Analog Building Blocks for P326 Gigatracker Front-End Electronics Sorin Martoiu, Univ./INFN Torino

Preview:

Citation preview

Analog Building Blocks for P326 Gigatracker Front-End

ElectronicsSorin Martoiu, Univ./INFN Torino

Outline• Front-End Cell Building Blocks• CFD analysis• “CMOS” implementation

– Passive Filter– Scaling

• Dynamic Offset cancellation• Coincidence discriminator vs. zero-crossing discriminator w/

leading-edge hysteresis • Preamplifier• Single-ended to differential block• Overall performance• Additional blocks• Conclusion & Discussion

Front-End Cell Building Blocks

• PA Preamplifier• SEDB Single-ended to differential buffer• CFCF CFD filter• ZCS Zero-crossing discriminator• DD Digital driver

PA

SEDB CFDF ZCD DD

Chip Floorplan Proposal

Cell0

Cell1

CellN

Digital noise

Readout

CFD analysis

• Ideally zero time-walk• No delay-line in CMOS• LP filter instead

• σt = σnoise/(dV/dt) time-walk ~ offset/(dV/dt)

Delay

Hdelay(s) = HLP(s)

Hdiscr(s)

ZC discriminator

f

Bipolar signal

CFD analysis

• Increasing filter order performance approaches ideal delay line CFD

1 2 3 4 5

-0.3

-0.2

-0.1

0.1

0.2

1 2 3 4 5Filter order

1

1.1

1.2

1.3

1.4

1.5

epolSa.u.

“CMOS” Differential Implementation

Filter Scaling

• kT/C noise floor => high C for low noise• high peak current from input nodes• non-uniform filter – C scales up from in to out nodes, w/

RC = constant

Non-uniform scaling Uniform scaling

1,0 1,2 1,4 1,6 1,8 2,00,0

20,0µ

40,0µ

60,0µ

80,0µ

100,0µ

90,0µ

100,0µ

110,0µ

120,0µ

130,0µ

140,0µ

150,0µ

Curr

ent (A

)

K

RM

S N

ois

e (V)

1 2 3 4 510,0µ

20,0µ

30,0µ

40,0µ

50,0µ

60,0µ

70,0µ

80,0µ

90,0µ

100,0µ

80,0µ

100,0µ

120,0µ

140,0µ

160,0µ

180,0µ

200,0µ

220,0µ

Curr

ent (A

)

kc

RM

S N

ois

e (V)

Dynamic Offset Compensation

• Offset cancellation• Low-pass feedback => high-pass overall transfer

=> reduce low-frequency noise (1/f noise)

I+I

I-I

Dynamic Offset Compensation

Coincidence discriminator

• Noise produces inherent noise switching at output of ZCD

• Need parallel leading-edge discriminator to mask noise switching

• Noise switching is not eliminated

Delay

ZC discriminator

f

ZCD w/ hysteresis

• ZCD “arms” when the bipolar signal crosses a certain threshold

• Switching noise is eliminated• Additional fast block w/o offset compensation =>

may introduce some time walk

Front-End Cell Building Blocks

• PA Preamplifier• SEDB Single-ended to differential buffer• CFCF CFD filter• ZCS Zero-crossing discriminator• DD Digital driver

PA

SEDB CFDF ZCD DD

Preamplifier

• Peaking time 5ns• Gain 40mV/fC• Output noise < 1mV

@Cd=200 fF (150e- ENC)• Non-linearity < 1.5%

0,0 500,0n 1,0µ 1,5µ 2,0µ 2,5µ 3,0µ 3,5µ 4,0µ 4,5µ0,0

50,0m

100,0m

150,0m

200,0m

250,0m

300,0m

350,0m

400,0m

450,0m "vampl" Linear Fit of preamplin_vampl

Vout p

eak

(V)

Detector curent peak (A)

SED Buffer

• High drive current ~ 100uA• GBW > 500MHz• Good linearity• Good CMRR• Class AB differential opamp with CMFB and CMFF

SED Buffer

CFDF + ZCD Layout

Status

• Full channel simulations:– jitter: 100ps rms (1fC signal)– time-walk: 200ps max

Power Consumption

Block IDD (uA) P@Vdd=1.2

(uW)

PA 70 84

SEDB 250 300

ZCD 110 132

DD 70 84

Total 500 uA 600 uW

Potential problems

• Disturbances at sensitive nodes• Parasitics

– decrease bandwidth– induce non-linearity

• Input and/or output skews – affect measurement

PA

SEDB CFDF ZCD DD

Timewalk0,25

0,05

0,075

0,1

0,125

0,15

0,175

0,2

0,225

Amplitude1000 20 40 60 80

Plot 0landau distr landau distr 2

100

0

20

40

60

80

Amplitude1000 20 40 60 80

Plot 0Timewalk curve

0,25

0,05

0,075

0,1

0,125

0,15

0,175

0,2

0,225

Time error (ps)1000 20 40 60 80

Plot 0Time error distr Timewalk curve

Recommended