95.141 Apr 3 , 2013 PHYSICS I Lecture 17faculty.uml.edu/pchowdhury/95.141/Lectures/LECTURE17.pdf ·...

Preview:

Citation preview

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Course website: faculty.uml.edu/pchowdhury/95.141/

www.masteringphysics.com

Course: UML95141SPRING2013

Lecture Captureh"p://echo360.uml.edu/chowdhury2013/physics1Spring.html  

95.141 Apr 3 , 2013 PHYSICS I Lecture 17

Last Lecture Today

Chapter 9 2-D collisions Systems of particles (extended objects) Center of mass

Chapter 10 Rotational Motion Rotational kinematics Rotational dynamics Torque

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Center of Mass: Wrap-up

A 50 kg person stands on the right most edge of a uniform board of mass 25 kg and length 6 m, lying on a frictionless surface. She then walks to the other end of the board. How far does the board move?

50 kg 25 kg

25 kg 50 kg

c.m.

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

(m1 +m2 )xCM =m1x1 +m2x2

6m

3m 2m

1m

?

Rotational Motion In addition to translation, extended objects can rotate

Need to develop a vocabulary for

describing rotational motion

There is rotation everywhere you look in the universe, from the nuclei of atoms to spiral galaxies

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Angular Position Easiest to describe rotation in polar coordinates

y

x

R θ

! = arc length

! =!R

! = R!

R,!

R

Axis of rotation

θ in radians!

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

12 θθθ −=Δ

R

Axis of rotation Axis of rotation

θΔ

Angular Displacement

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

12

12

ttt −

−=

Δ

Δ=

θθθω

! = lim!t" 0

!"!t

=d"dt

dtd

ttωω

α =Δ

Δ→Δ

=0

lim12

12

ttt −

−=

Δ

Δ=

ωωωα

Angular Velocity & Acceleration Average angular velocity

Instantaneous angular velocity

Average angular acceleration

Instantaneous angular acceleration

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Clicker Quiz

Two children are on a merry-go-round which is turning with a period of rotation of 20 s. If child A is 3 m and child B is 5 m from the axis of rotation, what is the difference in their angular velocities?

A)  0 rad/s B) π/10 rad/s C) π/20 rad/s D) 2π rad/s

 

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

An object at rest begins to rotate with a constant angular acceleration. If this object rotates through an angle θ in the time t, through what angle did it rotate in the time t/2 ?

A) θ B) θ/2

C) θ/4

D) 2θ

E) 4θ

12

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Clicker Quiz

Angular vs Linear •  Angular variables need an axis to be defined •  Each point on a rotating rigid body has the same

angular displacement, velocity, and acceleration! •  The corresponding linear (or tangential) variables

depend on the radius

vtan =d!dt d! = Rd!! = R! vtan = R

d!dt

atan =dvtandt

= R!

= R d!dt

= R!

!atotal =!atan +

!aRaR =vtan2

R=! 2R

!aR

!atan

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Frequency and Period We can relate the angular velocity of rotation to the frequency of rotation:

1 rev/s =2! rad/s

f = 1T=!2"

1 hertz (Hz) = 1 rev/s

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Vector Nature of Angular Quantities Both ω and α can be treated as vectors

– Choose vector in direction of axis of rotation – But which direction?

Right Hand Rule -Curl fingers on right hand to trace rotation of object -Direction of thumb is vector direction for angular velocity, acceleration -z

+z

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Rotation vs. Translation

The equations of motion for translational and rotational motion (for constant acceleration) are identical

! =!o +"ot +12#t2

2oωω

ω+

=2

)(221

22

2

o

oo

oo

o

vvv

xxavv

attvxx

atvv

+=

−+=

++=

+=

( )oo θθαωω −+= 222

! =!o +"t

!! v

!! a

!! x

t! t

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

F

F

F F

F

F

No net force

No motion

rotation

F

F

F translation

translation

translation and rotation

Net force

Motion of extended objects

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

The diagram shows the top view of a door, hinge to the left and door-knob to the right. The same force F is applied differently to the door. In which case is the turning ability provided by the applied force about the rotation axis greatest?

Clicker Quiz

A B C

D

E

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Torque : turning force

Force Lever arm Angle

F  

axis   θ r  

r  

F  θ

What causes rotation? F  

F  

Rotational Dynamics

F  

θ

Fsinθ

Fcosθ ! = rF sin"

F  

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Torque : turning force

axis   r  

Torque causes angular acceleration In analogy with F = ma

Rotational Dynamics

F  

θ

Fsinθ

Fcosθ

! = I"

! = rF sin"

I is the rotational equivalent of mass Moment of Inertia or Rotational Inertia

! = r(F sin" )

! = F(rsin" )

θ

r  sinθ

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Summary

Rotational Motion Rotational kinematics Rotational dynamics Torque

CHOWDHURY                        95.141                        PHYSICS  I                        SPRING  2013                      LECTURE  17  

Recommended