1- Introduction, overview 2- Hamiltonian of a diatomic molecule 3- Hund’s cases; Molecular...

Preview:

Citation preview

• 1- Introduction, overview• 2- Hamiltonian of a diatomic

molecule• 3- Hund’s cases; Molecular

symmetries• 4- Molecular spectroscopy• 5- Photoassociation of cold atoms• 6- Ultracold (elastic) collisionsOlivier Dulieu

Predoc’ school, Les Houches,september 2004

Main steps:

• Definition of the exact Hamiltonian• Definition of a complete set of basis

functions• Matrix representation of finite

dimension+perturbations• Comparison to observations to

determine molecular parameters

Non-relativistic Hamiltonian for 2 nuclei and n electrons in the lab-fixed frame

Vmmm

H bb

aa

n

ii

2'2

2'2

1

2'2

222

2'

2

2'

2

2'

22'

iiii ZYX

ji ab

ba

ij

n

i ib

bn

i ia

a

r

eZZ

r

e

r

eZ

r

eZV

22

1

2

1

2

04

with

and

electrons nuclei

e-n e-e n-n

Relative distances

Separation of center-of-mass motion• Origin=midpoint of the axis ≠center of mass• Change of variables

'''

''

1

'''

2

1baii

ba

n

iib

ba

ac

RRRR

RRR

RM

mR

M

mR

M

mR

cii

n

iiRc

bb

n

iiRc

aa

M

m

M

m

M

m

'

1

'

1

'

2

1

2

1

mimmM ba Total mass:

Second Derivative Operator

n

iiR

n

jiji

n

ii

RRccbb

aa

n

ii

m

Mmmm

11,1

2

2'2'

1

2'

1

4

11

11111

ba

ba

mm

mm

ba

ba

mm

mm

for homonuclear molecules01 reduced mass

Hamiltonian in new coordinates

22

1

2

1,

2

1

22

22

2

28

22

c

n

iiR

n

jiji

n

iiR

M

Vm

H

Center-of-mass motion

Radial relative motion

Electronic Hamiltonian

Kinetic couplings m/

-Isotopic effect-Origincenter of mass

Study of the internal Hamiltonian…

2

22

2

22

2

222 R

O

RR

RRR

T in spherical coordinates: rotation of the nuclei

Kinetic momentum of the nuclei

2

22

2

22

2

222 R

O

RR

RRR

X

Y

Z

R Ri e-

22

22

sin

1sin

sin

1

O

RiRO

cos

sinsin

cossin

RZ

RY

RX

R

R

R

iXY

YX

iO

iZX

XZ

iO

iYZ

ZY

iO

RR

RRZ

RR

RRY

RR

RRX

sincotcos

coscotsin

Rotating or molecular frame

• Specific role of the interatomic axis• Potential energy greatly simplified, independent of the

molecule orientation• Euler transformation with a specific convention: { , /2}

cossin

sinsinsincoscos

cossincoscossin

iii

iiii

iiii

zyZ

zyxY

zyxX

cossinsincossin

sinsincoscoscos

cossin

iiii

iiii

iii

ZYXz

ZYXy

YXx

Molecular lab-fixed

Lab-fixed molecular

X

Y

Z

R

X ‘’

Y’’

Z

Y

X

Z

Y

X

100

0cossin

0sincos

Z’’=

X’’’

Z’’’

=Y’’’

Z

Y

X

Z

Y

X

cos0sin

010

sin0cos

=0 around Z’’’:x=X’’’,y=Y’’’, z=Z’’’

Oy perp to OZz

=/2 around Z’’’:Ox perp to OZzOR

0

sin

1

z

y

x

O

iO

iO

R 1

R 2

R 3

R 3

R 3 R 2 R 1 O

X

Y

Z

R

X ‘’

Y’’

Z

Y

X

Z

Y

X

100

0cossin

0sincos

Z’’=

X’’’

Z’’’

=Y’’’

Z

Y

X

Z

Y

X

cos0sin

010

sin0cos

General case: 2/0 and

Z

Y

X

z

y

x

100

0cossin

0sincos

x

y

R 1

R 2

R 3

0

sin

sincos

sin

cossin

z

y

x

O

iO

iO

R 3 R 2 R 1 O

yz

ZYXzyx

Li

Li

sincos

,,,,

T in the molecular frame (1)

xZYX

n

i ii

ii

ZYX

n

i i

i

i

i

i

i

ZYXzyx

Li

zy

yz

z

z

y

y

x

x

,,

1,,

1,,,,

222

22

2

22

2

sin

1sin

sin

1

222

RRR

RRR

With xi, yi, zi now depending on and .

