3.155J/6.152J Lecture 2: IC Lab Overview Lecture 2: IC Lab Overview Prof. Martin A. Schmidt ... 2.6...

Preview:

Citation preview

3.155J/6.152J Lecture 2:IC Lab Overview

Prof. Martin A. SchmidtMassachusetts Institute of Technology

9/12/2005

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 2

Outline

The MOSFET StructureSemiconductor DopingThe MOSFET as a SwitchA MOSFET ProcessThe MOS Capacitor ProcessRecommended reading

Plummer, Chapters 1 and 2

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 3

MOSFETG

Source Drain

OxideGate

Bulk

DSD

G

S

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 4

N-Channel MOSFET

n-type n-type

OxideGate

p-type

+VG

0 V +VD

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 5

A Word About Doping….Silicon has four valence electrons

It covalently bonds with 4 adjacent atoms in the crystal lattice

Si

Si

Si

Si Si Si Si

Si Si Si Si

Si Si Si Si

SiSiSiSi

SiSiSiSi

SiSiSiSi

SiSiSiSi Si Si Si SiSi

SiSiSiSi Si Si Si SiSi

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 6

Intrinsic SemiconductorIncreasing Temperature Causes Creation of Free Carriers

1010 cm-3 free carriers at 23C (out of 2x1023 cm-3)Intrinsic Conductivity

Si

Si

Si

Si Si Si Si

Si Si Si Si

Si Si Si Si

SiSiSiSi

SiSiSiSi

SiSiSiSi

SiSiSiSi Si Si Si SiSi

SiSiSiSi Si Si Si SiSi

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 7

N-type DopingPhosphorus has 5 valence electrons

‘Donates’ one conduction electron – n-typeOur substrate has 1015 cm-3 phosphorus (1 in 108)

Si

Si

Si Si Si Si

Si Si Si Si

Si Si Si Si

SiSiSiSi

SiSiSiSi

SiSiSiSi

SiSiSiSi Si Si Si SiSi

SiSiSiSi Si Si Si SiSi

P

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 8

P-type DopingBoron has 3 valence electrons

‘Accepts’ one electron from latticeCreates a ‘hole’ – p-type

B

Si

Si Si Si Si

Si Si Si Si

Si Si Si Si

SiSiSiSi

SiSiSiSi

SiSiSiSi

SiSiSiSi Si Si Si SiSi

SiSiSiSi Si Si Si SiSi

Si

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 9

Counter DopingThe addition of one more B than P causes thedoping type to change from n-type to p-type

Si

Si Si Si Si

Si Si Si Si

Si Si Si Si

SiSiSiSi

SiSiSiSi

SiSiSiSi

SiSiSiSi Si Si Si SiSi

SiSiSiSi Si Si Si SiSi

P

B

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 10

Counter Doping Process

n-type (1015 cm-3)

Concentration1015

Depth

n-type (1015 cm-3)

p-type (>1015 cm-3)

Implant Boronand Anneal

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 11

P/N Junction+ - + - + - +

+ - + - + --+ - + - + - +

+ - + - + --+ - + - + - +

+ - + - + --+ - + - + - +

+ - + - + - +- + - + - + -+ - + - + - +- + - + - + -+ - + - + - +- + - + - + -+ - + - + - +

p-type n-typeDepletion Region

-----

+++++p-type n-type

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 12

P/N Junction - Diode

-----

+++++p-type n-type

+ V -

I I

V

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 13

N-Channel MOSFET Operation

0 V +VG

n-type- - - - - - - - - - - - - - - -

n-type

Oxide

p-type

+++++++++++++++++

0 V +VD

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 14

MOSFET as a Switch

n-type n-typeOxideGate

p-type

+VD0 V0 V

n-type n-typeOxideGate

p-type

+VD0 V+VG

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 15

Microfabricated Devices

Starting MaterialSingle crystal silicon

Mask SetContains x,y info

(Top View)

Process SequenceContains z info

(Cross Section)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 16

Sample Mask Set

Four Levels (Masks)

Mask

1

2

3

4

Definition

Active Area

Polysilicon

Contact Cuts

Aluminum

PolysiliconResistor

MetalResistor

DiffusionResistor(Diode)

Transistor(MOSFET)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 17

Our Processp-channel

Poly Gate pMOS

Polycrystaline SiliconMetal-Oxide-Semiconductor (MOSFET)

polysilicon

n-silicon

p p-------+++++++

Source DrainGate

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 18

Starting Material

6” (150mm) Diameter Silicon Wafer30 +/- 1 mil thick (~750 µm)n-type (doped with Phosphorus)

