A Demazure crystals construction for Schubert polynomials · A Demazure crystals construction for...

Preview:

Citation preview

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

A Demazure crystals construction for Schubert

polynomials

Anne Schilling

Department of Mathematics, UC Davis

based on joint work with Sami Assaf in arXiv:1705.09649 [math.CO]

Equivariant Combinatorics, Montreal, June 20, 2017

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Schubert polynomials – history

1973: Bernstein–Gel’fand2 introduced certain polynomialrepresentatives of cohomology classes of Schubert cycles Xw in flagvarieties

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Schubert polynomials – history

1973: Bernstein–Gel’fand2 introduced certain polynomialrepresentatives of cohomology classes of Schubert cycles Xw in flagvarieties

1982: Lascoux–Schutzenberger via divided difference operators

Sw (x) = ∂w−1w0(xn−1

1 xn−22 · · · xn−1)

w ∈ Sn, w0 = nn − 1 . . . 21 long permutation in Sn

∂i =1− si

xi − xi+1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Schubert polynomials – history

1973: Bernstein–Gel’fand2 introduced certain polynomialrepresentatives of cohomology classes of Schubert cycles Xw in flagvarieties

1982: Lascoux–Schutzenberger via divided difference operators

Sw (x) = ∂w−1w0(xn−1

1 xn−22 · · · xn−1)

w ∈ Sn, w0 = nn − 1 . . . 21 long permutation in Sn

∂i =1− si

xi − xi+1

1993: Billey–Jockusch–Stanley combinatorial expression in terms ofcompatible sequences

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Schubert polynomials – history

1995: Reiner–Shimozono prove statement ofLascoux–Schutzenberger that Schubert polynomials arepositive sums of Demazure characters uses Edelman–Greene insertion

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Schubert polynomials – history

1995: Reiner–Shimozono prove statement ofLascoux–Schutzenberger that Schubert polynomials arepositive sums of Demazure characters uses Edelman–Greene insertion

2017: Assaf new key tableaux expansion of Demazure characters uses weak Edelman–Greene insertion

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley symmetric functions –history

1984: Stanley introduced Stanley symmetric functions Fw toenumerate reduced expressions of permutations

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley symmetric functions –history

1984: Stanley introduced Stanley symmetric functions Fw toenumerate reduced expressions of permutations

Inverse limits of Schubert polynomials

Fw (x1, x2, . . .) = limm→∞

S1m×w (x1, x2, . . . , xn+m)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley symmetric functions –history

1984: Stanley introduced Stanley symmetric functions Fw toenumerate reduced expressions of permutations

Inverse limits of Schubert polynomials

Fw (x1, x2, . . .) = limm→∞

S1m×w (x1, x2, . . . , xn+m)

Combinatorial formula in terms of decreasing factorizations of w

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley symmetric functions –history

1984: Stanley introduced Stanley symmetric functions Fw toenumerate reduced expressions of permutations

Inverse limits of Schubert polynomials

Fw (x1, x2, . . .) = limm→∞

S1m×w (x1, x2, . . . , xn+m)

Combinatorial formula in terms of decreasing factorizations of w

1987: Edelman–Greene proved positive Schur expansion of Fw usingEdelman–Greene insertion

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley symmetric functions –history

1984: Stanley introduced Stanley symmetric functions Fw toenumerate reduced expressions of permutations

Inverse limits of Schubert polynomials

Fw (x1, x2, . . .) = limm→∞

S1m×w (x1, x2, . . . , xn+m)

Combinatorial formula in terms of decreasing factorizations of w

1987: Edelman–Greene proved positive Schur expansion of Fw usingEdelman–Greene insertion

2016: Morse–Schilling imposed crystal structure on decreasingfactorization

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Goal

Prove:

Schubert polynomials are Demazure truncations of Stanley symmetricfunctions.

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Goal

Prove:

Schubert polynomials are Demazure truncations of Stanley symmetricfunctions.