Total electronic angularmomentum in the molecular frame

T in the molecular frame (2)

cotsin

122

2

1cot

sin

1cot

2

22

2

2

222

2

2

2

2

2

22

22

2

zyx

yxz

R

Li

Li

Li

R

LLLi

R

RR

RR

vibration

rotation

Electronic spin can be introduced by replacing Lx,y,z with

jx,y,z=Lx,y,z+Sx,y,z

See further on…

Hamiltonian in the molecular frame

cotsin

122

2

1cot

sin

1cot

2

2

282

2

2

222

2

2

2

2

2

22

2

1

2

1,

2

1

22

zyx

yxz

n

iiR

n

jiji

n

ii

Li

Li

Li

R

LLLi

R

RR

RR

Vm

H

He+H’e

Hv

Hr+H’r

O2 : quite complicated!

Kinetic energy of the nuclei in the molecular frame

Total angular momentum in the molecular frame

Total angular momentum

Commute with H(no external field)

LOJ

ZYX JJJJ ,,,2

zz

zyyy

xxx

LJ

Li

LOJ

iLOJ

cotsin

1

In the molecular frame0

sin

1

z

y

x

O

iO

iO

xZYX

n

i ii

ii

ZYX

n

i i

i

i

i

i

i

ZYXzyx

Li

zy

yz

z

z

y

y

x

x

,,

1,,

1,,,,

yz

ZYXzyx

Li

Li

sincos

,,,,

Total angular momentum in the lab frame

In the lab frame

iJ

Li

J

Li

J

Z

zY

zX

sin

sinsincotcos

sin

coscoscotsin

cossin0

sinsinsincoscos

cossincoscossin

molecularlab

222

2

22

2222

sin

1

sin

cot2

sin

1sin

sin

1zz

ZYX

LLi

JJJJ

cot22222 zyx JJJJIn the

molecular frame!!

Depends only on Lz

Playing further on with angular momenta…

cotsin

122

1cot

sin

1cot

2

222

2

2

222

zyx

yxz

Li

Li

Li

LLLi

O

Playing further on with angular momenta…

222

2

222

sin

1

sin

cot2

sin

1sin

sin

1zz LLiJ

yzyzxx LLLLiLLii

O

sincossincos2sin

12cot

sin

1sin

sin

1

2

2

2

222

Compare with:

zyx Li

Li

LiLJO

cossin

22222

zyxz Li

Li

LiLJL

cossin

2

zyxyx Li

Li

LiLLOL

cossin

22

Also via a direct calculation:

Yet another expression for H in the molecular frame….

LJJLLJLJO

LOLJJLLJO

2222

2222 )2(2OLLOalso

:

2

2

2

22

2

2

1

2

1,

2

1

22

2

2

22

282

R

JLL

R

J

RR

RR

Vm

Hn

iiR

n

jiji

n

ii

He H’e

Hv Hr Hc

Coriolis interaction

22

)2(:

R

LOLalso

What about spin?

Electronic spin Notations:

Nuclear spin

S

I

IJF

LON

SLOJ

If S quantized in the molecular frame (i.e. strong coupling with L), L

should be replaced by j=L+S (with projection ) in all previous equations

But why…?

cossinsincossin

sinsincoscoscos

0cossin

labmolecular

No spatial

representation for S

Rotation matrices:

lablabzz

yyzzmolmol

labzyzmol

labmol

labzyzlabmol

SSLi

SLiSLiS

SiSiSiSS

DHDH

iLiLiLD

)/)(exp(

)/)(exp()2/)(exp(

)/exp()/exp()2/exp(

)/exp()/exp()2/exp(1

1

Born-Oppenheimer approximation (1)

H=He+H’e+Hv+Hr+Hc.

m/>1800: approximate separation of electron/nuclei motion

BO or adiabatic approximation:factorization

of the total wave function

);()();( RrRURrH iie

);()()(

iBO rRR

Potential curves:R: separated atomsR0: united atom

Born-Oppenheimer approximation (2)

H=He+H’e+Hv+Hr+Hc.

BO or adiabatic approximation: factorization of the total wave function

);()()()(irRR

BO

)()()(2

1

2)()(2

22

2

2

RERHRUJRR

RRR c

Mean potential

All act on the electronic wave function

Validity of the BO approximation

RrRCR

rR ii

;

1;

Total wave function with energy EExpressed in the adiabatic basis

022 2

2

2

22

EHH

R

J

R ce

Set of differential coupled equations for C

)(2

)()(22

''

''

2

2'

22

2

2

2

22

RCHRRR

RCEHRUR

J

R

c

c

< | > Integration on

electronic coordinates

J2 diagonalBO approximation

Infinite sum on

non-adiabatic couplings

Non-adiabatic couplings (1)

• Ex: highly excited potential curves in Na2

)1('

'

R

)()(

0

'

')1('

)1(

RURU

RV

proof

Non-adiabatic couplings (2)

Diagonal elements:

)()()()()()()1(

)2(2

2

RURURURU

RVRV

RURU

RV

R

R

)1('

2

2

2

)()( RURU

RV

proof

Non-adiabatic couplings (3)