1.5 Ω-cm resistivity (1015 cm-3 Phos)

<100> crystal orientation

<110>

Major Flat

Minor Flat<100>

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 19

FET Process Steps

1. Characterize the wafer (resistivity, orientation, and type)2. Grow 5000A ‘Field Oxide’ for device isolation

Typically at 800-1100C for 1 hour in O2 or steam

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 20

Process Steps3. Pattern Active Area (Mask #1)

Coat withphotoresist

ExposeMask

Develop

Etch*

Strip resist

*Wet etch

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 21

Process Steps

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 22

Process Steps4. Grow 500A Gate Oxide

5. Deposit 5000A Polysilicon by LPCVD (low pressurechemical vapor deposition)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 23

Process Steps6. Pattern Polysilicon (Mask #2)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 24

Process Steps7. Etch Gate Oxide

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 25

Process Steps8. Ion Implantation of Boron

B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ B+

9. Drive-In (950C in O2)

Note self alignment

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 26

Process Steps10. Strip Backside

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 27

Process Steps11. Pattern Contact Cuts (Mask #3)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 28

Process Steps12. Evaporate Aluminum

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 29

Process Steps13. Pattern Aluminum (Mask #4)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 30

Process Steps14. Sinter (400C – N2:H2)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 31

Process Results

The Four Mask Process YieldsResistors

MetalPolysiliconDiffusion

CapacitorsMetal-SiliconMetal-PolysiliconPolysilicon-Silicon

Gate OxideField Oxide

DiodeMOSFETBipolar Junction Transistor (low quality)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 32

Our LabsLab Session 1

1.1 Lab Safety and Cleanroom Orientation 1.2 RCA (ICL RCA) 1.3 Gate Oxidation

Thermco Atmospheric Furnace (5D-FieldOx) Dry Oxidation, 1000°C 60 minutes

1.4 Doped Polysilicon Deposition Thermco LPCVD (6A-Poly)

1.5 AnnealThermco Atmospheric Furnace (5B-Anneal)

Lab Session 22.1 Measure oxide and polysilicon thickness (UV1280) 2.2 Etch oxide in BOE (Buffered Oxide Etch) until de-wet2.3 HMDS, Photoresist Application, Postbake (SSI coater track) 2.4 Dry etch backside polysilicon (LAM490B) 2.5 Etch backside oxide in BOE until de-wet (OxEtch-BOE) 2.6 Strip frontisde resist with Matrix System One Stripper (Asher)

Lab Session 33.1 HMDS, Photoresist Application, Pre-bake (SSI coater track) 3.2 Exposure, Development, and Inspection (I-Stepper) 3.3 Dry-etch polysilicon (LAM490B) 3.4 Strip photoresist with Matrix System One Stripper (Asher) T.1 Device characterization: MOS Capacitor

Determine oxide capacitance. Determine bulk dopant concentration. Determine fixed interface charge.

T.2 Sheet resistance measurement: Van der Pauw structure

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 33

Lab Session 11.1 Lab Safety and Cleanroom Orientation 1.2 RCA (ICL RCA) 1.3 Gate Oxidation

Thermco Atmospheric Furnace (5D-FieldOx) Dry Oxidation, 1000°C 60 minutes

1.4 Doped Polysilicon Deposition Thermco LPCVD (6A-Poly)

1.5 AnnealThermco Atmospheric Furnace (5B-Anneal)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 34

Lab Session 22.1 Measure oxide and polysilicon thickness (UV1280) 2.2 Etch oxide in BOE (Buffered Oxide Etch) until de-wet2.3 HMDS, Photoresist Application, Postbake (SSI coater track) 2.4 Dry etch backside polysilicon (LAM490B) 2.5 Etch backside oxide in BOE until de-wet (OxEtch-BOE) 2.6 Strip frontside resist with Matrix System One Stripper (Asher)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 35

Lab Session 3

3.1 HMDS, Photoresist Application, Pre-bake (SSI coater track) 3.2 Exposure, Development, and Inspection (I-Stepper) 3.3 Dry-etch polysilicon (LAM490B) 3.4 Strip photoresist with Matrix System One Stripper (Asher)

Fall 2005 – M.A. Schmidt 3.155J/6.152J – Lecture 2 – Slide 36

Lab Session 3 (Testing)

T.1 Device characterization: MOS Capacitor Determine oxide capacitance. Determine bulk dopant concentration. Determine fixed interface charge.

T.2 Sheet resistance measurement: Van derPauw structure

Recommended