Strategy:

Impose Demazure crystal structure on Assaf’s key tableaux

Intertwine with weak Edelman–Greene insertion

Crystal for Schubert polynomials as Demazure truncation of crystalfor Stanley symmetric functions

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Goal

Prove:

Schubert polynomials are Demazure truncations of Stanley symmetricfunctions.

Strategy:

Impose Demazure crystal structure on Assaf’s key tableaux

Intertwine with weak Edelman–Greene insertion

Crystal for Schubert polynomials as Demazure truncation of crystalfor Stanley symmetric functions

Related work:

Lenart defined crystal operators on RC graphs

Reiner–Shimozono defined crystal-like operators on factorizedrow-frank words

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Outline

1 Crystal: Schur functionsTableauxCrystal operators on tableaux

2 Crystal: Demazure charactersKey tableauxDemazure crystal on key tableaux

3 Crystal: Stanley symmetric functionsReduced factorizationsCrystal on reduced factorizations

4 Crystal: Schubert polynomialsReduced factorizations with cutoffCrystal on reduced factorizations with cutoff

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Outline

1 Crystal: Schur functionsTableauxCrystal operators on tableaux

2 Crystal: Demazure charactersKey tableauxDemazure crystal on key tableaux

3 Crystal: Stanley symmetric functionsReduced factorizationsCrystal on reduced factorizations

4 Crystal: Schubert polynomialsReduced factorizations with cutoffCrystal on reduced factorizations with cutoff

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Schur functions

Partition: λ

Young diagram of λ: array of left-justified cells with λi boxes in row i

(French convention)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Schur functions

Partition: λ

Young diagram of λ: array of left-justified cells with λi boxes in row i

(French convention)

SSYTn(λ) = set of semi-standard Young tableaux of shape λ overalphabet {1, 2, . . . , n}

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Schur functions

Partition: λ

Young diagram of λ: array of left-justified cells with λi boxes in row i

(French convention)

SSYTn(λ) = set of semi-standard Young tableaux of shape λ overalphabet {1, 2, . . . , n}

Definition

Schur polynomial

sλ(x) = sλ(x1, . . . , xn) =∑

T∈SSYTn(λ)

xwt(T )11 · · · x

wt(T )nn

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Semi-standard Young tableaux

Example

Semi-standard Young tableaux of shape (2, 1) over the alphabet {1, 2, 3}

32 3

31 3

21 3

21 2

32 2

31 2

31 1

21 1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Semi-standard Young tableaux

Example

Semi-standard Young tableaux of shape (2, 1) over the alphabet {1, 2, 3}

32 3

31 3

21 3

21 2

32 2

31 2

31 1

21 1

s(2,1)(x1, x2, x3) = x21 x2 + x21 x3 + x22 x3 + 2x1x2x3 + x1x22 + x1x

23 + x2x

23

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal structure on semi-standard Young tableaux

w word of length k in alphabet A = {1, 2, . . . , n}

Define

Mi(w , r) = wt(w1w2 · · ·wr )i−wt(w1w2 · · ·wr )i+1 (0 6 r 6 k , 1 6 i < n)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal structure on semi-standard Young tableaux

w word of length k in alphabet A = {1, 2, . . . , n}

Define

Mi(w , r) = wt(w1w2 · · ·wr )i−wt(w1w2 · · ·wr )i+1 (0 6 r 6 k , 1 6 i < n)

Mi(w) = maxr>0

{Mi (w , r)}

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal structure on semi-standard Young tableaux

w word of length k in alphabet A = {1, 2, . . . , n}

Define

Mi(w , r) = wt(w1w2 · · ·wr )i−wt(w1w2 · · ·wr )i+1 (0 6 r 6 k , 1 6 i < n)

