2. Random variables Introduction Distribution of a random variable Distribution function...

Preview:

Citation preview

2. Random variables

Introduction Distribution of a random variable Distribution function properties Discrete random variables

Point mass Discrete uniform Bernoulli Binomial Geometric Poisson   

1

2. Random variables

Continuous random variables Uniform Exponential Normal

Transformations of random variables Bivariate random variables Independent random variables Conditional distributions Expectation of a random variable kth moment

2

2. Random variables

Variance Covariance Correlation Expectation of transformed variables Sample mean and sample variance Conditional expectation

3

RANDOM VARIABLES

Introduction

Random variables assign a real number to eachoutcome:

4

Random variables can be:

Discrete: if it takes at most countably many values (integers). Continuous: if it can take any real number.

)(:

XX

Distribution of a random variable

Distribution function

5RANDOM VARIABLES

)()()( xXPxFxF X

Distribution function properties

6

(i) when

(ii) when

(iii) is nondecreasing.

(iv) is right-continuous. when

0)( xF

1)( xF

)(xF

)(xF

x

x

)()( 2121 xFxFxx

)()( 0xFxF 0

0

xxxx

RANDOM VARIABLES

7RANDOM VARIABLES

For a random variable, we define

Probability function

Density function,

depending on wether is either discrete or continuous

Distribution of a random variable

Probability function

8

verifies

RANDOM VARIABLES

Distribution of a random variable

)()()( xXPxpxp X

x

xpii

xpi

1)( )(

0)( )(

Probability density function

9

)(xf

verifies

1)()(

0)()(

dxxfii

xfi

We have

).(')( and )()( xFxfdttfxFx

RANDOM VARIABLES

Distribution of a random variable

completely determines the distributionof a random variable.

10

F

RANDOM VARIABLES

Distribution of a random variable

b

a

bxa

dttf

xp

aFbFbXaP)(

)(

)()()(

Discrete random variables

Point mass

11

1)(

aXPX a

axifaxif

xF10

)(

0 a

1--

RANDOM VARIABLES

Discrete uniform

12

kik

iXP

kUX

,...,2,11

)(

),...,2,1(

1 2 3 k-1 k1 2 3 k

RANDOM VARIABLES

Discrete random variables

Bernoulli

13

pXPpXP

pBX

1)0()1(

),1(

0 1 0 1

p

1-p

1-p

p

RANDOM VARIABLES

Discrete random variables

BinomialSuccesses in n independent Bernoulli trials with success probability p

14

)!(!

!

,...,2,1,0)1()(

),(

xnx

n

x

nwith

nxppx

nxXP

pnBX

xnx

RANDOM VARIABLES

Discrete random variables

Geometric

Time of first success in a sequence of independent Bernoulli trials with success probability p

15

,...3,2,1)1()()(

1

xppxXPpGX

x

RANDOM VARIABLES

Discrete random variables

Poisson

X expresses the number of “ rare events”

16

,...2 ,1 ,0!

)(

0),(

xx

exXP

PXx

RANDOM VARIABLES

Discrete random variables

Uniform

17

bxfor

bxaforab

axaxfor

xF

otherwise

bxaforabxfbaUX

1

0

)(

0

1)(],[

a b

f(x)

a b

F(x)

RANDOM VARIABLES

Continuous random variables

Exponential

18

01

00)(

00

01

)()exp(

xfore

xforxF

xfor

xforexfX

x

x

0

f(x)

1

F(x)

1/

RANDOM VARIABLES

Continuous random variables

Normal

19

0

2

)(exp

2

1)(

),(

2

2

2

2

x

xxf

NX

f(x) F(x)

RANDOM VARIABLES

Continuous random variables

Properties of normal distribution

(i) standard normal

(ii)

(iii) independent i=1,2,...,n

20

)1,0(NX

),()1,0( 2 NZNZ

),( 2iii NX

),( 2 n

ii

n

ii

ii NX

RANDOM VARIABLES

Continuous random variables

Transformations of random variables

X random variable with ;

Y = r(x); distribution of Y ?

r(•) is one-to-one; r -1(•).

