3~Ehh~h - DTIC · R. J. Baumann, C. A. Paulson and J. Wagner School of Oceanography Oregon State...

Preview:

Citation preview

ADA0A9L 172 OREGON STATE UNIV CORVALLIS SCHOOL OF OCEANOGRAPHY F/6 8/10

TOWED THERMISTOR CHAIN OBSERVATIONS IN JASIN, (LV'JUL A0 R J BAUMANN, C A PAULSON, J WAGNER N0001N-76C-0067

UNCLASSIFIED DATA-Al NL.3~Ehh~h

OCEA'NOGRAPHY

SNOVO0 3 198 .

[)J~hIUTN STAMO JALam.O~A Pn'

Approved for public Mae",*WAJ.;IrDistribution Unlimited a"e of N"i MUMe

A~nt" I*U 4f PO

a" soft

80 10 17 . U1

Unclassified -

SECURITY CLASSIFICATION OF THIS PAGE (Whtofn D.,& Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

80-14 W

4 1 T L E rand S.b1titr) S. TYPE OF REPORT & PERIOD COVERED

TOWED THERMISTOR CHAIN OBSERVATIONS IN JASIN data

6. PERFORMING ORG. REPORT NUMBER

_____Data Report No. 80 r7. AU THOR(s) I. CONTRACT OR GRANT NUMBER(#)

R. J./Baumann* C. A. Paulson, and J./Wagner * N 014-76-C-0067, '

N00014- 79-C-W04

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKOceao~rnhvAREA II WORK UNIT NUMBlERS

School of Oceanography

Oregon State University . NR 083-102Corvallis, OR 97331

I I CONTROLLING OFFICE NAME AND ADDRESS ,. REPORT DATE

Office of Naval Research { / July* v8l

Ocean Science and Technology Divison - NUMER OF PAGES 'I" V',

Arlington, VA 22217 207 J "I4 MONITORING AGENCY NAME & ADDRESS(If different from Conttilling Office) MS. SECURITY CLASS. (of ti ror)

unclassified

I.. DECLASSIFICATIONiDCWNGRADING

SCHEDULE

16 DISTRIBUTION STATEMENT (of thl Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the bstroct entered In Block 20, It different from Report)

1I. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side ifnoceeeary end Identify by block number)

Towed Thermistor ChainHorizontal Temperature Variability

Isotherm Cross-sections

Joint Air-Sea Interaction (JASIN) Experiment20 ABSTRACT (Continue on reveree side If neceesry and Identify by block number)

-- Observatons of temperature and pressure between 10 and 70 m depthwere taken with a towed thermistor chain during late August and early

September, 1978, about 400 km northwest of Scotland as a part of the JASIN

Experiment. The chain was usually towed at a speed of 3 m/s around a 15-km

square centered at 59 N, 12°30'W. On two occasions tows were made aroundfive-km squares as part of coordinated observations involving several ships.

The observations were averaged over sequential 30-second intervals and, ,.

DD , JAN7 1473 LOITON of I NOV asS OBSOLETE UnclassifiedS/N 0102014-6601 _

.SECURITY CLASSIFICATION OF THIS PAGE (Ufa Does Entered)

jj

Unclassified41 TY CLASSIFICATION OF THIS PAGE(Whon Date F-twedi)

-.isotherm depths were interpolated from the averaged observations. Cross-sections of temperature and isotherm depth are presented. Spectra of thedepth of the lowest and highest isotherm of each cross-section are alsopresented.

Nq

i, Unclassified

I- SERCURITY CLASSIPICATION OF This PAfgI fte Data Eneod)

-- ' . .. . . , -- - n n ii n i n un I " "" I I I - .. . . ... .V 0-,

TOWED THERMISTOR CHAIN

OBSERVATIONS IN JASIN

by

R. J. Baumann, C. A. Paulsonand J. Wagner

School of Oceanography

Oregon State UniversityCorvallis, OR 97331 AccessionF

M~IS C1.'~~~r D?' .

112

DATA REPORT --

4 . L .d/oI"

Office of Naval ResearchContract NOO014-76-C-0067

and N00014-79-C-0067Project NR 083-102

Approved for public release, distribution unlimited

Data Report 80 G. Ross HeathReference 80-14 DeanJuly 1980I ______________

,' .... -' O. L. .- ,

ACKNOWLEDGMENTS

The design and construction of the thermistor chain were carried out

by the Technical Planning and Development Group at Oregon State University

under the direction of Rod Mesecar. We gratefully acknowledge the cooperation

of the officers, crew and scientists aboard the R/V ATLANTIS II, David F.

Casiles, commanding and Melbourne G. Briscoe, Chief Scientist. This research

was supported by the Office of Naval Research through contracts N00014-76-C-0067

and N00014-79-C-0004 under project NR 083-102.

i:I

7 4

TABLE OF CONTENTS

ACKNOWLEDGMENTS --------------------------------------------- i

INTRODUCTION -------------------------------------------I

INSTRUMENTATION --------------------------------------------- 1

OBSERVATIONS ------------------------------------------------ 2

ANALYSIS ---------------------------------------------- 6

REFERENCES -------------------------------------------------- 8

TOW TRACKS -------------------------------------------------- 9

TEMPERATURE CROSS-SECTIONS -------------------------------- 23

ISOTHERM CROSS-SECTIONS ------------------------------------ 82

SPECTRA OF HIGHEST AND LOWEST ISOTHERMS ----------------- 141

APPENDIX A. Configuration of the Chain Under Tow --------- 192

4

It

INTRODUCTION

This report presents measurements of temperature in the upper ocean

obtained by use of a towed thermistor chain. The measurements were taken

as part of the Joint Air-Sea Interaction (JASIN) Experiment conducted

during the summer of 1978. A summary of the scientific and operational

plans for JASIN has been given by Pollard (1978). More detailed accounts

are given in documents published by the Royal Society (1977, 1978).

INSTRUMENTATION

The thermistor chain consisted of sensors, electrical conductors,

plastic fairing, a strain member and a 450 kg lead-filled depressor. The

thermistors were manufactured by Thermometrics (Model P-85). They were

molded into sections of fairing together with bridge/amplifiers. Power

and signals were transmitted by electrical conductors running through the

tail sections of the fairing. The thermistors were spaced at intervals of

,4 2 m over a section of chain 50 m in length. Four pressure sensors were

also installed on the chain at 15 m intervals. The pressure sensors were

manufactured by Kulite and were installed in tail sections together with

bridge/amplifiers in a fashion similar to the thermistor electronics.

Signals from the sensors were recorded, processed and displayed by use of

a minicomputer system manufactured by Digital Equipment Corporation (PDP

11/05). A more complete description of the thermistor chain system is given

by Spoering and Paulson (1980).

1

!".

2

OBSERVATIONS

The thermistor chain was towed by the R/V ATLANTIS II in an area about

400 km northwest of Scotland. The locations of the tows are tabulated and

plotted in the section entitled Tow Tracks. A summary of the tow parameters

is given in Table 1. The first digit of the run number designates the

number of the deployment of the chain. With the exception of the first

deployment, the chain was always towed counterclockwise around a square.

The letter following the deployment number designates the side of the square,

i.e. N indicates a tow leg toward the west on the north side of the box.

The digits following the dash in the run number designates the leg, one leg

per side of the square except for the first deployment. The first deployment

was separated into three legs. The middle leg contained a front which sep-

arated regions of nearly constant thermal properties. The square around which

tows were made was usually 15 km on a side surrounding the Fixed Intensive

Array. However, on two occasions tows were conducted in cooperation with

other ships. The first occasion was around a five-km square containing

the drifting buoy Pl and the second occasion was around a five-km square

containing the mooring H2. The instrumented section of the chain extended

from about 20 to 70 m depth in all tows except the last which was 10 m

shallower. The tow speed was usually about 3 m/s. The tow speeds tabulated

in Table 1 were determined from LORAN C and satellite navigational fixes.-,

LII

I I II I I I " III "-U" III I 1 I

3

TABLE 1. Thermistor chain tows during JASIN-78.