Mi(w) = maxr>0

{Mi (w , r)}

If Mi(w) > 0 and p leftmost occurrence of Mi(w) ⇒ wp = i

If q rightmost occurrence of Mi(w) ⇒ q = k or wq+1 = i + 1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Lowering operator

w(T ) column-reading word of T

Definition

Lowering operator fi on T :p be the smallest index such that Mi(w(T ), p) = Mi(w(T ))

if Mi(w(T )) 6 0, then fi(T ) = 0

else fi (T ) changes the entry in T corresponding to w(T )p = i to i +1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Lowering operator

w(T ) column-reading word of T

Definition

Lowering operator fi on T :p be the smallest index such that Mi(w(T ), p) = Mi(w(T ))

if Mi(w(T )) 6 0, then fi(T ) = 0

else fi (T ) changes the entry in T corresponding to w(T )p = i to i +1

Example

2 3 31 2 2 2 ❦2

2 3 31 2 2 ❦2 3

❦2 3 31 2 2 3 3

3 3 31 2 2 3 3 0

21323222 21323223 21323233 31323233

f2 f2 f2 f2

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Raising operator

Definition

Raising operator ei on T :q largest index such that Mi(w(T ), q) = Mi(w(T ))

if q is length of w(T ), then ei (T ) = 0

else ei (T ) changes the entry in T corresponding to w(T )q+1 = i + 1to i

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Raising operator

Definition

Raising operator ei on T :q largest index such that Mi(w(T ), q) = Mi(w(T ))

if q is length of w(T ), then ei (T ) = 0

else ei (T ) changes the entry in T corresponding to w(T )q+1 = i + 1to i

fi and ei are partial inverses

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal structure

The crystal B(2, 1) with edges f1 ↑, f2 ↑

32 3

31 3

32 2

21 3

31 2

21 2

31 1

21 1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Outline

1 Crystal: Schur functionsTableauxCrystal operators on tableaux

2 Crystal: Demazure charactersKey tableauxDemazure crystal on key tableaux

3 Crystal: Stanley symmetric functionsReduced factorizationsCrystal on reduced factorizations

4 Crystal: Schubert polynomialsReduced factorizations with cutoffCrystal on reduced factorizations with cutoff

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Outline

1 Crystal: Schur functionsTableauxCrystal operators on tableaux

2 Crystal: Demazure charactersKey tableauxDemazure crystal on key tableaux

3 Crystal: Stanley symmetric functionsReduced factorizationsCrystal on reduced factorizations

4 Crystal: Schubert polynomialsReduced factorizations with cutoffCrystal on reduced factorizations with cutoff

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure character

Degree-preserving divided difference operators

πi f (x1, . . . , xn) = ∂i (xi f (x1, . . . , xn)) where ∂i =1− si

xi − xi+1

πw = πi1πi2 · · · πik if w = si1si2 · · · sik reduced expression

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure character

Degree-preserving divided difference operators

πi f (x1, . . . , xn) = ∂i (xi f (x1, . . . , xn)) where ∂i =1− si

xi − xi+1

πw = πi1πi2 · · · πik if w = si1si2 · · · sik reduced expression

Definition

Demazure character for composition a

κa(x) = πw

(xλ11 xλ2

2 · · · xλnn

)

where λ is partition rearrangement of a and w is shortest permutation thatsorts a to λ

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Key tableaux

Weak composition: aKey diagram of a: array of left-justified cells with ai boxes in row i

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Key tableaux

Weak composition: aKey diagram of a: array of left-justified cells with ai boxes in row i

Definition

A key tableau is a filling of a key diagram such that:

columns have distinct entries

rows weakly decrease

if i is above k in same column with i < k , then ∃ j with i < j

immediately right of k

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Key tableaux

Weak composition: aKey diagram of a: array of left-justified cells with ai boxes in row i

Definition

A key tableau is a filling of a key diagram such that:

columns have distinct entries

rows weakly decrease

if i is above k in same column with i < k , then ∃ j with i < j

immediately right of k

Definition

A semi-standard key tableau is a key tableau in which no entry exceeds itsrow index.

