2 - math.ucsd.eduwilliams/talks/caius/caius1.pptx.pdf · 20000 40000 60000 80000 100000-200-100 100...

Preview:

Citation preview

20 40 60 80 100

- 6

- 4

- 2

2

2000 4000 6000 8000 10000

- 20

20

40

60

80

20000 40000 60000 80000 100000

- 200

- 100

100

200

300

400

Sm ( )S(m )

mB( ) as m

• 0 = t0n< t1

n< ... < tn

n= t

n

B(ti+1n ) B(ti

n )tin ,ti+1

n n

as n 0

• 0 = t0n< t1

n< ... < tn

n= t

n

(B(ti+1n

tin ,ti+1

n n

) B(tin ))2 t as n 0

B(ti+1n ) B(ti

n )tin ,ti+1

n n

as n 0

0 = t0n< t1

n< ... < tn

n= tn

(B(ti+1n

tin ,ti+1

n n

) B(tin ))2 t as n 0

B(ti+1n ) B(ti

n )tin ,ti+1

n n

as n 0

0 = t0n< t1

n< ... < tn

n= tn

(B(ti+1n

tin ,ti+1

n n

) B(tin ))2 t as n 0

B(ti+1n ) B(ti

n )tin ,ti+1

n n

as n 0

Formally: "(dB)2= dt"

B(a )=d

a1/2B( ), a > 0

Let f :R R be twice continuously differentiable

f (B(t)) f (B(0)) = ( f (B(ti+1n

ti+1n ,ti

n n

) f (B(tin ))

Let f :R R be twice continuously differentiable

f (B(t)) f (B(0)) = ( f (B(ti+1n

ti+1n ,ti

n n

) f (B(tin ))

= { f '(B(tin

ti+1n ,ti

n n

)(B(ti+1n ) B(ti

n ))

+ 12 f ''(B(ti

n ))(B(ti+1n ) B(ti

n ))2}

Let f :R R be twice continuously differentiable

f (B(t)) f (B(0)) = ( f (B(ti+1n

ti+1n ,ti

n n

) f (B(tin ))

= { f '(B(tin

ti+1n ,ti

n n

)(B(ti+1n ) B(ti

n ))

+ 12 f ''(B(ti

n ))(B(ti+1n ) B(ti

n ))2}

f '(B(s))dB(s) + 12

0

t

f ''(B(s))ds as n

0

t

0

For f :R R twice continuously differentiable

f (B(t)) f (B(0)) = f '(B(s))dB(s) + 12 f ''(B(s))ds

0

t

0

t

• B = (B1,...,Bd )

B1,...,Bd

• B = (B1,...,Bd )

B1,...,Bd

B1

B2

For f C 2 (Rd ),

f (B(t)) f (B(0)) = f (B(s)) dB(s)0

t

+12 f (B(s))ds

0

t

where f =

f

x1

f

xd

and f =2 f

xi2

i=1

d

For f C 2 (Rd ),

f (B(t)) f (B(0)) = f (B(s)) dB(s)0

t

+12 f (B(s))ds

0

t

If f is bounded, then for all t 0,

Ex f (B(s)) dB(s)0

t

= 0

Rd

g a continuous function on the boundary D f

f = 0 in D

f = g on D

f = 0 f = g

D

g = 4sin(5 )

g = 0

= inf{t > 0 :B(t) D}

B( )D

= inf{t > 0 :B(t) D}

B( )

f (x) = Ex[g(B( ))]

D

f (x) = Ex[g(B( ))] for all x D

f (B(t)) = f (B(0)) + f0

t

(B(s)) dB(s) + 12 f0

t

(B(s))ds

f (B(t)) = f (B(0)) + f0

t

(B(s)) dB(s) + 12 f0

t

(B(s))ds

f (B(t )) = f (B(0)) + f0

t

(B(s)) dB(s) + 12 f0

t

(B(s))ds

f (B(t)) = f (B(0)) + f0

t

(B(s)) dB(s) + 12 f0

t

(B(s))ds

f (B(t )) = f (B(0)) + f0

t

(B(s)) dB(s) + 12 f0

t

(B(s))ds

0

f (B(t)) = f (B(0)) + f0

t

(B(s)) dB(s) + 12 f0

t

(B(s))ds

f (B(t )) = f (B(0)) + f0

t

(B(s)) dB(s) + 12 f0

t

(B(s))ds

0

Ex[ f (B(t ))] = Ex[ f (B(0))] = f (x)

f (B(t)) = f (B(0)) + f0

t

(B(s)) dB(s) + 12 f0

t

(B(s))ds

f (B(t )) = f (B(0)) + f0

t

(B(s)) dB(s) + 12 f0

t

(B(s))ds0

Ex[ f (B(t ))] = Ex[ f (B(0))] = f (x)

t ,Ex[ f (B( ))] = f (x)

Recommended