billion liters (0.5 billion gallons, 4 billion kg CO2) used for air conditioning annually, Equivalent to 3.5% of the total fuel use

United Kingdom

Turkey

Switzerland

Sweden

Spain

Romania

Portugal

Poland

Norway

Netherlands

Japan

Italy

Ireland

Hungary

Greece

Germany

France

Finland

Denmark

Czech Republic

Bulgaria

Belgium

Austria

Million GallonsCooling &Dehumidification

8 to 12

12 to 14

14 to 16

16 to 23

23 to 25

25 to 41

41 to 53

53 to 75

75 to 258

258 to 303

303 to 450

450 to 450

Why So Much Fuel for A/C?

150 Watts

Metabolic Heat Generation

A/C Cooling 6000 Watts!

Systems Approach

Traditional Approach - Equipment Emphasis

EFFICIENT EQUIPMENT

EFFICIENT DELIVERY

VERSUS

REDUCE LOAD

Decreases in load have a larger impact on fuel use due to equipment and delivery losses.

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

Collaborative Projects with Ford

Lincoln Navigator Project

• Examine technologies to reduce solar heat gain– Improve thermal comfort– Improve fuel economy– Reduce emissions

Ford L/N Industry Partners• Shades, reflective and absorptive

– BOS Automotive• Window glazings, Solar Reflective

– PPG – Guardian Automotive

• Roof reflective films– 3M: Infrared reflective, visibly reflective

• Patterned glass– Solutia: VancevaTM Design Pattern

• Thermal insulation– 3M: ThinsulateTM– Lawrence Berkeley Lab gas filled panels

• Vehicle testing and data analysis– NREL

BOSBOS

Temperature Reduction Variable

% of maximum possible temperature reduction

All results referenced to (Tcabin- Tambient)baseline = 20°C

( )( )baselineambientaircabin

modifiedambientaircabin 1TTTT

−−

−=θ

Theta = 1, Tcabin,modified = Tambient

Theta = 0, Tcabin,modified = Tcabin,BL

Navigator ResultsSummary of Technologies

-10

0

10

20

30

40

50

60

70

80

90

100

Al Foil

Cab

inAl F

oil W

indow

sAl F

oil D

oors

and R

oof

Passiv

e Ven

t

Active

/Clos

ed V

ent 5

0 cfm

Reflec

tive S

hade

s

Infrar

ed R

eflec

tive W

indow

s

3M V

isibly

Refl

ectiv

e Roo

f Film

Panel

Insula

tion

Black A

bsorb

ing S

hade

s

Thet

a (%

)

Theta = 1, Tcabin,modified=TAmbient

Estimated Fuel Economy Impacts(L/N Cabin Results)

Technology Compressor Power Fuel Economy ImprovementPassive vent 34.0% 6.6 %, 1.1 mpgActive vent 24.0% 4.8 %, 0.76 mpg

Shades 14.3% 2.9 %, 0.45 mpgRoof film 9.4% 1.9 %, 0.3 mpg

Reflective Windows 11.4% 2.3 %, 0.36 mpgInsulation 6.6% 1.3 %, 0.22 mpg

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

Collaborative Projects with DaimlerChrysler

DAIMLERCHRYSLER

DaimlerChrysler Grand Cherokee Test Project

• Examine technologies to reduce solar heat gain• Data for validating integrated modeling tools

DaimlerChrysler Industry Partners

• DCX - European Jeep Grand Cherokee– U.S. glazings installed prior to delivery

• PPG - Sungate® windshield, door sidelites• 3M - Thinsulate® acoustic/thermal insulation• NREL – Vehicle testing and data analysis