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Key tableaux

Example

Semi-standard key tableaux of shape (0, 2, 1)

21 1

31 1

32 1

32 2

12 2

13 3

is not allowed since 3 exceeds its row index 2

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure character/key polynomial

SSKT(a) = set of semi-standard key tableaux of shape a

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure character/key polynomial

SSKT(a) = set of semi-standard key tableaux of shape a

Theorem (Assaf 2017)

The key polynomial κa(x) is given by

κa(x) =∑

T∈SSKT(a)

xwt(T )11 · · · x

wt(T )nn

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Key tableaux

Example

Semi-standard key tableaux of shape (0, 2, 1)

21 1

31 1

32 1

32 2

12 2

κ(0,2,1)(x) = x21 x2 + x21 x3 + x1x2x3 + x22 x3 + x1x22

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal operators on key tableaux

w word of length k in alphabet A = {1, 2, . . . , n}

Define

mi (w , r) = wt(wr · · ·wk)i+1 − wt(wr · · ·wk)i (1 6 r 6 k , 1 6 i < n)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal operators on key tableaux

w word of length k in alphabet A = {1, 2, . . . , n}

Define

mi (w , r) = wt(wr · · ·wk)i+1 − wt(wr · · ·wk)i (1 6 r 6 k , 1 6 i < n)

mi(w) = maxr

{mi (w , r)}

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal operators on key tableaux

w word of length k in alphabet A = {1, 2, . . . , n}

Define

mi (w , r) = wt(wr · · ·wk)i+1 − wt(wr · · ·wk)i (1 6 r 6 k , 1 6 i < n)

mi(w) = maxr

{mi (w , r)}

If mi (w) > 0 and q is rightmost occurrence of mi (w), then wq = i +1

If p leftmost occurrence of mi (w) ⇒ p = 1 or wp−1 = i

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Raising operators

w(T ) column-reading word of T (right to left; reverse to tableaux)

Definition

Raising operator ei on T :q largest index such that mi (w(T ), q) = mi(w(T ))

if mi(w(T )) 6 0, then ei (T ) = 0

else ei (T ) changes all entries i + 1 weakly right of the entry in T

corresponding to w(T )q to i and all i ’s in the same columns as theseentries to i + 1’s

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Raising operators

w(T ) column-reading word of T (right to left; reverse to tableaux)

Definition

Raising operator ei on T :q largest index such that mi (w(T ), q) = mi(w(T ))

if mi(w(T )) 6 0, then ei (T ) = 0

else ei (T ) changes all entries i + 1 weakly right of the entry in T

corresponding to w(T )q to i and all i ’s in the same columns as theseentries to i + 1’s

Example

3 1 12 2 2 2 ❦2

3 1 12 ❦2 2 2 1

3 2 2❦2 1 1 1 1

3 2 21 1 1 1 1 0

22121232 12121232 11212132 11212131

e1 e1 e1 e1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Lowering operators

Definition

Lowering operator fi on T :p smallest index such that mi(w(T ), p) = mi (w(T ))

if p = 1 or entry in T corresponding to wp lies in row i , thenfi(T ) = 0

else fi (T ) changes all entries i weakly right of the entry in T

corresponding to wp−1 to i + 1 and all i ’s in the same columns asthese entries to i ’s

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Lowering operators

Definition

Lowering operator fi on T :p smallest index such that mi(w(T ), p) = mi (w(T ))

if p = 1 or entry in T corresponding to wp lies in row i , thenfi(T ) = 0

else fi (T ) changes all entries i weakly right of the entry in T

corresponding to wp−1 to i + 1 and all i ’s in the same columns asthese entries to i ’s

fi and ei are partial inverses

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal structure

Crystal SSKT(0, 2, 1) e1 ↑, e2 ↑

21 1

31 1

12 2

32 1

32 2

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal structure

Crystal SSKT(0, 2, 1) e1 ↑, e2 ↑ Crystal B(2, 1) f1 ↑, f2 ↑

21 1

31 1

12 2

32 1

32 2

32 3

31 3

32 2

21 3

31 2

21 2

31 1

21 1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Column sorting map

Definition

a weak composition of n, λ sorting of aColumn sorting map φ : SSKT(a) → SSYT(λ)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Column sorting map