Start Tow Durationtime speed Time Distance

Run Date (MT) (m/s) (mi) (km)

1-1 24-AUG-78 1611 3.36 128.0 25.81-2 1819 3.07 64.0 11.31-3 1923 3.19 128.0 24.5

2W-I 25-AUG-78 1213 2.95 75.0 13.32S-2 1331 2.93 72.5 12.72E-3 1446 2.88 91.0 15.72N-4 1620 3.41 73.0 14.92W-5 1738 2.99 72.5 13.02S-6 1853 3.07 80.0 14.72E-7 2016 2.74 85.0 14.02N-8 2145 3.01 70.0 12.6

3N-1 27-AUG-78 1215 2.97 73.0 13.03W-2 1332 2.89 85.0 14.73S-3 1459 2.97 77.5 13.83E-4 1620 2.93 77.5 13.63N-5 1742 3.21 77.0 14.83W-6 1902 3.22 67.5 13.03S-7 2012 3.02 78.5 14.23E-8 2133 3.10 72.5 13.5

I f

.... . - - .4

4

Start Tow Durationtime speed Time Distance

Run Date (GMT) ( mis) M) (km)

4N-1 29-AUG-78 1209 2.04 37.5 6.84W-2 1249 2.92 28.5 5.04S-3 1320 2.91 26.5 4.64E-4 1349 3.02 27.5 5.0Computer failure 1433 ---- 72.0 ---4E-5 1545 3.09 23.5 4.44N-6 1611 2.93 25.5 4.54W-7 1639 2.86 27.5 4.74S-8 1709 2.64 28.5 4.54E-9 1740 3.00 25.5 4.64N-10 1807 2.76 27.5 4.64W-il 1837 2.90 27.5 4.84S-12 1907 2.77 27.5 4.64E-13 1937 2.70 27.5 4.54,1-14 2007 2.86 27.5 4.74W-15 2037 2.85 29.5 5.04S-16 2109 2.84 27.5 4.74E-17 2139 2.66 23.5 3.84N-18 2210 2.91 30.5 5.34W-19 2243 3.00 26.5 4.84S-20 " 2312 2.91 27.5 4.84E-21 " 2342 2.70 27.5 4.54N-22 30-AUG-78 0012 2.78 29.5 4.94W-23 0044 2.79 27.5 4.64S-24 0114 2.85 27.5 4.74E-25 0144 2.73 27.5 4.54N-26 0214 2.78 28.5 4.84W-27 0245 2.70 27.5 4.54S-28 0315 2.83 27.5 4.74E-29 0345 2.78 29.5 4.94N-30 0417 2.61 27.5 4.3

5N-i 31-AUG-78 1153 3.02 72.0 13.05W-2 " 1308 3.16 69.5 13.25S-3 1419 3.19 78.5 15.05E-4 1540 2.89 86.0 14.95N-5 1710 3.03 90.0 16.45W-6 1843 3.04 72.5 13.25S-7 1958 2.86 85.5 14.75E-8 2126 2.97 84.5 15.1

t

-. , ,I

5

Start Tow Duration

time speed Time DistanceRun Date (GMT) (m/s) (mm) (km)

6W-I 2-SEP-78 1139 2.73 28.5 4.7

6S-2 1212 2.50 32.5 4.96E-3 1247 2.74 27.5 4.5

6N-4 1317 2.53 29.5 4.5

6W-5 1349 2.39 28.5 4.16S-6 1420 2.96 27.5 4.9

6E-7 1451 2.52 24.5 3.7

6N-8 1518 2.46 32.5 4.8

6W-9 1553 2.74 27.5 4.5

6S-10 1624 2.69 25.5 4.1

6E-11 1653 2.66 26.5 4.2

6N-12 1722 2.40 36.5 5.3

6W-13 1801 2.87 27.0 4.6

6S-14 1832 2.86 26.0 4.5

6E-15 1901 2.46 31.5 4.6

6N-16 1935 2.51 34.5 5.2

6W-17 2012 2.84 23.5 4.0

6S-18 2038 2.71 27.5 4.5

6E-19 2109 2.31 31.5 4.4

6N-20 2143 2.68 30.5 4.9

6W-21 2217 2.57 20.5 3.2

6S-22 2240 2.45 33.5 4.9

6E-23 2316 2.38 31.5 4.5

6N-24 2356 2.98 20.0 3.6

6W-25 3-SEP-78 0019 2.80 22.5 3.8

6S-26 0044 2.58 33.5 5.2

6E-27 0120 2.55 26.5 4.1

674-28 0148 2.59 28.5 4.4

6W-29 0218 2.52 29.5 4.5

6S-30 0250 2.71 30.5 5.0

6E-31 0324 2.84 21.5 3.7

6N-32 0348 2.69 29.5 4.8

6W-33 0421 2.60 31.5 4.9

6S-34 0455 2.80 28.5 4.8

6E-35 0526 2.58 28.5 4.4

7S-1 4-SEP-78 0803 3.23 64.0 12.4

7E-2 0910 3.03 74.5 13.5

7N-3 1027 2.86 93.5 16.0

7W-4 1203 3.27 68.5 13.4

7S-5 1314 2.93 85.0 14.9

7E-6 1443 2.85 81.0 13.9

7N-7 1607 3.29 70.5 13.9

7W-8 1719 2.74 81.0 13.3

- - -

6 1ANALYSIS

The temperature observations were low-pass filtered by computing

sequential 30 s averages. Filtering removes variations caused by surface

gravity waves and ship heave. The filtered observations are shown in the

section entitled Temperature Cross-Sections.

Isotherm depths were determined by linear interpolation between the

filtered temperature observations. The depths of isotherms in intervals

of 0.20 C are shown in the section entitled Isotherm Cross-Sections.

Spectra of the shallowest and deepest isotherm on each leg were

computed and are presented in the section entitled Spectra of Highest and

Lowest Isotherms.

Spectra of the depth of the thermistor chain at three locations on

the chain are shown in Figure 1. The spectra were computed from low-pass

filtered (30 s averages) measurements of pressure during Run 1-1. The

magnitude of vertical oscillations of the chain is usually greatest near

the bottom. The magnitude of the spectra can be compared with spectra of

isotherm depth shown in the section entitled Isotherm Cross-Sections. The

magnitude of the isotherm spectra are usually more than two orders of

magnitude greater than spectra of depth. We therefore conclude that variations

in depth of the chain have a negligible effect on spectra of isotherm depth

* determined from the low-pass filtered temperature measurements.

More details on analysis procedures can be found in Spoering and

A Paulson (1980).

.! !.

RUN 1-1 24--RUG-78PRESSURE SPECTPR

6

D EPHN M

17.2 x

29.0 l

xx

0X2 0i OE 0i IAi

-5 - -3 -2

CPM

Figure 1. Spectra of depth measured at threelocations on the towed thermistorchain during Run 1-1. The meandepths of the pressure sensors areindicated. The pressure recordswere low-pass (30 s averages)filtered prior to computing spectra.

8

REFERENCES

Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge

University Press, Cambridge, 615 pp.

Pollard, R. T., 1978: The Joint Air-Sea Interaction Experiment--JASIN 1978.

Bull. Amer. Meteor. Soc., 59, 1310-1318.

Royal Society, 1978: Air-Sea Interaction Project, Operational Plans for

1978. London, 225 pp.

Royal Society, 1977: Air-Sea Interaction Project, Scientific Plans for

1977 and 1978. London, 208 pp.

Sokolnikoff, J. S. and R. M. Redheffer, 1958: Mathematics of Physics and

Modern Engineering, McGraw-Hill, New York, 810 pp.

Spoering, T. J. and C. A. Paulson, 1980: Towed observations of internal

waves in the upper ocean. (Submitted to J. Phys. Oceanog.).

I:

-. 4

9

TOW TRACKS

On the following pages there is a tabulation of positions during each

of the tows followed by plots, one for each run. The tabulated positions

are plotted (x) on the plots. The positions were determined by use of

LORAN C and navigational satellite. The local coordinates, x and y, are

in kilometers north and east, respectively, of a point at the center of

the Fixed Intensive Array (59°N, 12.5°W). The locations of moorings Bl,

B2, B3 and H2 are shown in several plots.

i

10

RUN I 24-RUG-78LATITUDE LONGITUDE LOCAL COORDINATES

TIME DEG MIN DEG MIN X y

1609 59 3. 80 12 26. 09 3. 75 7. 051635 59 3. 54 12 31. 76 -1. 69 6. 571655 59 3.37 12 35.48 -5. 25 6. 261701 59 3. 26 ±2 36. 84 -6. 55 6. 05

1727 59 3.04 12 42.42 -11. 90 5.641811 59 2. 74 12 51. 71 -20. 80 5. 091840 59 2. 67 12 58.21 -27. 02 4. 961904 59 2. 52 13 2. 87 -31. 49 4. 681934 59 2. 45 13 8.48 -36.86 4. 552006 59 2. 22 2 13 14. 56 --42. 69 4. 122041 59 1. 98 13 21.52 -49. 35 3. 682101 59 1. 88 ±3 25. 52 --53. 19 3. 492120 59 1.77 13 29.63 -57.12 3. 29

RUN 2 25-AUG-78LATITUDE LONGITUDE LOCAL COORDINATES

TIME DEG MIN DEG MIN X Y

1203 59 4. 09 12 40.60 -10.15 7.591221 59 2. 48 12 40. 25 --9. 82 4. 601304 58 58. 32 12 39. 54 -9. 14 -3. 121331 58 55. 75 12 38. 80 -8. 43 -7. 891447 58 55.60 12 24.68 5.10 -8.171520 58 58. 68 12 24.80 4. 98 -2. 451547 59 1. 20 12 25.11 4. 68 2. 231620 59 4. 26 12 25. 53 4. 28 7. 911652 59 3. 58 12 32. 08 -1. 99 6. 651731 59 3.46 12 40.05 -9.63 6.421733 59 3. 46 12 41. 05 -10.59 6.42

.4 1741 59 2.89 12 41.19 -10. 72 5.371755 59 1.36 12 41.21 -10. 74 2. 531815 58 59. 50 12 40. 72 -10. 27 -0. 931853 58 55. 75 12 40.28 -9.85 -7. 892016 58 56.44 12 24. 38 5.38 -6.612118 59 1.82 12 24.26 5. 50 3.382145 59 4.31 12 24.81 4. 97 8.002255 59 4. 79 12 37. 99 -7. 65 8. 89

V'

...7 - .i 4{" ..% . ..

