A Sate-Space Model for Decoding Auditory Attentional ... Akram-Bebadi... · MEG Spk2 MEG Spk1 10 20...

Preview:

Citation preview

The Cocktail Party Problem

AcknowledgementThe authors thank Krishna Puvvada for interesting discussions. This project was supported by NIH grant 1R01AG036424.

Forward Model:

Attention Model:

Inverse Model:

Spk2(Female)

Spk2

Spk1

Attended

Spk2 Attended

MEG

Spk1

MEG

(Male)Spk1

x 10-5

0 125 250 375 500-6-4-202468

50t (ms)

M50TRF

M100TRF

Sink Source

50ft/Step

0

1

Our Contribution:1) Parsimonious use of covariates2) High temporal resolusion

~ Seconds3) Scalability

Existing Techniques:1) Full spectrotemporal features as

covariates2) Low temporal Resolution

~ Minutes

Objectives

Convex, but highly non-linear and coupled in time.Efficient solution: two nested EM algorithms

*

**

****

***

Time (s)10 20 30 40 500

0.5

1

10 dB

60

10 20 30 40 50 60−5

0

5

10 20 30 40 50 60−5

0

5

10 20 30 40 50 600

0.5

1

(x 10 )−3

(x 10 )−3

Time (s)

Spk2 Attended Spk2 Attended

MEGSpk2

MEGSpk1

10 20 30 40 500

0.5

1

0 dB−10 dB−20 dB

60

References

Speech Segregation: Identifying and tracking a target speaker, corrupted by acoustic interference 1 .

Neural Activity at the Cortical level:Strongly modulated by low-frequency temporal modula-tions (envelope) of the attended target speaker 2 .

Magnetic field map of the auditory MEG component (DSS) 3

1 Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the aoustical society of America, 25(5), 975-979.

2 Ding, N., & Simon, J. Z. (2012). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences, 109(29), 11854-11859.

3 de Cheveigne, A., & Simon, J. Z. (2008). Denoising based on spatial filtering. Journal of neuroscience methods, 171(2), 331-339.

Speech envelope

Temporal receptive field

NoiseAuditory MEG

attending to Spk2attending to Spk1

MAP Estimate: Maximize

»

»

»»

Outer EM iteration :

E-Step: Compute *

M-Step: Update and ** Inner EM iteration : E-Step: Compute

***

M-Step: Update ****

end end

MEGSpk2

MEGSpk1

Spk2 Attended

Spk2 AttendedMEGSpk2

MEGSpk1

Time(s) Time(s)

MEGSpk2

MEGSpk1

MEGSpk2

MEGSpk1

Spk1 Attended

10 20 30 40 50 60−0.02

0

0.02

10 20 30 40 50 60−0.02

0

0.02

10 20 30 40 500

0.5

1

10 20 30 40 500

0.5

1

60

60

10 20 30 40 50 60−0.02

0

0.02

10 20 30 40 50 60−0.02

0

0.02

10 20 30 40 500

0.5

1

10 20 30 40 500

0.5

1

60

60

Sbj 1Sbj 2Classifier

Sbj 1Sbj 2Classifier

10 20 30 40 50 60−0.02

0

0.02

10 20 30 40 50 60−0.02

0

0.02

10 20 30 40 500

0.5

1

10 20 30 40 500

0.5

1

60

60

10 20 30 40 50 60−0.02

0

0.02

10 20 30 40 50 60−0.02

0

0.02

10 20 30 40 500

0.5

1

10 20 30 40 500

0.5

1

60

60

Sbj 1Sbj 2Classifier

Sbj 1Sbj 2Classifier

1

0

1

0Spk1 Attended

Time(s) Time(s)

Simulation Resaults

von Mises Distribution

The Inverse Solution1

0

1

0Spk1 Attended Spk1 Attended

1

0

1

0

The Inverse Problem: Estimating , given the observed data from trials.

Spk1 Attended

A Sate-Space Model for Decoding Auditory Attentional Modulation from MEG in a Competing-Speaker EnvironmentSahar Akram1, 2, Jonathan Z. Simon1, 2, 3, Shihab Shamma1, 2, Behtash Babadi1, 2

1Department of Electrical and Computer Engineering, 2 Institute for Systems Reasearch, 3 Department of Biology, University of Maryland, College Park, MDsakram@umd.edu, jzsimon@umd.edu, sas@umd.edu, behtash@umd.edu

Application to Real Data1

0

Spk2 Attended

0 \pi/2 \pi0

0.5

1

1.5

2

2.5

3

κ = 0.5κ = 1κ = 2κ = 4κ = 8

θ(radian)

“von

Mis

es”

dens

ity

π/2 π

The Proposed Model

Decoupled in time with tractable non-linear operations

Task Task

Task Task

Task Task

Task