Definition

a weak composition of n, λ sorting of aColumn sorting map φ : SSKT(a) → SSYT(λ)

Let cells fall vertically until no gaps between rows

Sort columns decreasingly bottom to top

Replace i 7→ n − i + 1.

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Column sorting map

Definition

a weak composition of n, λ sorting of aColumn sorting map φ : SSKT(a) → SSYT(λ)

Let cells fall vertically until no gaps between rows

Sort columns decreasingly bottom to top

Replace i 7→ n − i + 1.

4 432 1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Column sorting map

Definition

a weak composition of n, λ sorting of aColumn sorting map φ : SSKT(a) → SSYT(λ)

Let cells fall vertically until no gaps between rows

Sort columns decreasingly bottom to top

Replace i 7→ n − i + 1.

4 432 1

fall−→ 4

3 42 1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Column sorting map

Definition

a weak composition of n, λ sorting of aColumn sorting map φ : SSKT(a) → SSYT(λ)

Let cells fall vertically until no gaps between rows

Sort columns decreasingly bottom to top

Replace i 7→ n − i + 1.

4 432 1

fall−→ 4

3 42 1

sort−→ 2

3 14 4

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Column sorting map

Definition

a weak composition of n, λ sorting of aColumn sorting map φ : SSKT(a) → SSYT(λ)

Let cells fall vertically until no gaps between rows

Sort columns decreasingly bottom to top

Replace i 7→ n − i + 1.

4 432 1

fall−→ 4

3 42 1

sort−→ 2

3 14 4

replace−→ 3

2 41 1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal structure

21 1

31 1

12 2

32 1

32 2

φ−→

32 3

31 3

32 2

21 3

31 2

21 2

31 1

21 1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal structure

21 1

31 1

12 2

32 1

32 2

φ−→

32 3

31 3

32 2

21 3

31 2

21 2

31 1

21 1

T ∈ SSKT(a) ⇒ φ(ei (T )) = fn−i (φ(T )) if ei (T ) 6= 0

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure crystals

X ⊆ B(λ), define Di as

DiX = {b ∈ B(λ) | eki (b) ∈ X for some k > 0}

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure crystals

X ⊆ B(λ), define Di as

DiX = {b ∈ B(λ) | eki (b) ∈ X for some k > 0}

Definition (Demazure crystal)

w = si1si2 · · · sik ∈ Sn reduced expression, uλ ∈ B(λ) highest weight vector

Bw (λ) = Di1Di2 · · ·Dik{uλ}

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure crystals

X ⊆ B(λ), define Di as

DiX = {b ∈ B(λ) | eki (b) ∈ X for some k > 0}

Definition (Demazure crystal)

w = si1si2 · · · sik ∈ Sn reduced expression, uλ ∈ B(λ) highest weight vector

Bw (λ) = Di1Di2 · · ·Dik{uλ}

Theorem (Littelmann (conjectured), Kashiwara (proven) 1993)

κa = chBw (λ) where w · a = λ

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure crystals

X ⊆ B(λ), define Di as

DiX = {b ∈ B(λ) | eki (b) ∈ X for some k > 0}

Definition (Demazure crystal)

w = si1si2 · · · sik ∈ Sn reduced expression, uλ ∈ B(λ) highest weight vector

Bw (λ) = Di1Di2 · · ·Dik{uλ}

Theorem (Littelmann (conjectured), Kashiwara (proven) 1993)

κa = chBw (λ) where w · a = λ

Theorem (Assaf-S 2017)

