Adapting a Transformed Undergraduate Chemistry...

Preview:

Citation preview

AdaptingaTransformedUndergraduateChemistryCurriculumforHighSchoolRobertMcKay†,RyanL.Stowe†,DeborahHerrington‡ andMelanieM.Cooper†

†DepartmentofChemistry,MichiganStateUniversity,EastLansing,Michigan‡DepartmentofChemistry,GrandValleyStateUniversity,Allendale,Michigan

CurrentCurricularModelsinHighSchoolChemistry

3-DimensionalLearning

Chemistry,Life,theUniverse,andEverything(CLUE)

FirstSemesterCLUELearningProgression

CLUEasaCurricularModelforHighSchoolTeachers

ImprovementinLearningOutcomesfromCLUE

• HowwelldoesCLUEalignwiththePhysicalSciencePerformanceExpectationsandDisciplinaryCoreIdeasintheNGSS?

• HowdoestheCLUEalignmentcomparewiththenewStandardsrelativetotraditionalchemistrycurricula?

• WhatarethemostsignificantmodificationsneededtomakeCLUEsuitableforthesecondaryschoolclassroom?

Most secondary school chemistry curricula derive from a textbook published byMichell Sienko and Robert Plane in the late 1950s.1 No strong evidence supportsthe efficacy of their approach in improving student outcomes.2,3

H1-NMR

CLUEPerformanceExpectationAlignmentvs.TraditionalCourse

Measurement AtomicStructure Bonding Stoichiometry

StatesofMatter

CLUE is a transformed undergraduategeneral chemistry curriculum designedaround the “Big Ideas” of structure,properties and energy.2 It was designedand iteratively refined concurrentlywith the development of theFramework for K-12 Science Educationand shares a focus on ScientificPractices in addition to disciplinarycontent.

The Next Generation Science Standards4and The Framework4 from which theywere derived have put forth a vision ofscience education that moves beyondfactoid recollection and towardintegrated understanding of disciplinarycore ideas, scientific practices andcrosscutting concepts that can beleveraged to explain phenomena (3-dimensional learning).

Performance Expectations CLUE Trad.CourseStructureandPropertiesofMatter

HS-PS1-1 Usetheperiodictableasamodeltopredicttherelativepropertiesofelementsbasedonthepatternsofelectronsintheoutermostenergylevelofatoms

HS-PS1-3Planandconduct aninvestigationtogatherevidencetocomparethestructureofsubstancesatthebulkscaletoinferthestrengthofelectricalforcesbetweenparticles

HS-PS1-8Developmodels toillustratethechangesinthecompositionofthenucleusoftheatomandenergyreleasedduringtheprocessesoffission,fusion,andradioactivedecay

HS-PS2-6Communicatescientificandtechnicalinformationaboutwhythemolecular levelstructureisimportantinthefunctioningofdesignedmaterials

ChemicalReactionsHS-PS1-2Constructandreviseanexplanationfortheoutcome ofasimplechemicalreactionbasedontheoutermostelectronstatesofatoms,trendsintheperiodictableandknowledgeofthepatternsofchemical

propertiesHS-PS1-4 Developamodeltoillustratethatthereleaseorabsorptionofenergyfromachemicalreaction

systemdependsuponthechangesintotalbondenergyHS-PS1-5Applyscientificprinciplesandevidencetoprovideanexplanationabouttheeffectsofchangingthe

temperatureofconcentrationofthereactingparticlesontherateatwhichareactionoccursHS-PS1-6Refinethedesignofachemicalsystembyspecifying achangeinconditionsthatwouldproduce

increasedamountsofproductsatequilibriumHS-PS1-7Usemathematicalrepresentationstosupporttheclaimthatatomsandthereforemass,are

conservedduringachemicalreaction

ForcesandInteractionsHS-PS2-4UsemathematicalrepresentationsofNewton’sLasofGravitationandCoulomb’sLawtodescribe

andpredictthegravitationalandelectrostaticforcesbetweenobjects

EnergyHS-PS3-1 Createacomputationalmodeltocalculatethechangeintheenergyofonecomponentinasystemwhenthechangeinenergyoftheothercomponent(s)andenergyflowsinandoutofthesystemareknownHS-PS3-2 Developandusemodelstoillustratethatenergyatthemacroscopicscalecanbeaccountedforasacombinationofenergyassociatedwiththemotionofparticles(objects)andenergyassociatedwiththe

