A Synthec Future: Microcompartments, Nanoparcles …2009.igem.org/files/poster/Lethbridge.pdfAlberta...

Preview:

Citation preview

Abstract 

Acknowledgements 

Currently  no  tools  are  available  to  the  synthe8c  biology community  that  allow  for  the  separa8on  of  engineered biochemical  processes  in  order  to  improve  characteriza8on and  the  stability  of  these  systems.  To  achieve  this  will development  microcompartments  that  will  mimic  the compartmentaliza8on  which  occurs  in  eukaryotes,  including the  ability  to  selec8vely  target  proteins  into  this compartment.  The  system  we  are  crea8ng  is  based  on  an engineered  lumazine  synthase  protein  containing  point muta8ons to generate a highly nega8ve interior.   This protein can  a?ract  highly  posi8ve  10  arginines  (R10)  tags,  enabling  a selec8ve  targe8ng  system. We  have  successfully  created  the cloning  vectors  to  introduce  these  signal  pep8des  to  either the  N‐  or  C‐terminus  of  any  protein  of  interest.  We  have modeled  the  lumazine  synthase  microcompartment  and shown that it has a volume between 299 and 369 nm3 which is  able  to  accommodate  proteins  of  up  80  kDa  ins  size.  The pore  size  however  will  not  allow  for  the  escape  of  these proteins  from  the  compartment.  In  order  to  test  co‐localisa8on  of  two  proteins  into  the  microcompartemnt  we will test this system using the fluorescence resonance energy transfer (FRET) between cyan and yellow fluorescent proteins.  An  alterna8ve  approach  to  compartmentaliza8on  is  the crea8on  of  nanopar8cles  which  we  are  going  to  op8mize using  the  nanopar8cle  producing  protein  Mms6  within Escherichia coli system.  

A Synthe)c Future: Microcompartments, Nanopar)cles and the BioBa;ery 

References 

Alix Blackshaw, Lisza Bruder, Mackenzie Coatham, Ashley Duncan, Jeffrey Fischer, Fan Mo, Kirsten Rosler, Roxanne Shank, Megan Torry, and Hans‐Joachim Wieden 

University of Lethbridge, 4401 University Drive  Lethbridge, Alberta, Canada T1K 3M4 

Nanopar8cles 

Thanks to David Franz, Nathan Puhl, John Thibault, Sebas8an Machula,  Tony  Russell,  Bill  Hamman  and  the  University  of Alberta iGEM 2009 team. 

Thanks  to  the  University  of  Lethbridge  Department  of Chemistry  and  Biochemistry  and  the  Faculty  of  Arts  and Science. 

Prozorov et al. (2007). Protein‐mediated synthesis of uniform superparamagne8c magne8te nanocrystals. Adv. Funct. Mater.  17, 951‐957 

Seebeck et al. (2006). A simple tagging system for protein encapula8on. J. Am. Chem. Soc. 128, 4516‐4517 

Tsujimura et al. (2001). Photosynthe8c bioelectrochemical cell u8lizing cyanobacteria and water‐genera8ng oxidase. Enzyme and Microbial Technology. 29, 225‐231 

Microcompartments 

Parts Submi?ed to the Registry 

Lumazine synthase (LS) from Aquifex aeolicus was mutated at four  posi8ons  by  introducing  glutamates.    The  system  was modeled  and  the muta8ons were  found  to  result  in  a more nega8ve formal charge of ‐480 in comparison to the wild type ‐180 for a 60 subunit capsid.   

Figure 1.  Electrosta8c  surface poten8al map of  two  subunits of the pentamer mutant LS of the a) inside face and b) outside face.      Areas  of  posi8ve  and  nega8ve  charge  are  shown  in  blue and red, respec8vely.  

    a)              b) 

Figure  3.  A  representa8on  of  cyan  and  yellow  fluorescent proteins (FP) within the LS microcompartment.  

          a)              b) 

Figure  2.  Electrosta8c  surface  poten8al  map  of  11  subunits  map with  1  subunit  cap  removed of  the  a) wild  type  and b) mutant LS.   Areas of posi8ve and nega8ve charge are shown in blue and red, respec8vely.   

Figure  5.  Fluorescence  of  cell  extracts  containing  R10  YFP constructs.   

Figure  7.  The  final  LS  microcompartment  co‐localiza8on construct. 

R 10 Tail 

pLacI 

RBS  Lum

azine 

Syntha

se 

dT  pB

ad 

RBS 

YFP 

R 10 Tail 

dT 

RBS 

CFP 

dT Tet

Inverter 

Figure 6. Schema8c representa8on of FRET occurring between the  donor  CFP  (excita8on  439  nm,  emission  476  nm)  and acceptor YFP (excita8on 514 nm, emission 527 nm).   