SSKT(a) ∼= Bw (λ) where w · a = λ

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure crystal structure

Crystal SSKT(0, 2, 1) ∼= Bs1s2(2, 1)

21 1

31 1

12 2

32 1

32 2

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Outline

1 Crystal: Schur functionsTableauxCrystal operators on tableaux

2 Crystal: Demazure charactersKey tableauxDemazure crystal on key tableaux

3 Crystal: Stanley symmetric functionsReduced factorizationsCrystal on reduced factorizations

4 Crystal: Schubert polynomialsReduced factorizations with cutoffCrystal on reduced factorizations with cutoff

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Reduced factorizations

Definition

ρ reduced wordIncreasing factorization for ρ partitions ρ into factors which areincreasing

w permutationReduced factorization for w is an increasing factorization of a reducedword for w

RFℓ(w) = set of reduced factorizations of w into ℓ blocks

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Reduced factorizations

Definition

ρ reduced wordIncreasing factorization for ρ partitions ρ into factors which areincreasing

w permutationReduced factorization for w is an increasing factorization of a reducedword for w

RFℓ(w) = set of reduced factorizations of w into ℓ blocks

Example

Reduced factorizations for w = 321 with reduced words 121 and 212 andℓ = 3:

()(12)(1) (12)()(1) (12)(1)() (1)(2)(1)

()(2)(12) (2)()(12) (2)(12)() (2)(1)(2)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley symmetric functions

r reduced factorizationweight wt(r) is weak composition with ith part the number of letters inith block of r from the right

Example

wt((45)(3)(23)()) = (0, 2, 1, 2)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley symmetric functions

r reduced factorizationweight wt(r) is weak composition with ith part the number of letters inith block of r from the right

Example

wt((45)(3)(23)()) = (0, 2, 1, 2)

Definition

Stanley symmetric polynomial indexed by permutation w

Fw (x1, . . . , xℓ) =∑

r∈RFℓ(w−1)

xwt(r)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley symmetric functions

r reduced factorizationweight wt(r) is weak composition with ith part the number of letters inith block of r from the right

Example

wt((45)(3)(23)()) = (0, 2, 1, 2)

Definition

Stanley symmetric polynomial indexed by permutation w

Fw (x1, . . . , xℓ) =∑

r∈RFℓ(w−1)

xwt(r)

Example

F321(x1, x2, x3) = x21 x2 + x21x3 + x22x3 + 2x1x2x3 + x1x22 + x1x

23 + x2x

23

= s2,1(x1, x2, x3)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal on reduced factorizations

Lowering operator fi on r :

Consider factors r i and r i+1

(3 4 6)︸ ︷︷ ︸factor 3

(1 5 7 8 9)︸ ︷︷ ︸factor 2

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal on reduced factorizations

Lowering operator fi on r :

Consider factors r i and r i+1

(3 4 6)︸ ︷︷ ︸factor 3

(1 5 7 8 9)︸ ︷︷ ︸factor 2

From large to small, pair x ∈ r i with smallest y ∈ r i+1 s.t. y > x

(3 4 6)︸ ︷︷ ︸factor 3

(1 5 7 8 9)︸ ︷︷ ︸factor 2

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal on reduced factorizations

Lowering operator fi on r :

Consider factors r i and r i+1

(3 4 6)︸ ︷︷ ︸factor 3

(1 5 7 8 9)︸ ︷︷ ︸factor 2

From large to small, pair x ∈ r i with smallest y ∈ r i+1 s.t. y > x

(3 4 6)︸ ︷︷ ︸factor 3

(1 5 7 8 9)︸ ︷︷ ︸factor 2

Remove smallest unpaired z ∈ r i and add z − t to r i+1

(3 4 6)︸ ︷︷ ︸factor 3

(1 5 7 8 9)︸ ︷︷ ︸factor 2

−→ (3 4 6 7)︸ ︷︷ ︸factor 3

(1 5 8 9)︸ ︷︷ ︸factor 2

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Crystal on reduced factorizations