Diagonal elements

zy

yx

z

c

LL

Li

Li

LL

JLLRHR

cot2

sin

22

2

22222

222

zyxz Li

Li

LiLJL

cossin

2

2222

22

1

L

RH c

z

ez

L

HL 0,

0,2 eHL

proof

« Improved » BO approximation(also « adiabatic » approximation)

Neglect all non-diagonal elements in the adiabatic basis |>

0)(2

)(2

2

2 2

22

2

2222

2

22

RCER

RUR

LJ

R

Unique by definition: Diagonalizes He

Alternative: Diabatic basis

Neglect all (non-diagonal) couplings due to Hc

)(22

)()(2

2

2

''

)1()2(2

2

2222

2

22

RCR

RCERUR

LJ

R

Define a new basis which cancels these

couplings

)()(~

)(

~)(

~

)(~

RMRCRC

RC

RM

)1(: MR

Mif

)(RW

CWCEW

R

~~~~

2 2

22

1~

MWMW

Couplings in the potential matrixproof

Diabatic basis: facts

• Not unique• R-independent

• Definition at R=R0 (ex: R=)

proof

« Nuclear » wave functions (1)

Adiabatic approximation:

0)(2

)(2

2

22 2

22

2

222

2

2

2

22

RCER

RUR

L

R

J

R

zL

V(R)

CR

1Eigenfunctions of J2, JZ, Lz (ou jz) ( Jz)

0,

0,

0,,2

BOz

cz

Z

HJ

HJ

HJHJ

C.E.C.O

proofWave functions: |JM> ou |JM>

« Nuclear » wave functions (2)

)()(),()(),,( JM

iMJM eRRRC R

0)()()1(22

22

2

2

22

RERVJJRR

)()1()(sin

cos2sin

sin

12

22

JM

JM JJ

MM

),(),(

),(),(

),()1(),( 22

JM

JMz

JM

JMZ

JM

JM

J

MJ

JJJ

RR

RR

RR

Rotational wave functionsPhase convention…

),()1(),();,(),(

),()1()1(),(

)0()0(

)1(2/1

JJMJM

JM

JM

JMYX

YY

MMJJiJJ

RR

RR

(Condon&Shortley 1935, Messiah 1960)

…and normalization convention….!

)(12

4)(

)(),,(

)0,,(4

12),(

),(),(sin2

0 0

JM

JM

iJM

iMJM

JM

JM

MMJJJM

JM

π

Jd

edeD

DJ

dd

R

RR

Up to now: ….

JM

Vibrational wave functions and energies (1)

0)()(2

)1(

2 2

2

2

22

RERVR

JJ

R

No analytical

solution

2

2

2

)1(

eR

JJ

2)(2

1)( ee RRkRV D

Rigid rotator Harmonic oscillator

)2/1()1( vJJBE eeevJ D

k

RB e

ee ;

2 2

2

eevRRv

v RRHevR e

;)(!2)( 2/)(2/14/12

22

Usefulapproximations

Equilibrium distance

Vibrational wavefunctions and energies (2)

Deviation from the harmonic oscillator approximation: Morse potential

)()(2 2)( ee RRRRe eeDRV

2)21()21()1( vxvJJBDE eeeeevJ

e

ee D

x4

2/12

e

e

D

Deviation from the rigid rotator approximation:

0;)~

(!

1)

~(

2

)1()()(

~2 ~2

2

ee

RR

eff

n

ne

RR

n

effn

eeffeff R

VRR

R

V

nRV

R

JJRVRV

222 )21()21()1()1( vxvJJDJJBE eeeevevJ D

)21( vBB eev 22

34

e

ee

BD

proof

Continuum statesDissociation, fragmentation, collision…

0)(2

:2

2

2

2

RERR

R E

2

2;)sin()(

E

kRkCR EEEEE

Regular solution:

NormalizationInfluence of the potential

)()()(;)sin(2

)(0 EEEEEEE kkdRRRRkR

)()()(;)sin(2

)(02

EEdRRRRkk

R EEEEE

E

In wave numbers

In energyproof

Matrix elements of the rotational hamiltonian

Easy to evaluate in the BO basis:

But in general, L and S are not good quantum numbers…

…quantum chemistry is needed

cotsin

122

2

1cot

sin

1cot

2

2

2

222

2

2

2

2

2

zyx

yxzrr

Li

Li

Li

R

LLLi

RHH

JLJLJLJL yyxx 22

12

222

1zLL

JMSLJML ou

)1ou (1

Selection rule

Matrix elements of the vibrational hamiltonian

BO basis:

RR

RRH vib

22

2

2

)(1

),( )( RR

Rr v

)()(2

22)()(

2

, 22

vvv

vvvvvvvib RRREH

Quantum chemistry is needed…

Vibrational energy levels Interaction between

vibrational levels

Recommended