DAIMLERCHRYSLER

Integrated ModelingCAD

SolarRadiation Glazing

ThermalComfort

AirConditioning

Cabin Thermal/Fluid

Vehicle

FuelEconomy

TailpipeEmissions

OccupantThermal Comfort

Integrated ModelingCAD

ThermalComfortVehicle

GlazingSolarRadiation

Cabin Thermal/Fluid

AirConditioning

FuelEconomy

TailpipeEmissions

OccupantThermal Comfort

Mesh the geometry of Mesh the geometry of your caryour car

Integrated ModelingCAD

ThermalComfortVehicle

GlazingSolarRadiation

Cabin Thermal/Fluid

AirConditioning

FuelEconomy

TailpipeEmissions

OccupantThermal Comfort

Find the solar radiation Find the solar radiation in your cityin your city

Find the heat coming Find the heat coming into your carIntegrated Modeling into your car

CAD

ThermalComfortVehicle

GlazingSolarRadiation

Cabin Thermal/Fluid

AirConditioning

FuelEconomy

TailpipeEmissions

OccupantThermal Comfort

Model temperatures Model temperatures and airflow in the cabinIntegrated Modeling and airflow in the cabin

CAD

ThermalComfortVehicle

GlazingSolarRadiation

Cabin Thermal/Fluid

AirConditioning

FuelEconomy

TailpipeEmissions

OccupantThermal Comfort

Integrated Modeling

QQcondcond

TTambamb

QQevapevap

QQsolarsolar

TTairairTTmassmass

WWcompcomp

CAD

ThermalComfortVehicle

GlazingSolarRadiation

Cabin Thermal/Fluid

AirConditioning

FuelEconomy

TailpipeEmissions

OccupantThermal Comfort

FrontFront--EndEndAir FlowAir Flow

Accumulator /Accumulator /DryerDryer

ElectricElectric--DrivenDrivenCompressorCompressor

CondenserCondenser

Expansion DeviceExpansion Device(Orifice Tube)(Orifice Tube)

EvaporatorEvaporator

Evaporator Air FlowEvaporator Air Flow(Outside Air or (Outside Air or RecircRecirc.).)

MOTORMOTOR

AlternatorAlternatorGeneratorGenerator

Find the power consumption and Find the power consumption and cooling amount of the ACcooling amount of the AC

Integrated ModelingCAD

ThermalComfortVehicle

GlazingSolarRadiation

Cabin Thermal/Fluid

AirConditioning

FuelEconomy

TailpipeEmissions

OccupantThermal Comfort

Model your car over a drive Model your car over a drive cycle and find the fuel cycle and find the fuel

economyeconomy

How comfortable are How comfortable are you inside your car?Integrated Modeling you inside your car?

CAD

ThermalComfortVehicle

GlazingSolarRadiation

Cabin Thermal/Fluid

AirConditioning

FuelEconomy

TailpipeEmissions

OccupantThermal Comfort

Modeled Air Temperature ReductionBaseline• Gold exterior

• All Glazing - Sungate™• 25 scfm ventilation• White exterior

-7.9°C

ADVISOR Model Summary

Reducing the A/C system 32% can: – Improve fuel economy 6% or 1 mpg (SCO3)– Reduce emissions of NOx by 12.8% or 0.05 gr/mi

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

Jeep Grand CherokeeParked Car Ventilation Test Program

Assess effect of:– Forced ventilation – Natural convection ventilation

DAIMLERCHRYSLER

Measured Cabin Air Temperature

30

32

34

36

38

40

42

44

46

Low flow / Panel Medium flow /Panel

Sunroof open6cm

Sidelites open2cm

Sunroof6cm/doublefloorvents

Sunroof6cm/double

floorvents/3 fans

Ventilation Technique

Cab

in A

ir Te

mpe

ratu

re (C

)

Ambient Temperature = 30C

Baseline Cabin Air Temperature = 45C

1.9C 13%

6.9C46%

2.0C13% 3.5C

23% 5.7C38%

7.5C50%

4.1 watts81 watts13 watts

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

DaimlerChrysler Test Cells Correlation: Outdoor vs. Indoor

Outdoor TestsEmissions Test CellSodium Scandium dosed Metal Halide

Environmental Test CellIR –Tungsten Filament

Quartz Tubes

DaimlerChrysler, DCTC, Auburn Hills, MI

NREL, Golden, CO How well do indoor tests simulate

outdoors?