Lowering operator fi on r :

Consider factors r i and r i+1

(3 4 6)︸ ︷︷ ︸factor 3

(1 5 7 8 9)︸ ︷︷ ︸factor 2

From large to small, pair x ∈ r i with smallest y ∈ r i+1 s.t. y > x

(3 4 6)︸ ︷︷ ︸factor 3

(1 5 7 8 9)︸ ︷︷ ︸factor 2

Remove smallest unpaired z ∈ r i and add z − t to r i+1

(3 4 6)︸ ︷︷ ︸factor 3

(1 5 7 8 9)︸ ︷︷ ︸factor 2

−→ (3 4 6 7)︸ ︷︷ ︸factor 3

(1 5 8 9)︸ ︷︷ ︸factor 2

Example

(3 4 6)︸ ︷︷ ︸factor 3

(1 5 6 8 9)︸ ︷︷ ︸factor 2

−→ (3 4 5 6)︸ ︷︷ ︸factor 3

(1 5 8 9)︸ ︷︷ ︸factor 2

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley crystal

Theorem (Morse-S 2016)

RFℓ(w) with crystal operators fi and ei define an Aℓ−1-crystal structure

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley crystal

Theorem (Morse-S 2016)

RFℓ(w) with crystal operators fi and ei define an Aℓ−1-crystal structure

Corollary (Morse-S 2016)

Fw (x) =∑

r∈RFℓ(w−1)

ei r=0 ∀16i<ℓ

swt(r)(x)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Stanley crystal

Theorem (Morse-S 2016)

RFℓ(w) with crystal operators fi and ei define an Aℓ−1-crystal structure

Corollary (Morse-S 2016)

Fw (x) =∑

r∈RFℓ(w−1)

ei r=0 ∀16i<ℓ

swt(r)(x)

r 7→ (P(r),Q(r)) Edelman–Greene insertion

Theorem (Morse-S 2016)

r ∈ RFℓ(w)

⇒ P(ei (r)) = P(r) and Q(ei (r)) = fℓ−i(Q(r)) if ei (r) 6= 0

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Outline

1 Crystal: Schur functionsTableauxCrystal operators on tableaux

2 Crystal: Demazure charactersKey tableauxDemazure crystal on key tableaux

3 Crystal: Stanley symmetric functionsReduced factorizationsCrystal on reduced factorizations

4 Crystal: Schubert polynomialsReduced factorizations with cutoffCrystal on reduced factorizations with cutoff

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Schubert polynomials

Definition

ρ = ρ1 . . . ρk reduced wordα = α1 . . . αk is ρ-compatible if α is weakly decreasing, αj 6 ρj , andαj > αj+1 whenever ρj > ρj+1

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Schubert polynomials

Definition

ρ = ρ1 . . . ρk reduced wordα = α1 . . . αk is ρ-compatible if α is weakly decreasing, αj 6 ρj , andαj > αj+1 whenever ρj > ρj+1

R(w) set of reduced words of w

Theorem (Billey–Jockusch–Stanley 1993)

Schubert polynomial

Sw (x) =∑

ρ∈R(w−1)

α∈RC(ρ)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Reduced factorizations with cutoff

Example

Compatible sequences for reduced word 45323 for 153264:

45323

443224432144311442114321133211

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Reduced factorizations with cutoff

Example

Compatible sequences for reduced word 45323 for 153264:

45323

443224432144311 (45)(3)()(23)442114321133211

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Reduced factorizations with cutoff

Example

Compatible sequences for reduced word 45323 for 153264:

45323

44322 (45)(3)(23)()44321 (45)(3)(2)(3)44311 (45)(3)()(23)44211 (45)()(3)(23)43211 (4)(5)(3)(23)33211 ()(45)(3)(23)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Reduced factorizations with cutoff

Example

Compatible sequences for reduced word 45323 for 153264:

45323

44322 (45)(3)(23)()44321 (45)(3)(2)(3)44311 (45)(3)()(23)44211 (45)()(3)(23)43211 (4)(5)(3)(23)33211 ()(45)(3)(23)

Definition

Increasing factorization with cutoff is increasing factorization such thatfirst entry in block i from the right is at least i .