11

RUN 3 27 -AUG--8LATITUDE LONGITUDE LOCAL COORDINATES

TIME DEG H. I N DEG 1M NX Y

1209 59 3. 97 12 22. 69 ;7 00 7 371254 59 4. 01 12 31 33 -- 1 27 7. 451317 59 4. 00 12 35 60 -5. 36 7 4"31332 59 3 91 12 38. 14 -1. 80 7 26

140-4 59 1. 05 12 37 80 -7. 47 1 951434 58 58 1 1 2 .?7 44 -7 13 -3 511459 58 55,82 12 3680 -6 51 -7761520 58 55. 96 12 32 8"2 -2. 70 --7 5 01549 58 56. 01 12 15 2 73 -7 411620 58 56 38 12 21. 75 7 90 -6. 721651 58 59 38 12 22 10 7 57 -1. 151743 59 4. 22 12 ,-" 3 . 77 7 :"

1837 5'9 48 12 49 - 34 6 461900 59 3 1i 12 3 30 -795 5 911910 59 2. 20 12 3 - 3 4 0.31934 58 59 57 12 3.. 90 -7 5 -- 0 802009 58 56 01 12 53 -7 21 7412011 58 55. 81 12 -6 96 7 7820- 58 55 74 12 33 54 -;9 -- 7912059 58 55 74 12 28 s1 A 02 -7 1. .. .. ~ --),-2133 58 55. 79 12 21.65 8 00 -7 322218 59 0, 16 12 21. 61 80 4 0 302252 59 3. 69 12 21, 89 7.77 6 85

'.I,f!

l r

12

RUN 4 29, 30--RUG-78LATITUDE LONGITUDE LOCAL COORDINATES

TIME DEG MIN DEG ri1N X Y

1126 58 53s 91 12 20 44 9 16 -11. 311142 58 53 88 12 17 20 12.26 --11 361148 58 54. 26 12 16 91 12 54 -10. 661210 58 56 08 12 17 42 12. 05 -7. 281246 58 55. 86 12 24 27 5 49 --7. 691250 58 55 75 12 24 52 5 25 -7.891318 58 52 84 12 24. 30 5 46 -13. 291330 58 52 72 12 2 2. 14 7 53 -13. 521348 58 52 82 12 18 83 10 70 -13 331404 58 54 29 12 18 98 10. 56 -10 601417 58 55 65 12 19 10 10 44 --8.081545 58 51 02 12 19. 49 10 07 -12. 961609 58 55 42 12 19 60 9 96 -8 501637 58 5563 12 24. 72 50 6 --8 111653 58 54 16 12 24. 95 4. 84 -10. 841706 58 52 95 12 24 83 4 95 -13:091735 58 52 89 12 20. 00 9 58 -13 201740 58 5 04 12 1927 10 28 -12 921754 58 54 41 12 19. 44 10 12 --10. 381803 58 55,31 12 19. 50 10. 06 -8. 711807 58 55. 65 12 19. 53 10. 03 -3. 081835 58 55.85 12 24 36 5 40 -7. 711904 58 53. 13 12 24. 40 5. 36 -12. 751934 58 53 10 12 19. 20 10. 35 -12. 812004 58 55 71 12 18 95 10 59 -7 96204 58 55 89 12 24. 31 5.45 -7 632106 58 52 94 12 24. 13 5. t2 -13. 112136 58 52 77 12 18 81 10. 72 -13 42207 58 55 41 12 18 05 11. 45 -8 522240 58 55 42 12 2407 5.68 -8.50

2309 58 52 61 12 24.07 5.68 -13. 722339 58 52 40 12 i8 61 10 91 -14. 11

2409 58 55 01 12 18 23 11.28 -9.262441 58 55 21 12 23. 78 5. 96 -8. 892511 58 52 51 12 24 17 5. 58 -13.912541 58 52 22 12 18 85 10 68 -14.442611 58 54 86 12 18.42 11 09 -9 542642 58 55 18 12 23 78 5. 96 -8. 952712 58 52. 57 12 24. 18 5.65 -13 792742 58 52. 49 12 18. 78 1. 75 -13. 942814 58 55.36 12 18.47 11.05 -8.61

,2844 58 55. 63 12 23. 34 6. 38 -8. 11

p, , .

....................................

'- - -... . .. .. ... - ------- .-~ .... .- -¢-~ ..... .-- "' .. - 4':;

13

RUN 5 31--AUG--78LATITUDE LONGITLIDE LOCAL COORDINATES

T I ME DEG t I N DEG MIN Y

1152 59 3. 79 12 23. 91 5.83 3 7 041223 59 3. 54 12 29. 68 0. 31 6. 57±308 59 3. 05 12 38. 19 -7. 85 5. 66

-) -7 8-- .1419 58 55. 81 12 -728 --

1537 58 55. 67 12 22 0:1 7. 65 -8. 041709 59 4. 23 12 20. 82 8. 79 7 851841 59 3. 41 12 38. 19 -7. 85 6. 331956 58 55. 96 12 .37 72 -7. 40 -7. 502124 58 55. 58 12 2 1. 96 "7. 70 -8. 212254 59 4. 21 12 21. 69 7 96 7. 82

Pi

4

I I

1'It

" !I

- - l~%.~t~z;~k.~,,,qrah

14

RUN 6 2, 3-SEP-78

LATITUDE LONGITUDE LOCAL CoORDINATES

T I ME DEG MW I DEG MIN X y

1121 59 26. 90 12 28. 08 1. 84 49. 94

1138 59 26. 90 12 31. 56 -1. 49 49 94

1147 59 26.19 12 31.62 -1.55 48 62

1208 59 24.25 12 31.62 --1. 55 45 02

1244 59 24.06 12 26 00 3. 83 44 67

1314 59 26. 72 12 25. 93 90 49 61

1346 59 27 01 12 30.-y - , -0. 9 31 50. 15

1421 59 24. 31 12 30. 96 0 92 45 13

1447 59 24. 46 12 26. 14 :3. 70 45 41

1515 59 26.72 12 25.62 4. 20 49 61

1550 59 27. 05 12 30. 97 0 9 50 22

1620 59 24. 39 12 31. 04 -1. 00 45 28

1649 59 2439 12 26.16 .6e 4523

1720 59 27. 00 12 25. 16 4 :4 50 13

1759 59 27. 01 12 31. 02 -0 98 50.151831 59 24 04 12 31. 02 -0 98 44 631900 59 24 20 12 25. 83 3. 99 44. 93

1933 59 26 81 12 25. 38 4. 43 49 78

2010 59 26. 6 12 31. 18 -1. 13 49 50

2036 59 24. 27 12 31.17 -1 12 45.06

2106 59 23. 94 12 26. 12 3. 72 44. 45

2141 59 26. 54 12 25. 60 4 22 49. 27

2213 59 26. 36 12 30 95 -0. 91 48. 94

2237 59 24.39 12 31 51 -1.45 45283-1- 59 23.97 12 -6 05 3 78 44 50

2347 59 26. 58 12 25 92 391 4935

2417 59 26.59 12 31. 51 -1 45 49 37

2442 59 24. 33 12 31 73 -1 66 45. 17

2518 59 24. 33 12 25. 92 3.91 45. 17

2547 59 26. 72 12 26. 15 3. 6 49. 61

2617 59 26. 90 12 31 00 --0. 96 49 94

2650 59 24. 22 12 31. 24 -1. 19 44. 97

2721 59 24. 46 12 26 00 3. 83 45.41

2746 59 26 75 12 25. 82 4 00 49 66

2818 59 27.13 12 31 17 -112 50 37

2853 59 24.19 12 31. 22 -1 17 44 91

2924 59 24.38 12 2579 4.03 45.26

2955 59 26 95 12 25.23 457 584

I °

, f

15

RUN 7 4-SEP-78LATITUDE LONGITUDE LOCAL COORDINATES

TIME DEG MIN DEG MI X '

754 58 5588 12 37.00 --6. 71 -7. 65907 58 56 49 12 22. 26 7. 41 -6. 52

1024 59 3, 99 12 20. 85 8. 77 7. 411200 59 3. 55 12 38.00 -7.66 G. 59211± 58 56 05 12 78.31 -7. 96 -7. 33

1439 58 56. 13 12 22.17 7.50 -7. 181604 59 3. 93 12 23. 20 6. 51 7. 30

1718 59 3 99 12 3,8.45 --8. 09 7. 411847 58 56 10 12 38.40 -8.05 -7. 24

i3,! 4

, 1

_ _.4:

I I l I | I I

16

59061

590-

13030' 130 12024'

TOW TRACK RUN I 24--RUG--78

17

IB

5906'-

590 82C

58054'

12042' 12030 ' 12018'

TOW TRRCK RUN 2 25-RUG-78

B,-! ,-. - --

I ' 9

18

5906' _

B3B/!