Indoor Temperatures Compared to Outdoor

9/15/02 Environmental Conditions

30

35

40

45

50

55

60

65

70

75

80

Windshield IP Driver Seat Air, average Trim, average Vehicle Exterior

Tem

pera

ture

(C)

OutdoorMetal HalideIR

-3.4

+0.5

-4.8

-13.8

-1.4 -2.3

+1.5 +0.7 -0.1 -0.4

+20.1

+24.5

(Averaged between 1:30 and 2:00 p.m.)

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

JCI Distributed HVAC Project

Seat Body Coolers

IP Body Coolers

IP Recirc Inlet

Seat Recirc InletSeat Vent

• Assess human thermal comfort impact of JCI distributed HVAC system– Flow circulation & impingement– Steady state air temperature– Cooldown performance

Pathlines from Body Coolers and Seat Vents

Driver OverallEquivalent Homogeneous Temperature (EHT)

25

30

35

40

45

0 5 10 15 20 25

Time from Start of Cooldown (min)

Driv

er A

vera

ge E

HT

(°C

)

Baseline

Distributed HVAC

EHT – eqv. uniform temp. and 0 air velocity with same dry heat transfer as nonuniformtest conditions

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

Thermal Comfort Assessment ToolsPredicting the comfort of vehicle occupants

Human Thermal Physiological

Model

Human Thermal Comfort Empirical

Model

ADvanced Automotive

Manikin

Manikin presentation PsychologicalPhysiological

ADvanced Automotive Manikin (ADAM)• On-board power, water, communications • Designed to respond to a transient, non-

uniform thermal environment like a human:• Sweating• Breathing

• Wears clothes• 175 cm tall, 61 kg• 126 elements (~120 cm2), 120 zones

Surface Segment DetailsOuter surface - low porosity metal

Distribution layer -high porosity metal

Water barrier layer

Fine grid distributed heater wire

Carbon fiber structural backing and insulation

Multiple temperature sensor array

Backside heat flux gauge

Local controller and fluid control valve

Segment with Exaggerated Sweat Rate

ADAM’s Carbon Fiber Skeletal System

Battery System

• 4 nickel-metal hydride modules

• Onboard charging • 2 hr capability

Modules in each thigh2 Modules in torso

ChargeController

Breathing System• 5 L/min periodic exhalation

and inhalation• 10 L/min continuous

exhalation• 100% R.H. at body

temperature

Valve

Humidifier chamber Breathing controller

Breathing System (cont.)

Tubes to nose

Nose breathing port

Neck auxiliary breathing port (inlet for continuous exhale mode)

IR Image of breathing

Heated plume of air

Fluid System Filter

• Added to mitigate contamination problem with segment capillary tubes

Fluid reservoirFilter

Fluid pump

ADAM’s Active/Inactive Segments

Ready for a Brain!

Human Thermal Physiological ModelA Numerical Person

• Predicts transient thermal response of the body

• Receives data from and provides data to ADAM

• ANSYS model (40,000 elements, transient, 3D)

• Fully parametric for size and position of the human

• Body mass (tissues, bones, organs)

Human Thermal Physiological ModelThermoregulatory System

• Circulatory system (network of circular tubes of variable cross sections for arteries & veins)

• Respiratory system (series of tubes between the mouth and lungs)

• Published control equations used for heat generation, sweat rate, shivering rate, vaso-dilation/constriction

Mesh

Section View of Upper Right Leg

Skin

Fat

Muscle

Bone

Circulation Network

FEA Model of the Flow Network of Upper Arm

• Thermal-flow elements:– Conduction within fluid – Mass transport of fluid – Convective heat transfer

coefficient to tissues varieswith fluid flow rate

• Cross-section of elements adjustable at every time step for vaso-dilation/constriction

Blood Vessel Temperatures

Hand Skin Temperatures

• Blood flow rate to arteries of 1380 cc/h @ 37ºC

• Muscle tissue 750 W/m3• Skin tissue 1005 W/m3

• Skin heat loss 100 W/m2

Body Skin Temperatures

Body Section Temperatures

Interface program

Substitute Table (model uses data from good segment in

place of a malfunctioning segment)