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Reduced factorizations with cutoff

RFC(w) = set of reduced factorizations of w with cutoff

Proposition

Sw (x) =∑

r∈RFC(w−1)

xwt(r)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Reduced factorizations with cutoff

RFC(w) = set of reduced factorizations of w with cutoff

Proposition

Sw (x) =∑

r∈RFC(w−1)

xwt(r)

Observation: RFC(w) ⊆ RFn(w) for w ∈ Sn

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Reduced factorizations with cutoff

RFC(w) = set of reduced factorizations of w with cutoff

Proposition

Sw (x) =∑

r∈RFC(w−1)

xwt(r)

Observation: RFC(w) ⊆ RFn(w) for w ∈ Sn

Fw (x) =∑

r∈RFℓ(w−1)

xwt(r)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Weak Edelman–Greene insertion

Example (Weak insertion)

(4)(5)(23)(2) 7→

4 4 5 4 5

2

4 5

2 3

4 532 3

4 4 3 4 3

2

4 3

2 2

4 312 2

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Weak Edelman–Greene insertion

Example (Weak insertion)

(4)(5)(23)(2) 7→

4 4 5 4 5

2

4 5

2 3

4 532 3

4 4 3 4 3

2

4 3

2 2

4 312 2

r 7→ (P(r), Q(r)) weak Edelman–Greene insertion

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Weak Edelman–Greene insertion

Example (Weak insertion)

(4)(5)(23)(2) 7→

4 4 5 4 5

2

4 5

2 3

4 532 3

4 4 3 4 3

2

4 3

2 2

4 312 2

r 7→ (P(r), Q(r)) weak Edelman–Greene insertion

Theorem (Assaf-S)

r ∈ RFC(w)⇒ P(ei (r)) = P(r) and Q(ei (r)) = ei (Q(r)) if ei (r) 6= 0

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure crystal for Schuberts

Theorem (Assaf-S)

RFC(w) ∼=⋃

r∈RFC(w)ei r=0 ∀16i<n

Bw(r)(wt(r))

where w(r) is the shortest permutation that sorts sh(P(r))

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure crystal for Schuberts

Theorem (Assaf-S)

RFC(w) ∼=⋃

r∈RFC(w)ei r=0 ∀16i<n

Bw(r)(wt(r))

where w(r) is the shortest permutation that sorts sh(P(r))

Corollary (Assaf-S)

Sw (x) =∑

r∈RFC(w−1)ei r=0 ∀16i<n

κsh(P(r))

(x)

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Demazure crystal RFC(153264) e1 ր, e2 ↑, e3 տ

()(4)(35)(23)

()(45)(3)(23) (4)()(35)(23)

()(45)(23)(2) (4)(5)(3)(23) (4)(3)(5)(23)

(4)(5)(23)(2) (4)(3)(25)(3) (4)(35)()(23) (45)()(3)(23)

(4)(35)(2)(3) (45)()(23)(2) (45)(3)()(23)

(4)(35)(23)() (45)(3)(2)(3)

(45)(3)(23)()()(4)(3)(235)

()(4)(23)(25) (4)()(3)(235)

()(4)(235)(2) (4)()(23)(25) (4)(3)()(235)

(4)()(235)(2) (4)(3)(2)(35)

(4)(3)(23)(5)

(4)(3)(235)()

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

What’s next?

Type free generalization

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

What’s next?

Type free generalization

Analogue for affine Schur functions and affine Schubert polynomials

Crystal: Schur functions Crystal: Demazure characters Crystal: Stanley symmetric functions Crystal: Schubert polynomials

Thank you !

Recommended