21

XF

RANDOM VARIABLES

dyyrd

XXdyd

Y

XY

XY

yrfyrFyf

yrpyrXPyXrPyYPyp

yrFyrXPyXrPyYPyF

)(11

11

11

1

))(())(()(

))(())(())(()()(

))(())(())(()()(

(X,Y) random variables;

If (X,Y) is a discrete random variable

If (X,Y) is continuous random variable

22

,

probability joint function( , )

( , ) 0

( , ) 1x y

p x y

verifies : p x y

p x y

probability density joint function( , )

( , ) 0

( , ) 1

f x y

verifies : f x y

f x y dxdy

RANDOM VARIABLES

Bivariate random variables

The marginal probability functions for X and Y are:

23RANDOM VARIABLES

Bivariate random variables

For continuous random variables, the marginaldensities for X and Y are:

xY

yX

yxpyp

yxpxp

),()(

),()(

dxyxfyf

dyyxfxf

Y

X

),()(

),()(

Independent random variables

Two random variables X and Y are independent ifand only if:

for all values x and y.

24RANDOM VARIABLES

( , ) ( ) ( )

( , ) ( ) ( ),

X Y

X Y

p x y p x p y

f x y f x f y

Conditional distributions

Discrete variables

25

If X and Y are independent:

Continuous variables

RANDOM VARIABLES

)(

),()|()|(

yp

yxpyYxXPyxp

)(

),()|(

yf

yxfyxf

)()|(

)()|(

xfyxf

xpyxp

Expectation of a random variable

26

Properties:

(i)

(ii) If are independent then:

niXEXEi

iii

ii ,...,1

niX i ,...,1,

i i

ii EXXE

RANDOM VARIABLES

dxxxfEX

xxpEX

X

xX

)(

)(

Moment of order k

27RANDOM VARIABLES

dxxfxEX

xpxEX

kk

x

kk

)(

)(

Variance

Given X with :

standard deviation

28

22 )( XEVX X

EX

2/12 ))(( XEVXX

RANDOM VARIABLES

Variance

Properties:

(i)

(ii) If are independent then

(iii)

(iv)

29

)()( 2 XVabaXV

i

iii

ii XVaXaV )()( 2iX

22 )(EXEXVX

0VX0 ( ) 1VX P X a

RANDOM VARIABLES

Covariance

X and Y random variables;

30

))((),( EYYEXXEYXCov

RANDOM VARIABLES

EXEYEXYYXCov ),(

Properties

(i) If X, Y are independent then

(ii)

(iii) V(X + Y) = V(X) + V(Y) + 2cov(X,Y)

V(X - Y) = V(X) + V(Y) - 2cov(X,Y)

cov( , ) 0X Y

Correlation

31

VYVX

YXCovYX

),(),(

RANDOM VARIABLES

X and Y random variables;

32RANDOM VARIABLES

Correlation

Properties

(i)

(ii) If X and Y are independent then

(iii)

1),(1 YX

0),( YX

baXYaYXbaXYaYX

:01),(:01),(

Expectation of transformed variables

33

( );Y r X

RANDOM VARIABLES

dxxfxrXEr

xpxrXEr

X

xX

)()()(

)()()(

Sample mean and sample variance

34

Sample mean

Sample variance

RANDOM VARIABLES

i

iXn

XEX1

i

i XXn

SXV 22 )(1

1)(

Properties

X random variable; i. i. d. sample,

Then:

(i)

(ii)

(iii)

35

;, 2 VXEXnXX ,...,1

XE

nXV

2

22 ES

RANDOM VARIABLES

Sample mean and sample variance

Conditional expectation

X and Y are random variables;Then:

36

Properties:

EXYXEE )|(

RANDOM VARIABLES

.| yYX

dxyxfxyYXE

yYxpxyYXEx

)|()|(

)|()|(

Recommended