59 l 0 2

58054'

12042 ' 12030' 12018'

TOW TRRCK RUN 3 27-RUG-78

'4!

V.

19

58057' I I I

58054'-

lilt

58051'-

*120 27' 120 21' 0 12015'

TOW TRACK RUN L4 291 30-RUG-78

20

5906' ~

83

590 0 B2~

58054'F

12042' 12030' 12018'

TOW TRRCI( RUN 5 31-RUG-78 I

494

21

59028'

H2

59025'0

59022'

12033' 12029' 12024

TOW TRRCK RUN 6 213-SEP-78

all 4

22

5906' _

B1590 B2 0

58054'F

12042' 12030 ' 12018'

TOW TRRCK RUN 7 4-SEP-78

olI4 -!

" " ".i- m

23

TEMPERATURE CROSS-SECTIONS

On the following pages there are plots, one for each leg, of low-pass

filtered temperature as a function of time and distance along the leg. The

filtering was accomplished by computing sequential 30 s averages. The mean

depth of each sensor is given.

_O

|4

24

C)

Co Co(

cr)~

0c4

CD

0- (-04-(LrD

* CN

CVI CN a

(3~~~0 00)3~lU~d

4C

25

LUJ

-- I C

I- Ld f

>- UJ)

LDIL-n M

CO ) CDh>CYli

LO CN~f

CN_Q)

Ir -

I 'I I

CD CN m --

(3 930) 38fniddW1 C:

-- T.

26

C!)

L)J

C14 L coCD r)

(!D r rCNNU0)

cr) -n

Ln CSw

cy-D co C

(-4 )

m LI , IC4) CN

(D 330) ClS)~d3ODI-

27

CD I I

uDC

z

C f) K-F CLIDD

(SDN LID

CDD

LO Cr14Cr)

L(N U-)

- Y U')

LJ

U])

D

O I I --:Cr) (N --,

(t 03\) 2-fl-dL

28I

C-)

CE:

Lfl

UJUi c

4f Cr 4

C1)

Y_) (N C)

Ii4 - -- ~ -

1T~T ~ 29

Co~C

cCuDco - _i

CCD

mI Lf)C )

CD

Uco5

cID (JD

cx LI)

a_ ( - \

LID

* CS)

C'D C\ N

(3~~~c 03)0f1U~~3

if-i

*n I

30

LU

CS)

ZO

=N CC)(s C\

cr O~o nL~L _

0-co)~

N LO

cLW

CS) Lfl-

CN C-CVi

Z: C

4 04~LO

311

co I I

ccco

Cr o Lr

cc co

7_ w~ L

w

co co co

cc c

w0 0

(o~~~~- 93)3nidd

32

LUJ

C-,

M LU

CD)C

Cr) ) If)

L C 4LJCT) CD)Q

Cr) LU

ar r) 0 c

LflJ

CD CS

C0

If

Cr) -) (.0

W40-~~

C). -i

33

L'1

-Cj ~ CN

CEDJ L-)§

-(4

7DQ

-lh

-CCO

CN a_

CD

CNN

(D 93o) 3dnifI dWL3I

4

34

C-0

CJ CD~CS), z

LlD C~D

co CN CT)

CcLi LO,

OZ) CDCIA C N LID

C-

J ON cci

LL

CD I(N IT'ccc

Ur)

(N CIDN

CD C

(3 93o) 38flHd~~3dk31

al

35

CDr

(D CT)

UD) C CN

Co

CN

:DU-) C ) CDLI) c

wCNCDJCN

~L

LCD LI)

CC)

IoD -

zCCo

CT -

D

co

(3) 93)3CfINId

m40(o9o)3n~dd~

36

CD

LUJ

cr-cr)

CD CN I

-3. .+CS

CT)

.U n

crCO

mr LUcr-N

='~ L l

CD=(, CC

LUCO

CYD CD --: m

40cr

37

CD

LiiJC-)z r

kco CY

CN -

CDc -_-S

CL) LUJ(jU-) .-Lnc

NCD -

-.J C

a))

CN I

z --

MN -y C1 c

_________M____

7r - l4 Lww

38

CD

C-)

F co

1-1

O M

wC)

- y CN 00

C!D

CDh Ln

CC) CN 0

wcocr)-

D

f I P,

39

CD

L)Z CrDCE

Cf) co

3Dj CD CD00 W

CO

c r) 7

(N W -

Lnco

U-)-)

-- L Ln~

Zcs

cz -~

(00

-r -;

I

40

CD

CN cr )C!D co a)

LOJ

Lfl

LU~

CN D)

ELO

D-

(Y) (N - 0

(3~~0 cc0 M~f~~dd

I'U-

= CD

-LJ -

41

C]h CC

w\

CED

CN N

U-) (.0

C D a-] N L LiLiJ

U-LU

C4

CLD

D

CN

.41

Cr) CNCI)C

(0 30)3dflId3d43i

k~ .

42

C-)

CfD c(D CD

CD C

C%)n

LD

c y c) 7

F CC 00 a)

pJJ L

C) - i

43I

?Z Lij C

Li L Z r

y-J

a' c D

4.L

c

CN N

-l

C)0) ) 0

(N CIO

44 cy

m CYA

44

-)

CD

U-)

CNJ

CD

C)

Lfl

0- 01 )

CN)

CY)

CrS CNDa

(o 93o) 3dfli~3dW3i

pf4

45

CT-

LLJ

CD)

46

UD

U))

LL.L

CT)

cc

2- CC u)

S CT)

I U--

co ' -I

D - 1;fl

CT)

___ LD -j- C

:)

CCT)

JiG)~U idlldiJ

4L

~- .~-ICY

47

U))

CNN

Lo

cyE

7-- C7- d C C U)

a)-4 _N

U) - -I- )

N N C1 L

If

a7) ICO CD

Nr C

Ca)

(N a)

9C

4LPi l

48

V- )

CD 9

-- C

CNj

CS

f ~ CT

I II

U)

CDS

NN L

CED

C-CC

Ca

4C

'--.m

49

LuI

cc,

coJ

CD U

W-D

CE

y-N

CN i

(N C _

CNN

jLLf

00 Q

--

CNI I I CN

(YC) CN CS C

(J 930G) 3dflHd3dW3i

50

LL)J

~,z

C LUJ

LDD

CNa

- Li (-D

CSD Q-cr5>2w-m LUDKI

,

Cr?-

CD m

C?)

~CNC\4C14 CU) m

Ir C11DO

LP ~

CN -

04

cy)~Q CN CD T

(3~~~C 93) diU)d~

51

c-, wCn-

m CDLIS -I

QLJ)

-A-

-D czr-I c

CNJLI)

e CD CN -J

± C-DODN(ND

___ ___ __I SLD

U-)

-- T-.

52

CL

)I>) w

7fc)

LfI)

-YD

)

Lu CJ C4

--T)7)

CI N a N

____ ___ ____ _,~ .7) 7;I

:)

-4 C

I~ I

(N C N

(0 130) 3dfliU~3dW~i

53

T CEi

LJ-

- WmCYD LO)

I CL.

S CD)

-CN

-U-

-+ CN CL

C&

s4( 30) 3dflUd3dW31 :

* 4

- ~-- -~77

54

C-

co

csD -

U i) U-) cU)

2L -

LELDU)

CDD

IT

C\4 -L

zCDXI

(0

CD~C mN---c

7

55

CS)~

co) -j-

>CD-

;C C

CY)~ 04 S D

(D~~~L 93)3nhdd3

_56

F-

C) C

LO -

Uy') W s

-Y

Lfj

L )I

Li C

CYD CDO

ZLQJ

a C

CD&

C(4) C14 m

571

C&

Z' Lo

WU)D

cs U

W E

cc N

I CD L

zc

DL

Ln4-

CCD CD

sB)3nldd~

op - . -

58

CD

UCl)cro

CL )

N.i CO

cc

> i'? L

X )Z[cN 0)

k-NJ

ca&

W J)

CD ~

3~~~~I s(23nidd~

59

L rJ

Z- CD

7Of

44

-- Lj

N'--

'NYNN

2~ Q 2 'LID

"S.~~

f)

N

Li

:~r-.

' S' ~

'N.LD\~ K *- V '-t

I K N >' f ZN

'--

I N

4'~Nc*

6]

CDLij

LiJ - S

-Ky

LJDC

cYcc

Ql I-

6?

F-L

T cy D-

Hl-m

L-L

Lo i-,7W

LOu

CTKK

_ _4 C7)

63

-)

Ln

CD Ln

;Lf

FE - CS-JN

V LOWLJCNK

ua- -~

Lfl

CO F

(YD

CDI

L/)

COMO

CDD CN

(0 £10) 3Ifl1U~dWoaL

"~z

cy

64

H--CSD

LLJ

a:)

G D

LO

L2 )

__ I ~) >([N

d _ _ _ __-1

65

C-

CD

CoD

CYU)

CRN

Co0- C O

( NN) 7

(3) 930) Ol~dd3

~c-.