Heat flux multiplier(ability to adjust heat flux from ADAM)

The Human Thermal Comfort Empirical Model

How You Feel Thermally

• Determines local thermal sensation

• Determines local and global thermal comfort (thermal perception) from local sensations

• Accounts for non-uniform and transient thermal environment of vehicle cabin

Model Overview

PhysiologyTskin,local , Tskin,mean , Tcore

PhysiologyTskin,local , Tskin,mean , Tcore

Local Thermal Sensation: Sl

Local Thermal Sensation: Sl

Overall Thermal Sensation: So

Overall Thermal Sensation: So

Local Thermal Comfort: Cl

Local Thermal Comfort: Cl

Overall Thermal Comfort: Co

Overall Thermal Comfort: Co

Human Subject Testing

• Individual segments (plus breathing temperature) were heated and cooled

• 110 separate tests performed at U.C. Berkeley

• 64 tests performed in Delphi wind tunnel

Test Condition

0

10

20

30

40

0 50 100 150 200

Time (min)

Air

Tem

pera

ture

(°C

)

Test Condition

0

10

20

30

40

0 50 100 150 200

Time (min)

Air

Tem

pera

ture

(°C

)

Left Hand Cooling

0

5

10

15

20

25

30

35

40

15:36 15:43 15:50 15:57 16:04 16:12 16:19 16:26 16:33

Tem

pera

ture

(°C

)

-4

-3

-2

-1

0

1

2

3

4

Finger Temperature overall_sensation left_hand_sensation

Hand Cooling

Back Cooling

0

5

10

15

20

25

30

35

40

14:52 15:00 15:07 15:14 15:21 15:28 15:36

Skin

Tem

pera

ture

(°C

)

-4

-3

-2

-1

0

1

2

3

4

Back Temperature overall_sensation back_sensation

Back coolingTroom = 28.2°C

Body Core Heating With Local Cooling

37

37.1

37.2

37.3

37.4

37.5

37.6

13:

Tem

pera

ture

(°C

)

14:52 15:21 15:50 16:19 16:48

Pelvis CoolingLeft Hand CoolingHead Cooling

7:45

Troom=28ºC, Tsupply=12ºC

Physiological/Psychological Model Coupling

PhysiologyTskin Tcore

PhysiologyTskin Tcore

Local Thermal Sensation

Local Thermal Sensation

Overall Thermal

Sensation

Overall Thermal

Sensation

Local Thermal Comfort

Local Thermal Comfort

Overall Thermal Comfort

Overall Thermal Comfort

Converts temperatures to sensation and

comfort

Linking the Tools Together

Dynamic interaction with

environment

120 surface heat fluxes transmitted

Transmits 120 target skin temperatures and

sweat rates

Surface and core temperatures transmitted

Is the environment comfortable?

Model and Manikin Data Loop

FEA Output File of Ts

Model calculatesnew Ts setpoints and

writes to file ~2 minutesModel reads qlossevery ~2 minutes

Writes qloss to fileevery 15 seconds

Manikin Output File

of qloss

Manikin reads Ts setpoints,changes heater power, sweat

rate, and breathing

Manikin continuously adjusts heater power to meet Ts setpoints

Manikin Controlled by Model

Human & Manikin Comparison*>35.9°C

*<29.4°C

29.5

30.0

30.5

31.0

31.5

32.0

32.5

33.0

33.5

34.0

34.5

35.0

35.5

*>35.9°C

*<29.4°C

29.5

30.0

30.5

31.0

31.5

32.0

32.5

33.0

33.5

34.0

34.5

35.0

35.5

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

VCCL Objective

Evaluate occupant thermal comfort response to advanced cabin climate control systems in a controlled asymmetric, thermal environment and predict impact on:

• Fuel use• Thermal comfort

Cabin Thermal Test CellSolar Simulator

Air Conditioning System Passenger Compartment

Room Temp. Control(hidden)

Solar Simulator Uniformity Test

Air Conditioning• Actual Neon A/C

System• Electrically Driven

– 5.6 kW motor (7.5 hp)

Motor Starter& Power Switching

Condenser & FanMotor

Expansion Valve

DesiccantFilter

Compressor

Thermal Comfort Test ProcessHeat Soaked Vehicle

Cool-Down Test

TC & VehicleModeling

Improved ComfortEnergy &

Fuel Saving

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

Objectives and Goals

• Our primary objective would be to utilize high-grade heat from engines in light-duty vehicles to produce cooling and/or electrical power generation.