relativepositionofparticles(objects.HS-PS3-4Planandconductaninvestigationtoprovideevidencethatthetransferofthermalenergywhentwocomponentsofdifferenttemperaturearecombinedwithinaclosedsystemresultsinamoreuniform

energydistributionamongthecomponentsinthesystem(secondlawofthermodynamics)PS-PS3-5Developanduseamodeloftwoobjectsinteractingthroughelectricormagneticfieldstoillustrate

theforcesbetweenobjects andthechangesinenergyoftheobjectsduetotheinteraction

Waves andElectromagneticRadiationHS-PS4-3Evaluatethe claims,evidence,andreasoningbehindtheideathatelectromagneticradiationcanbedescribedeitherbyawavemodeloraparticlemodel,andthatforsomesituationsonemodelismoreuseful

thantheotherHS-PS4-4 Evaluatethevalidityandreliabilityofclaimsinpublishedmaterialsoftheeffectsthatdifferent

frequenciesofelectromagneticradiationhavewhenabsorbedbymatterHS-PS4-5Communicatetechnicalinformationabouthowsometechnologicaldevicesusetheprinciplesof

wavebehaviorandwaveinteractionswithmattertotransmitandcaptureinformationandenergy

• CLUEstudentssignificantlybetteratdrawingLewisstructures6,7• CLUEstudentsmorelikelytoself-reportthattheycouldpredictphysical

propertieswithinformationfromLewisstructures7,8• CLUEstudentsarelesslikelytodepictintermolecularforcesas

occurringwithinasinglemolecule9,10• CLUEstudents’improvedunderstandingofintermolecularforces

persistsintothefirstsemesteroforganicchemistry10

OngoingWork

References

• Developtheagendafora2-weekfocus-groupaimedatcraftinga“workingmodel”oftheCLUEcurriculumforhighschool

• Identifychemistryeducatorswillingtoparticipateinthefocus-groupandbeta-testportionsoftheresultantworkmodelintheirclassrooms

• Developtrainingopportunitiesforpre-serviceteachersatMSUcenteredaroundtheCLUEcurriculum

1.Sienko,M.J.&Plane,R.A.Chemistry:PrinciplesandProperties.(Mcgraw hillInternationalBookCompany,1974).2.Cooper,M.&Klymkowsky,M.Chemistry,Life,theUniverse,andEverything:ANewApproachtoGeneralChemistry,andaModelforCurriculumReform.J.Chem.Educ. 90, 1116–1122(2013).3.Borman,S.ATaleOfTwoTextbooks:HistoryandinfluenceofSienko &PlaneandMorrison&Boyddetailedatsymposium.Chem.Eng.News 83, 48–51(2005).4.NGSSLeadStates.NextGenerationScienceStandards:ForStates,ByStates.(TheNationalAcademiesPress,2013).5.NationalResearchCouncil.AFrameworkforK-12ScienceEducation:Practices,CrosscuttingConcepts,andCoreIdeas.(2011).6.Cooper,M.M.,Grove,N.,Underwood,S.M.&Klymkowsky,M.W.LostinLewisStructures:AnInvestigationofStudentDifficultiesinDevelopingRepresentationalCompetence.J.Chem.Educ. 87, 869–874(2010).7.Cooper,M.M.,Underwood,S.M.,Hilley,C.Z.&Klymkowsky,M.W.DevelopmentandAssessmentofaMolecularStructureandPropertiesLearningProgression.J.Chem.Educ. 89, 1351–1357(2012).8.Cooper,M.,M. Underwood,S.&Z. Hilley,C.DevelopmentandvalidationoftheimplicitinformationfromLewisstructuresinstrument(IILSI):dostudentsconnectstructureswithproperties?Chem.Educ.Res.Pract. 13, 195–200(2012).9.Cooper,M.M.,Williams,L.C.&Underwood,S.M.StudentUnderstandingofIntermolecularForces:AMultimodalStudy.J.Chem.Educ. 92, 1288–1298(2015).10.Williams,L.C.,Underwood,S.M.,Klymkowsky,M.W.&Cooper,M.M.AreNoncovalentInteractionsanAchillesHeelinChemistryEducation?AComparisonofInstructionalApproaches.J.Chem.Educ. 92, 1979–1987(2015).