66

Li)

zcr:

CDCD

CS)

U))

acr) (-

U)S

CD c N_

aD -

U-)

COOUm

CD

cc 1CT

fi GD

aD (N U

(3~~~j Di)]LfInIdiL C

Cl

67

Li)

Lfl

CN L-)

1Z40

m -1 co

w LnWCN

CN U-)

(N -+

co-= Q)

coCL

Ln)

co

Uf)

Lflar)

c CN aD

(3 93o) 3dnfiTHd3dW3i

T--

v- w

F" C) D

Iii

-sl

~u)

0Lfl)

C CD

/- )S cn)EN rCr

(7- Q O

CC)z-\

* (3 93o) 3did~3dW31

69

CD

LL L)

CI I-L (!!D

~cyD m O

a_ ,

(N wL

)a coC!c

CCDCID OJLD

(N

- (N

LDCD L D

(N0

(NLID CY

U-)( m L

(N

U-) (N 0

4S - - -.-.- --

~C

70

CDCD)

Cr) - r c

WUoCE

Cy- 0Ln I I:FwI

LN~ CN o,

CL Lfl

(J) CNrCT)

Co~

CN 0

(D Ln

co"I (~m

m r

(3 93o) 3dnfidd3dW]1

71

(-

cr-

CY)

CfS)

o C c)

CD

c c r m- y m -

(N crL L

7N CNCT

CN c

CD (N

*~ (S) 030 ccflU]d9N Vr

C4

72

CD

LOco -

CD-S) W

CD-

-j-

CD ly co Qc

-O CCO

Crr)

a_ ,

CNLf

ZLl

wCn

2:Ln0CN

a) M

*1-0

73

L)

z

CD),N J -o

LLO

LU

c -L C)u___ __ __ ICD LU CN

CN CIL C\4

c / n

Co -

Cr)

CD!D

(0~~~r CIL) I3i~~3LIJ co

9'n

(S C.-. %4'~**!D

74

1 F~v~ 7'

Ir I -

\~N \ ~ -

N

N *~~N ~

N> ~N

~ N N

\\ 'N

S N ,.--

~\ "N - N NJ

~-- - ~N

WN 'N\ -,

'it~ -~ N

F \~. \'~-- -'

-. N '~- N

F

C. N

1~ '- r -~

~ ~ ~'N

N ~->

>\ ~ '~

L L jjNN

a C

4

75

NJ

iliZ-N -

C!S CT

J 4 3

A -- 7-p~~---

76

clo

*L> L7) __

w-n>.j -CoT

-4-

CN CN

K ODK(2J

k~a U-11':7

&C

(ND

Cy'

00 C

77

H-L

_ C!D

f" Q- m

< ~K KTh Z CD

78

i w

C i-

I- F

Lro

L

00

i'DCDS

Z1 LD~ch

CD

(Y) C\N CI!)

79

LDj

LID C

LI-c w 5l

UDY

CL

CQ --

liDD

a_/L

K L]O ) 3]3flHJdWL3I

80

C-

CL

U (YDQ

LF)

oIK~ ~CN

L a-

7~Li9Lii

YC D

L

z- Cu-

CD~

81

N-,

L)i

CT) ~>

cco

LwL

Ca)

COa) Y

uj

CD

m CN C a)

(3so didd3

82

ISOTHERM CROSS-SECTIONS

On the following pages there are plots of isotherms at 0.2°C intervals

which were obtained by linear interpolation between the low-pass filtered

temperature observations shown in the previous section. Isotherms which

were not at least 80' complete were not plotted. Isotherms which were

incomplete, but had no more than 20% of the record missing, were completed

by linear extrapolation from adjacent isotherms.

4!

83

F-i

LO

ED

CD

-~-J-

ji

C~

CDCN Cf)

CY

CDCN CD)L DN

Hld3O

84

CD)

1-1

CD

C D Q--.--

CDN

CD

CC C D D C co 1D J

(W) Hld3G

85

cr_

C DD

cc

LnU

QF- CDJ

C-) --f

(CP CD

WCN

CD

LD CDCj

L -0 (3 -

CJD CDCN CDW-

oY) crmC!D C\ I F

CDC

UD LiD Lf) LiD U-) LiD Li- (N CD -n LD C

(W) HidJ

86

-D

LLD

a CDD

CD D 4

cr))

CNN

D

4uu

CD C-CD LJ E

- LI

Uc

(N Z

Lil U-) LID LI LID LID LI-\ N CD c~ o

F ([W Hid3G

4

87

CD CED

wcc

CC)

-A-i

Ln cc

wwJCDC!

C-9

C!)

- CNCDr

fLn U)Lr LF) Lfl LfC1N (rD -f- Lncc

(WJ) Hid3O

4 - . ~ - ..

-' K1~ T I~~ T ~ J ~ - - T ~T -- ~T7) ~ > -~

~2C ~

-- -~

K-S

c' ~

K~ 'I V

NjK~

- Th

it:

N ~ __ ~ ~J

'N

N, ', N, ~yy'~

' '-

V

N

---in Th

~, S '-' I

N ~~ >~'QN,~-

~ ~

I I ~- ~it: It:

(N -J I tV 'N,

KW hldO

9

I

- ,- ~- ~

8q

------- --- --- .. .......-------- I r ---- ------ -- -

Lij

' ' - _ C£)

I.

CE

LD

C5 LI

- C

F-

L -L '

L FL oi)

Hid

90

32 -~-~

~K>

(K f 'K

~Z2 2 -L

K

K

2-~ ~-

<N

- ~

w

F AD-A091 172 OREGON STATE UNIV CORVALLIS SCHOOL OF OCEANOGRAPHY F/6 6/10TOW ED THERRIST OR CHAIN OBSERVATI ONS IN JASIN, (U),JUL 8 0 R J BAUMANN,. C A PAULSON. j W AGNER N0001476C0A7

UNCLASSIFIED DATAA80 ML

23 f f f f f f f f f f f f

IEE.."NE

91

ILU) Z

CO

LUJ

cr)U)

) >. sCN

CRo

a-

co c (S

Cr) CD0a) f)- -

CD - CS)

LU -

U)C

LU

LUn

CD'

aY) ZD-

CCD

CN

CN

U) in U') Ur) U) U) U-)-C14 CO - U') CO

(W) Hid3O

92

CD

CD

CN-

C\4

CO Cf c

-0

LnCr C D S

LO_

CNDCC)N- a

-N CN' CD) 4- n(W) Hld3

9$n

93

LUJL-)

Scr:

LO -

CN

CL

CN LJ cC14 CD -

~- C )

DCD-

10- -

4n LD

-wc

LOl

CN CO Z

I LOLO -

0

LI) zC!-Q CN

z-CN CY) CT+) (0 N.

()HIdJO

94

L1)

CD-

4 Lfd

CoN

C c

IfO CCN c

- CN CoID (0

LIi

4nC -

ITV

95

r ULD Z:

cN

C))

CD

0- (o -

w

~Ld

CN c c

CD

4LJL) Qa)

96

' I I ' I ' I '

N 1CNLi

CD cow )

CN

C w -4

Cfl CD) '

CD(

C%

CD0

CDCt,

an m

-~~C CDC Ll C

(W) Hld32L___ - 'q

97

I ' I I I I '

LUzZ

uC

(N U,,

N > _ D

LI

LU -

C)

40

1 - (LU

LUj

'I CD;CN --)~( CDCD0

r I C I * I *L I -

If) r*- )I (N N

(W) H~d0lCi,. 1~g~mw

--- -----

98

CD

Lu

CC cc o

CD I

K Ld

II_

Lui

CN 4

CN

CD -

u CD

Li w

CD

II I I

CN CO U) C

(W) H~d3) Ln$ I

99

uJL-)

c a:

CDDHC., C

CN -

LLu

7cN 0

CT) )ij

CNj

CDJ

C1 ~CD CS

(N com rU)

C\CD

CD(04

(N cr)

* a aLfl LO 10n U) U)

(N4 (V) rn L N

(W) HIdJO

100

CD ZScr

Lo- CN

CD

- > n

(Nj (0-

~ ~DCN

(N-q

WLJCN

Lfl

rl CD

ICJ

rU)

CS)

(N) L) LO U) LO U-) U)

- N co U-) c(0IN

(W) Hid3O(

'VRV

.101 -

CD

N

CD

---

0--

Cr)-C9 C

CS)

-cy

CDD C

C CN

CDn

co~

4I -z

CDCDZ

5 GO cn

LID LD If Lfl f) i) If- (N CD ~ H~d3C

7 --- ---- .--- ---

4o Z~ - . c -

102

CD CDLlU

CD aD

cc

CD MN

00WC

Lz-

C7) - E

Lo I

ZCNC Nf

-3-J

CYC)

(0C)LLU

a CD

CN a)

(N~C Li 4 flC

CS)4 H d3G

41 C

* t 103

CD

CLD

Cf)

CID -- + =I 1

L I

C- ~C N

::Dcr

In

C7) _L

C14 L)OZ

Cr)

(N~C CD IDC

(W)) HLdLo EDIs

CD11

104

CD

CD

rco

I Q; a)

cr7L(f)

coC I COC

rcn

CJ)

0) 1JCED 3cr) zI

co --i C 0

Jo CDoaw: -- Cm O y 1C\

co

co CD-

.44

CD

m ~ ~ ~ W H-)Lndnt- O41 -r -+

(W --- -

105

C~CfD

CO

I_-

I I CD

C)

CDCC

04 1- Cl

LICS 7_-~D04

CD

0- ~LL a

(N (Y) -li CD C

40

106

CCD

C4:DU)ccN

u cocoCE M:

Ua) L a -

)L

Lo)

KD11CoJ QD

CD

CY) LO

Dw

Uo CN

-4 N CD CN

w

N)

Iln LI Lfl LI Lfl Lflt14 (o -n IDcc

(W) Hld3O

107

CD!