• Our primary goal would be to reduce the fuel used by light-duty vehicles’ ancillary systems by 75% by 2010.

Availability of Waste Heat in a Light-Duty Vehicle

1000 1500 2000 2500 3000 3500 4000 45000

50

100

150

200

2030 40

50

60

70

80

90

100

125

15

175

200

300

400500

Engine S peed (rpm)

Eng

ine

Torq

ue (N

m)

Engine Waste P ower (kW), Max P ower 115 kW Based on 1991 Dodge Caravan 3.0-L (102 kW) S I Engine - trans ient da ta

• Average waste heat available would be 23 kW.

• Exhaust temperature varied from 200oC to 600oC.

• Generally, the waste heat available is twice as much as the mechanical output of the engine

Heat Generated Cooling Opportunities

Thermoacoustic EngineAbsorption Heat Pump Cycle

Zeolite/Desiccant Cooling Metal Hydride Heat Pump

Heat Generated Electric Generation

Evaporator

Preheater

Thermoelectrics, Thermionics, and Quantum Well Technologies Organic Rankine Cycle

Thermoacoutic Resonator

Waste Heat Utilization Laboratory

Long Term: Waste Heat Utilization

• Too long-term for industry

• Potentially eliminate all fuel used for air-conditioning

• Opportunities exist but require R&D

No More Fuel Used for AC!

Outline• Introduction• Why A/C Systems?• Industry Collaborative Vehicle Projects

– Ford Lincoln Navigator Project• Solar Load Reduction• Parked Car Ventilation

– DaimlerChrysler• Integrated Modeling Validation• Parked Car Ventilation• Test Cell Comparison with Outdoor Testing

– Johnson Controls Distributed Cooling• Future Opportunities

– A.D.A.M.– Climate Control Lab– Waste Heat Utilization

• Conclusions

Millions of Gallons Used

for AC per Year

0120241361481601722842962

6

34

67

33

8

21249

883

219

18

144

16254

39

123

203

304

79

64

191

20

43

11

238

18

104

166

86154

13

136

82

218

9686155257

26

73

98

275

962

20

63

87498

291102

205

0

Solutions to Reduce AC Fuel UseVehicle Design

• Reduce the load (e.g. cabin soak temperature)

• Improve distribution of cooling• Improve equipment efficiency• Effective tools (modeling and testing)

Future Opportunities• Implement integrated model with industry-

partnered vehicle testing to evaluate benefit of advanced climate control systems

• Evaluate advanced concepts with thermal manikin and modeling

• Demonstrate heat-generated cooling concepts

• Demonstrate heat-generated electricity concepts

Vehicle Level Opportunities• Reduced Fuel Consumption • Reduced Tailpipe Emissions• Increased Comfort• Avoided Costs - avoid second evaporator, tubes,

controls, ducts or larger system• Underhood Issues

– Space– Lack of air flow for cooling– Overheating components, particularly

battery and electronics– Condenser fan power

• Material life, color, and cost• Enable advance vehicle technologies

– HEV– FCV

Reduce compressor size and use

Acknowledgments• Roland Gravel, U.S. Department of

Energy, Office of FreedomCAR and Vehicle Technologies (OFCVT)

• Barbara Goodman, Director, NREL Center for Transportation Technologies and Systems

• Terry Penney, NREL OFCVT Technology Manager

• Charlie King, NREL Technician

Thank you

John Rugh303-275-4413

john_rugh@nrel.govhttp://www.ott.doe.gov/coolcar

The U.S. Department of Energy’s

National Renewable Energy Laboratory

Recommended