The  nanopar8cle  producing  protein  (Mms6)  has  been constructed based on  the protein  found  in Magnetospirillum magneBcum. 

Figure 8. The final Mms6 construct. 

pLacI  RBS  Mms6  dT 

Figure  9.  Electron  microscope  images  of  magne8te nanopar8cles obtained by co‐precipita8on of FeCl2 and FeCl3 in solu8on a) without protein and b) with Mms6 (Prozorov et al., 2007). 

a)  b) 

Future Direc8ons 

 Complete  the  assembly  of  the  lumazine  synthase microcompartment co‐localiza8on construct. 

 Characterize the lumazine synthase capsids  Size of assembled capsids 

 Characterize the method of co‐localiza8on  Independently control lumazine synthase and fluorescent protein expression 

 Localize  photosynthe8c  protein(s)  within  the  lumazine synthase microcompartment 

 Characteriza8on  and  op8miza8on  nanopar8cle  produc8on by localiza8on of the Mms6 protein. 

 Assembly and op8miza8on of the photosynthe8c fuel cell. 

C‐Terminus R10 Tail  

BBa_K249005 

C‐Terminus R10 – dT 

BBa_S04261 

Microcompartment: 

Nanopar8cle: 

Improved Previous Parts: 

pBAD – TetR Inverter – mRBS – R10 YFP – dT  

BBa_K249017 

pBAD – TetR Inverter – mRBS –YFP R10 – dT  

BBa_K249014 

Lumazine Synthase 

BBa_K249002 

N‐Terminus R10 Tail  

BBa_K249004 

EYFP – Fusion Standard 

BBa_K249006 

Fusion Standard – YFP 

BBa_K249008  pBad – TetR inverter 

BBa_K249001 

Lumazine Synthase – dT  

BBa_S04259 

RBS – N‐Terminus R10 Tail  

BBa_S04262 

EYFP – R10 Tail – dT  

BBa_S04264 

mRBS – R10 FP 

BBa_S04266 

Mms6 

BBa_K249016 

pLacI –RBS – Mms6 ‐ dT 

BBa_K249019 

Mms6 – dT 

BBa_S04268 

Riboswitch 

BBa_K249026 

pTetR – RBS – YFP  

BBa_K249000 

pStrong – Riboswitch – cheZ – dT  

BBa_K249028 

GFP – dT  

BBa_S04263 

pStrong – Riboswitch – cheZ  

BBa_S04270 

cheZ – dT 

BBa_S04271 

Riboswitch – cheZ – dT  

BBa_S04272 

Riboswitch – GFP – dT  

BBa_S04270 

Judging Criteria   

Further  modeling  demonstrated  that  the  capsid  interior diameter  is between 83 and 89 nm.   The fluorescent protein (FP)  volume  was  calculated  to  be  approximately  55.49  nm3 showing  that between 5 or 6 proteins can fit  into  the capsid unable to exit through the 1.93 nm pores.  

Fold Change in Fluorescence 

Buffer 

DH5α 

C‐R 10 YFP 

C‐R 10 YFP  

+ Ara 

N‐R 10 YFP 

 + Ara 

N‐R 10 YFP 

++++

++++

++++

C- or N- terminal R10 Fusion Vector

YFP

C- or N- terminal R10 Fusion Vector

Restriction Digestion Ligation

C- or N- terminal R10 YFP

Figure  4.  Schema8c  representa8on  of  the  construc8on strategy of R10 fusion proteins (Biofusion, Silver Lab) which can be targeted to the LS microcompartment by the electrosta8c forces.  

Wavelength (nm) 

Excita8on of YFP  

Intensity

 

Emission of CFP  

 Had a fun summer, now we are here!!!  Complete and submit the iGEM 2009 Judging form  Create and share a descrip8on of the team’s project  Present a Poster and Talk at the iGEM Jamboree  Enter informa8on detailing new standard BioBrick Parts  DNA submi?ed for new BioBrick Parts  Demonstrate new BioBrick Parts of own design and device  Characterize or improve an exis8ng BioBrick Part or Device  Help another iGEM team  Detail a new approach to an issue of Human Prac8ce   Answered the four iGEM safety ques8ons 

  Had a fun summer, now we are here!!!   Complete and submit the iGEM 2009 Judging form   Create and share a descrip8on of the team’s project   Present a Poster and Talk at the iGEM Jamboree   Enter informa8on detailing new standard BioBrick Parts   DNA submi?ed for new BioBrick Parts   Demonstrate func8on new BioBrick Parts   Characterize or improve an exis8ng BioBrick Part or Device   Help another iGEM team   Detail a new approach to an issue of Human Prac8ce    Answered the four iGEM safety ques8ons 

Recommended