Cy) 'M LLJ

uCY) - U)

C-)

CE

) CD

CN "I I C

w C

(Ncx

~C

(W)~U _i3

Art

108

In Lii

cy-00' LL) 0

C- C-cr : cT)ZC1

-J C m CT)(N) I-~C -- T --- a-

F-T -- I)

zw(NN

CNl

'I uJ

U) Lf) U) c

(S) HLdDivdV.07

1 0

109

cin

(! C ) CD

Uc)CNI-

LU ) CJNL

I I =

1 nN C N

CS) _

CN LCC C

C N CD)

CN,

I I 0N

CN Co LD (0 N

(14) UIJJO

4 -- C _

110 _______ _

-7-

IQif

OLOC

C- N

~CND

C-) _-

if)~Lr zf Cf f)Ll

CN~ - Lfl(0 N

(1fJ Hld]O4

7 CD= of~

mS LI-

-O

U-) =

~CNCID

CD C

;11

14-3- c

M zD

CNN

Lf) Lfl

(C CD

-- t -. c

112

C-)

LUi

CCD

CUD

)

LUW

CS)

Cn ~) CD)

C14 L C

(tCD CDd~zLUJ

CS -- J- CD ~

113

SLJ

C-)

CD -

Cn C

CDE

Cco

CDq

LLr

mzcI I I Io

LP Lfl LIDLf L17LI LIDCN (-0

(W/H43

CS I-_

CS)

WCL

CD

CUS-D

aD

CD

Lfl~: UDL E f

(N~C wDED

LII

CcLP4~ (S

~~(Y)

115

LxJ

C-"

L.L

-JJ

WCN

LUT c j cc

- CD D

(NF- CDUTC

(L) LIDiCG

a ..- S~'-c -l

4r 1I

116

~-.-....-..----.--....------- I

CCD

-J C114-I

C:I cs;CC -L

r" _D

(\ T

LLCrI, -) (

HiGE3Z

117

-x~~c CLr -

A- - 2K

-3-

LP LfU71

118

-j I D

C7?

/-7

LD mL1K3D

-C I

CDi

'4 -- _

Qf LO co

"W) HiJI]LI

119

7 -- ----T --- T--T T

cz242cCc~c ~-02 CN-

-. J

CLI L C'J (Y~~-> \D

-Ln

3 4 I OfCC

U-)1(W -> tdn 3-

120

L 12

C-0

jc

2- LCN

CD

-J (-0

ccw

'4'N

* K ~ ~ ~ i~ L ~ LCD

-- f4 U')f

121

NefI

- LL

Ln L~j -1S -

(U)

C7CN

- u,4,

C7)

(N

CC))

* -4zcJ

CE)~~~L CD E)C)C E(N -J-Cf) Cl'K __Lo

(W) HCdC~- ,.-.

f4

122

-D 7

LL ('

': I -

- .L CT

U-)

Lf-

~lCNLLfL)

--f- -_

(W) HidiG

123

L-i-

i--n

ck

C--

Li E

CO

LJ- LID LIjg 44)Hid3Q

44

1 24

I -

-- D

CD I-

-n-_ C- -C4

......... .- W

=- CS

Ln U:D ch C

~CN

C=)

Co w

--+ Li

(W) HId3G

125

FT~~7 ~T ~ T T V'-T --- 77

cz)

- <~Lr:

Co J 2

) *.0

T~ ~ ~ ~ T I '~JLi

L 4.-;-

HidCN

126

CDCYm_

CAN

1LCD,> h

~ Li

'(N N

4D (-D

-~(W H C) L3C

APO--

127

-ILcc)

'c

4"

DCN

L-L

Cf)

LI If Lr2If) I) If

,~iLi

4

1 28

CS

L)

-1-

IiJ I

Lr--

CNc~

CN crw- T

CD

L m ( _-CN0 WCN

I -LICNN.

cc

CC4 CD L-- cc

(1.4)) m~~

129

- - - -- T -----

CS

CSD

CCN

I IL

I I I I I

U1(2 -- Li-

CS j E

-J I

C

z 2-

LI?~~C LI L? L?

IVJ) HidD

COI~

< 4-

- --- .s

13 0

IT -- 7 CCT

C-

- Tj

ccc

-1

CS)

cc _

H i d 3

131

Lz:

F7

LnHJ

U-)- L -

-J cf>

13?

-- - ............. - ------

U-1

ae cnN

-- YTT)7~ T V L l

CN cr) 'w

WV HidiGcci

133

C'E

LLJ

(U N

CDD EDj

Lo CCDCN

-DLfl Ld

CD coL _N

D

--I- CD

U- U-D U-) in- in i(N CD--inL)

Hid3

134

CN.-"I c-

LfL)

WC

CD -

ww-,

CS)

w wC

LLJ LJJ-

(W) HIco

F t V

j. 4

135

ED

C D~~ _L CN4-J

C9

-C'.ccCD CS

CD

Lfl

jCN

Lf- Lf'I U) Uf) LI) Lf)U-

(WJ) Hid3G

136

C-)

Cr) x c\J

CD -(

(N(D

ND LUx:)

LOT

(W) Hid3O

L-Am

- T-

CDco

~C

C\4

CCS)

C D - _

(C) HCdD

nLJLd '\4i

138

7 -

h H cc

JD

L)

.44

cr) L-n C

A WWCN

139

T ~ T -r

~LLJ

\ \ 03

~L

140U

-~-'-~-L 7

-2- ~

-7co

CSLL ,

C4

J--

U ~ ~CD_

CT)

La:

4-)

U;LF LID LF LID U-)C14NY -: U; (-0

(W) HidiLJ

141

SPECTRA OF HI GHEST AN.D LOWESI ISOTHERMS

Spect!ra of t he depth of the shal lowest and deepest isotherms froi!v each

1 -- are plot te. )n the fol lowing pages. The symbol x designates the

1( r q hrit-, tej ptera 1urt) and l des igna tes t he deepest

s o t he rir T he ie - se re e o o o v- pa ss f ilt',e red i sot herm depth were

prewhi tened by ta~nq first. differences prior to computinq Fourier coef-

fi ci Ents. he spectra were then recolored and smoothed by averaging over

non-overlappinq frequency bands, five per decade, equally spaced on a

logarithmic scale.

.44

142

xx

CIE

I X- -

7 x

7 IN

143

CT)

LD CN

XI

LIDI

CDr x I

-J- Coj

Vkd3/W*ki

CNN

LL

CCo

4I

144

aD~~ ~ _____

CN 71 DX

CT-

H- CD

H dO/ * W

145

yT ~ F - --- T - -r -r -- T-T T*~ T-

NN LIXII

DD TX

u x~__________ x

CD) E x

-ll CD xDCD(

LIo

CD c~LLI0 XC

LIfCT LI

CN ILI X

(ND X

C\ d (-0~

V.L

----. )

146

ccI r I C;D>C 1]XEI

LE C

XLII

CN(J) aL

CD

XXEL

LXLILN xj)X E

CD

[4d3/W*VI

4C D~ T--T-- T-

147

Trlh-T mT 1 1 t-

C X ElQO

CD El X

LLI

CY

co -- C4C

CED . I -- I I T ~ I

cc~

C"\4CL cr)

L1Dn FIXCN4Cu

CD rn C1 CD XL-I

z- LIX

Lf4 CO -

Fd V

Ur

C:(-

U-) -j-

1 48

co - T T 77 -T -- - T- r7 TT V -- T

CCN 0CD~Li L2,

CD

CD~ LIXr) cl

cW

C-

CO- C9l ECXO

CD LIX

L-XLIFD

U- XLfI n \

149

CD

In CN

EX xcr)

CN XDILD~ la

CDD

D

0)Y

D QX

LLX

* LnCD 0

CD C-) C~

* -'I/DX

1 50

I T 1 T r

co

ElEi X

PNEK

El X

CO) If)

clo

Ldx

OD 1

CD C! -j -.

'Ix 0

4Lw - - --

151

I(- CN x

C7) C) oIXC4 LIX

cy-

(5) II) C\ (S)II II

CS) C-4-- rj

=CN

cr KE Y

XLCD I0

LLF

I-r

CD II l I i L -------- 4

CO -- (~ (N

,Jj], /4*w

1 52

- -T T-: T - -T -- - -- T -1 -- -

SCNl

E:X

(-n

Li

C4s~ *~ET

1 53

LOC

SEI Dx

D

(i) I i iI III

U-)

LL)XCCr)

C)

* wn DX- C-)

-CC)

cCDW0

:D - x 0 r CO

pr x V4Tu

CN-~.

>l-lC\ X E? E

C-11CN D x

CTEi - C17.1 -, -i

CT C) EX -1L-D

Ll x- -2

-)

I-D L

XD - E

=DDFl E EX

X D

D

cnE

lifYT

w ~A

155

T T- P'-T- T - T - ~ T -~ ---- -1- -- ~ --

LTI

U')

W 74

iwN

ET-l X1

[ILIXCXLI

ic LX

LLIXLD-

ELo

(5) ~ ~ ~ ~ -L LA L" LI/ L. 1 L 1L4 i

1 ~A

NTT' 1

-- 4

N 7

-A

- A -1

I - - .-

N

*

1 A 1 1 1- T

~ (N

-A

- HN xl

H19 nyCL El

(N--.) [7)A - - i11~

~ 1~i!

V 4

4- A FLY F 4

~tTA ~-- -~

- . . ~ l 4 .AL.~

N

*I.. ~N

.4

4

157

LIOX

CDC

C EX)czW XXEL

I 3 ca iC) LJD CD (

CD LI

LXLI

DLI LInC

CS

(NW LI X E

* () x n

CCD -C D

I~- - --:

CDK

GflN El X

CD

Jz

W lll w

I (CNICE

XEXD

LiX

4 2i

1 159

CD _E

C14

LLF)

7 DJ

CS\

LDCNL

CE EL CD

(N LIXC-9 a_

Cf))

CCLJ i i L 1

-F.

160

LII~~WE Xl

CD-Q

CT f)~ IL k ILII

Co:Z4 O

LOL

LXLI

CC

CC) Cf f - (N I I I I

CT

00

CD- C EN

1 61

D_

X DI

w X I L

CDWCf)

co

C- C Li lN

I I-I ~

C\4

zC'

-~ I

LOf

co U-) mT C4 CD

Wd3/!*

L ~'

1 62

CT) (OD

(NR xCDEl x0

:D Lf 4 C)(

D_

Co.(NW

OC)

r"W

IO Lfx El Cr)

CT);

C4

CO~

1 63

CC) _ _ _ _ __ __ _ _ _ _ _ _ _ _ _

CN

LD CN

~C) XL tIcr§ E

CN D(f)i IiI I II

CO- uI I~ -) (

Wd3/W*W

co

:DXLcXLI

x D

LU

w O U) xJ CCD

C4

U).~

164

(- ---------- --r

-----

CNY

N LX C

cyA-

() U -)I ~ICo IC A-(

(-0 dD/) C\4

IL TX -= -r TT-

C14

Cox

CEo xA CN

si V4r

CD.

1 65

CD IU U)

CN

I-

C

cc O --j CT) CN

CN

CC)

~'CN X L

LIXICC) LIX

CD XLI D

4 Lfl

CC) Cr)C

z Iy

S -Ld

166

T I T T-T ~ --- T - -T- 1-7- T -1 ]-fr-T V-y -T 71--

IT

x 11

DXI

L L

I- ~-

CDDCE-

LiU XDXC

-. ) w-

* ~ (S Li .L ~ Ll xL h~~L±_ ~

C:)

(-0 Cf J 0(N

Wd Y/U*L

167

I -C

CD 11 xT

x DYEXX

-U' LIXUI C) X E

LnI

CNE LIXLIXO

Co LOcT) CD

* ~wd3/W*LJ

N -J pI~

-1 68

cL -lx

111

CD I IU) D

cXD

N cl w

CT9)

02 -.- ( ( -

[,JI xkIV

CL [I

L-L) D

w~ DX

co !) --f (2 CN

Whii/W*L4

169

CEN

L I D X ET 11Tl

C LD

U-,I

Io CD EJ X

CY

rD~ LI

-L o L Xr !

C)coLIr", \I LI L

LD C4X

CO) l C C

coC 1

7 - .

4nLy_-

LX

NN

i i'

V \ N

'' I

- '1, {

* . . I 1L

171

C N r E X Z

C ' ------------- ------- - 7 - - --- -T7 T -- -T 1 ' T

XX

L-1.1

I- i -

(C D C-

L-

%LA-

OD

CNCElXE

x El

"--,(D E/ XF

------------- w-

- -x Au

-xWY

- 'K-- -v --

U lit ALt. t~ilt~ ~ t.

1.~ 'iN Cs..

K F' - '' '~' - ~Fr7 VNJ

V KWY

N 7'-

NK N-

N4-

N

*

S

4

-- ~

-1 T -- T v - - --- T

- I L

EN HC -f) E)

c-l

CD D

UIc)

(7D

Ll LC-fi_ rDLL L

(-n Nr I

x 0x-~ 'El

1/4

IIF]

U--

N!N

175

C7)N

XLI

XLI x

-oa-L--4-

CD

(-D U-) m ~ CN -

14d3/4*1

7 --- r--- T T I f IN

El

X LI~~QD X I1 (

'LWn

Cr)

CD -J- D ON

176

xF 1

X\ I] El x

EX

F]XL]

Wd DDX

177 1

C\C LIX

LD C-

z ah

CD)ccLO cO) CNm

Lwd3/.,*W

OD I -- I I I I fI

x l

X! L XLXc

CD J

SCfl

CDLn

CD L-n CN

Wd3/W*W4

4

1 71(x

fmIx0 x

El x e

~~EJ Li

L-Ii

en mx

(- Li xy)CNC

mE xCl- CL4 x

(p E

U-) LLJ Lli U Jxf~

Co tf 02 (

(-0 LjL-l m CN CS

4d/*

179

C 7 rT- -1 fTT 7 T1 1 1 1r- 7

U xx

Li x

-EDL

LJ 2l

I jI

,3 IT T I Ti I I

m~ (N

t]XEl X

OC L l x aC D LiX.

co~ Lio

CED

LOU LS

IDWlw~

'44

T-I TT-r r -- -- T T T~ 1 7-1 TI -

11 x

Li

IIJ

...... .. -A -- ---

QA IQ C.\- X0 -- C

w4 - El X

CN CN

LA X

3/ WW

181

El X

Ld L X

f) -L I i i I I I

CNN

LLI

LISn4

co U-)

ZQow~

C14 C--) K- E

C\ 7T)~

OCN) C1W dD

Co

w(N El x

-N

L-L k___________i~~~il~L ~ W~ _ ~ l Ll(I 1 ~ (~

183

LLJLX

rl-l LIX lc CD

LLIX

CDLOI

(c5D

14C) El, x iI II f

I C4

Cl-CN El X

CD cy')

Cn EX19~

_ II_-

cy- L -J

1 } T -1 1 1 1 2 -- T--1 -T } 1

1r ii I

AAx

185

p y T T T - T-p T - IT -r- T r I I

cc~ ~ X TLLL

LLI

c

I

cI ElI X

LuI

_- LIX

CC=

a: TIT I I- -T I T

CT) C) \j

CD - 0 xL

('1 C

is-..

T I - ~I -, - I <

N

-N 'K.N

-c * rAN

C> 'K.

4

A jE lEA K 1 ti 11J1.L ~ i t A. ~

-3' C N

N?? 'N*N

V jT -I 1 T I V' 1 ~

'N

LAYxl

ANN

N

vNA. LN*LN

I

- -

~aaaanad

I-,.S17 ORE.ON STATE UNIV CORVALLIS SCHOOL OF OCEANOGRAPHY F/G G/10

'JUL GO R J BAUMANN, C A PAULSON , J WAGNER N00OU4-76-C-006UNLSIFIED DATA-8O NL

3

MEMELffffffffffl

187 j

*P CN

cc-r

ClX X*1 oIx

I-. LI E

uJ(0 J)

zckm

~Lon

(C0 LO-j CY) CN -

WdO/W*W

CY) C'.4

I. oxNI C'r4

II .

oC )0

CU) I

r)V)I

Co~f LO I a I I i II I I

CO U - ~ cr) C%.J

wd3/W.*W

188

CN

CN4

co L~I

rnr

X LI

(0~ ~ Lfx

C1~4- xd LILI Xo C)

a) LI

CD X

(5)

N - ( r)(

I -dOEW* X

q-C1

189

CC)4

cN 0 PX

LdIXC 0lx roxx

X 0l

Iy-

LOi AIII I~ I i I

co XLD

I-'x

a- XN 0 -x

I-I

0 C) L U

- O LO I)cr) CN 4

WdO/W*W1*04_ _ __ _

190

(N

EXx

x xFCrc-a-

'4.0 LI XI D FIX

Loiz 3-

a Id

* Wd3/W*W

(N I I C'1

LIX cr)0 x

LD Q XIf) Li x U

o xc-

o:LiO

C:))

WdJ/W*W

Nah

191

CO )XON -. X II . -oxLOl

xCD EK

CC) w

= f

~L

In

CDI [A i li l t 11 1 A A I A A It A a

- D LI) -+ CY) CN -m

Wd3/W*W

- CN

El'

wX 0 CTK

D 0 C

NCD

LLI

r- w OL).. l. C

WdJ/W*W

wp

192

APPENDIX A

Configuration of the Chain under Tow

1 93

The purpose of this Appendix is to derive an expression for the shape

of the chain under tow. The derived shape serves as the basis for inter-

polating the depths of the sensors between pressure measurements and for

smoathing variations in the pressure records caused by errors in the

measurements.

We simplify the problem by considering the equilibrium case in which

accelerations are neglected and the shape is independent of time. The

problem then becomes similar to the problem of the "hanging chain", treat-

ments of which are given in many textbooks (e.g., Sokolnikoff and Redheffer,

1958, pp. 40-42).

A schematic diagram of the chain under tow is shown in Figure Al . The

x-z coordinate system has its origin at the bottom of the chain in the

center of the dead-weight depressor (bomb). The forces acting on the chain

at x = z = 0 are GB, the gravitational force on the bomb; DB, the drag force

on the bomb; T (s = 0), the upward tension in the chain, where s is the

distance along the chain from x = z = 0. The forces acting on an element

of the chain, 6s, at an arbitrary point s on the chain are: W(s)6s, the

gravitational force, where W(s) has dimensions of force per unit length;

D(s)6s, the drag force, where D(s) also has dimensions of force per unit

length; T(s + 6s/2) the upward tensile force; and T(s - 6s/2), the downward

tensile force. The bujoyancy forces are incorporated into the gravitational

forces, GB and W. The tensile force may be decomposed into vertical and

horizontal components as shown where e(s) is the angle between the chain

and the horizontal.

If the chain is in equilibrium, we may, as shown in Figure Al, separately

equate the horizontal and vertical forces acting on the chain at any point

along the chain:

fOii ,

1 94

T~) T~s) sin e(s)

DB+f D(s)ds 9s0 T(s) cose (s)

4S

/ m, GB+ W (s) ds/0

GB

if

Figure Al. Schematic diagram illustrating theforces acting on the towed thermistorchain.Ib

I-

195

S

DB + D(s) ds = T(s) cos e(s)0 (Al)

SGB + f W(s) ds = T(s) sin e(s)

1B0

We now assume that D(s) and W(s) are independent of s. This is essentially

true for W(s) and is approximately true for D(s) providing e(s) does not

differ too far from 900. The equations (Al) are then integrated to obtain:

D + sD = T(s) cos e(s) (A2)

GB + sW = T(s) sin e(s) (A3)

T(s) can be eliminated from (A2) to obtain:

•G B + sW

tan e(s) = GB + sWD + SD

It is now possible to solve for e(s), x(s) and z(s). e(s) is obtained

directly from (A3) and x(s) and z(s) are given by:

sx(s) = f cos e(s') ds'

0(A4)

s

z(s) = f sin e(s')ds'* 0

Consider first the expression for z(s). Substituting from (A3) into (A4)

yields:

Z f s (GB + s'W)ds'

s 0 [(G + s'W) 2 + (DB + s'D) 2

4which can be rewritten,S f s (GB + s'W)ds'z(s) = ( 2 (A5)

0 (a + bs' + cs' )

JA

196

where a GB

2 + D2

b 7 2GBW + 2 DBD

C _W2 + D2

Integrating (A5) yields:

G8 bW -1 2cs + bz(s) = (- - 2c 3 / 2 [sinh (d

- sinh- (-)] (a7)

+- [(A + bs + cs) - /a]c

where

d = 4ac - b2

An expression for x(s) can be obtained by a procedure similar to that

used to obtain (A). From (A3) and (A4) we obtain

s (DS + s'D)ds'x(s) = f 2 (A8)

0 (a = b s' + cs' )

where a, b and c have the definitions given in (A6). If one replaces GB

'' and W in (A5) with DB and D respectively, the equation becomes identical

to (A). The integration of (A8) therefore yields an expression of the

same form as (A7) with GB and W replaced by DB and 0:B DB

x(s) (- - 2c312) [sinh 2cs + b)

sinh (--)] (A9)Vd

+ [(a + bs + cs2) - Vjq i,, C

197

The drag forces, D and D, are assumed to be proportional to pU2

where p is the density of the water and U is the tow velocity:

D0 = CB AB PU

(AlO)

2D = C A pU

where CB and C are the drag coefficients for the depressor and the faired

chain, respectively. AB and A are the corresponding cross-sectional areas

where A has dimensions of area per unit length.

The drag coefficient for the depressor was assumed equal to one. This

value can be compared with the value for a circular disk equal 0.55 in the

range of Reynolds numbers likely to be encountered (Batchelor, 1967, p. 341). 1A larger value was assumed for the depressor because, although it is stream-

lined, it has protruding fins, cable attachments and handling rings and may

at times present a larger cross-sectional area to the flow than assumed. It

turns out that the shape of the chain is not critically dependent on the

assumed value of CB. If one decreases CB by 50% at a tow speed of 3 m/s, the

computed change in depth 95 m below the surface is only 0.3 m. The Reynolds

5number for the bomb at a tow speed of 3 m/s is 6.7xi0

The drag coefficient for the faired chain was taken equal to 0.13 as

suggested by the manufacturer. For comparison, bluff bodies have drag

coefficients about equal 0.5. The value C = 0.13 yielded chain shapes in

good agreement with the pressure measurements on the chain. The uncertainties

, Iof the calculated depths of the thermistors are estimated not to exceed

± 1 m. The Reynolds number for the fairing is 6xlO 4 at a tow speed of 3 m/s.* 4

* T Chain shapes calculated by use of (A7) and (A9) are shown in Figure

A2. For a given tow speed, the shape depends only the the distance along

the chain from the depressor. The parameters used to obtain the curves shown

p/

198

100 -2

80 -

70

60

60

30

20

10

0 10 20 30 40 50 60 70

X(M)

Figure A?. The shape of a towed thermistor chain, 100 m in length,for tow speeds ranging from I to 6 m/s. The drag forceon the chain is assumed proportional to s, the distancealong the chain.

U.!,

199

in Figure A2 were:

GB = 4,120 Newtons

W = 7 Newtons/m

CBABP = 12.3 Newtons/m s

3 -2CAp = 2.6 Newtons/ s

The above parameters are the best estimates for the chain.

An additional model for the shape of the chain was developed to compare

two different assumptions for the drag force on the chain. In the previous

development we assumed the drag, D, proportional to s, the distance along

the chain from the depressor. Alternatively, we assume that D is proportional

to z, the vertical space coordinate. The equation corresponding to (A3) is:

dz = tan e(s) - B + sW (A2)

T+ zD

To ease the integration of (A12) we assume that W is negligible, from which

follows:

x = (DB + D z) B (A13)

We may also derive s(z) as follows:

dz sin O(s)ds

V f sin- 0s) dz'"i 0

z [GB2 + (DB + Dz')2s = f B G Bd z

0B

zg ,S F (e + fz' +gz' ) dz'

J where

4 -.

200

D B2 2DBD D2e 1l+- f 2' g -

GB2 GB GB

integrating we obtain:

S (29z + f) _vr - fsie4g

+ 1 [sinh-I (2)z+f- sinh-l(-)]2 ,vg V- %q

where

Z = e + fz + gz2

q = 4 eg - f

q

The two models are compared in Figures A3 and A4. In Figure A3 the shape

of the chain given by the second model (D '- Z) is plotted for various tow

speeds. In Figure A4 the shape of the chain given by the first model (D - s)

is plotted for the same tow speeds. The parameters used in constructing the

cruves shown in Figures A3 and A4 are identical to those used in generating

the curves shown in Figure A2 except that W, the gravitational minus buoyancy

force, is assumed zero in Figures A3 and A4. The difference between the two

models for a tow speed of 3 m/s amounts to only 0.3 m difference in z at

s = 70 m. We therefore conclude that the calculated shape of the chain is

not critically dependent on the model for the tow speeds employed in JASIN.

For faster +ow speeds the differences may become significant. For example,

I

-- .4.7- ---- .. .

'00 201100

90 2 3

80~5

70

60

60

30

4 20

10

1 0 10 20 30 4 0 50 60 70

X(M)

Figure A3. The shape of a towed thermistor chain, 100 m in length,

for tow speeds ranging from 1 to 6 m/s. The chain isassumed to be weightless in water and the drag force isassumed proportional to z.

,<A

202100 202

2 3

90

80 4

70 5

60

60

30

, 20

20,',4 10

0 10 20 30 0 so 60 70

X(M)

Figure A4. The shape of a towed thermistor chain, 100 m in length,

for tow speeds ranging from 1 to 6 m/s. The chain is

aEumed to be weightless in water and the drag force is

assumed proportional to s, the distance along the chain.

. I I

Recommended