1 Guénolé BOURDAUD -jet physics with the EMCal calorimeter of the ALICE experiment at LHC La...

Preview:

Citation preview

1

Guénolé BOURDAUD

-jet physics with the EMCal calorimeter of the ALICE

experiment at LHC

La physique des-jets avec le calorimètre EMCal de l’expérience ALICE au LHC

2

outline

1. Context2. Previous experimental observations3. ALICE @ LHC : new possibilities4. -jet reconstruction algorithms5. identification6. jet reconstruction7. Hump-backed plateau determination8. Summary & outlooks

3

Context • Quark and gluon plasma

• Heavy ion collisions

• Hard processes, jets, -jets

4

Quark Gluon Plasma

Dense medium of deconfined partons

LHCNuclear mater

time

Initial state final statePLASMA HadronisationHard

processes

QCD predictions :

• Energy density > 1 GeV/fm3

• Temperature > 200 MeV

• Baryonic density > 5-10 x normal nuclear matter density

5

Hard probes in QGP study, historical view

~98%~ 50%~ 2%hard/tot

Lessons from RHIC :Need dedicated

detectors for high pT and Hard probes

Alice was designed before RHIC results.

EMCal

QGPInitial state

(partonic) observations.

Explosion of hard probes

JET-QUENCHING

New matter state.Final state (hadronic)

observations.Emergence of hard probes.

Measurement

200920001994Global Observables

~1994~1990~1980Start of construction

LHCRHICSPS

Hard processes : Creation or diffusion of high pT particles

6

Hard processes & jets Lead to jets of particles, from hadronisation of a high pT parton

high pT parton

jet

Parton suffers energy loss travelling through the new medium

Jet multiplicity modification

Jet energy redistribution

Jet-quenching phenomenon

Transverse plan

(azimuthal)

2

tanln

Gluon radiation

Jet modification

7

-jet correlation

•g+q +q (Compton)

•q+q +g (Annihilation)Gluon radiation

Jet attenuation

: not perturbed by medium

• -jet estimates the initial jet energy

• -jet limits the azimuthal acceptance to search the jet

• Pertinent to probe QGP :

A calorimeter (EMCal@ALICE) for

A tracking system (Central trackers @ ALICE) for jet

8

• Use -jets to study medium induced jet modification (via fragmentation function modification)

• Use EMCal and tracking system from ALICE @ LHC to reconstruct -jets

Goal

9

Previous experimental observations

STAR@RHIC

• Azimuthal correlation of hadrons

• First -jet study

10

RHIC Relativistic Heavy Ion Collider, BNL (USA)

• √sNN = 200 GeV (Au-Au)

• √sNN = 500 GeV (p-p)

• = 5 GeV/fm3

11

Jet-quenching at RHICSuppression of jet azimuthal correlation

Adam et. al. Phys. Rev. Lett. 91, 072304 (2003)

-hadron correlation

• Difficulties : direct- identification

• First step for -jet study

di-hadron correlation

STAR : T. Hallman QM2008

12

ALICE @ LHC : new possibilitiesALICE@LHC

• Dedicated experiment

• Access to new observables

13

LHCLarge Hadron Collider, CERN (Geneva)

• √sNN = 5500 GeV (Pb-Pb) X 28

• √sNN = 14000 GeV (p-p)

= 15-60 GeV/fm3 X 3-12

14

Central tracking + EMCal : dedicated to -jets

Tracking-PID : ITS+TPC+(TOF, TRD)Tracking-PID : ITS+TPC+(TOF, TRD)– Charged particles || < 0.9– Excellent momentum resolution up to

100 GeV/c (p/p < 6%)– Tracking down to 100 MeV/c

EMCalEMCal– Energy from neutral particles– Pb-scintillator, 13k towers– = 110, || < 0.7– Energy resolution ~10%/√E

PHOSPHOS– High resolution electromagnetic

spectrometer– || < 0.12– 220 < < 320– Energy resolution: E/E = 3%/E

15

-jet with ALICE Central tracking & EMCal

Full jet reconstruction with tracking.

Jet energy with the gamma in EMCal

~ 10 000 -jets/year in ALICE ( in EMCal) for E> 30 GeV

Lower statistics than di-jets (4 orders of magnitude)

Need the high geometrical acceptance of EMCal

16x

p-p

Pb-Pb

Highlight the jet energy redistribution

• Hump-backed plateau : distribution of the energy in the jet

= ln[pT(jet)/pT(part)]

)(

)(

JetT

particleT

ppx

Tracking

Calorimeter

Borghini-Wiedemann, hep-ph/0506218

17

Feasibility with ALICE

Simulation used to :

Test capacity of the detectors to identify and reconstruct -jets

Determine parameters of the method

Test efficiencyEvent

generator

Particle propagatio

n

Detector response

-jet reconstruct

ion algorithm

• PYTHIA for p-p collisions

• HIJING for Pb-Pb simulation

• PYQUEN for quenching effect

• Possibility to force -jet events

• Tuneable : energy, direction…

GEANT & detectors geometry

Analysis framework

AliRoot

18

-jet reconstruction algorithm• Schematical view

19

-jet reconstruction algorithm

Azimutal plan

20

-jet reconstruction algorithm

22

CR

180°

21

identification• Shower shape

• Bayesian method

• Efficiency

22

Particle IDentification

Shower shape 0 :Cluster in EMCalH

igher energy

°

°

°

Gustavo Conesa : Nucl. Phys. A 2006.10.039

1 tower

23

Particle IDentification

Bayesian method

+ Shower shape analysis

= particle identification

Shower shape

Bayesian method : conditional probability :

• Distinguish different kind of objects, knowing the distribution of a parameter for each kind of objects.

• If distributions are different enough, an identification is possible.

x

dN

/d

x Bayesian method

24

0 distribution

Simulation to obtain the distributions :

, 0 and other hadrons are simulated with energies 5<E<60 GeV

3000 events of a single particle in EMCal acceptance ⊗ 3 kinds of particles ⊗ 13 energies

0 obtains from reconstructed data (ESD)

Parameterization :

0 distributions are parameterized as a function of the energy

Reconstruction of the PID weights for an unknown particle :

From 0 distributions, unknown particle energy & 0

25

Particle IDentification

hadrons

°

26

0 Parametrisation for 0

Gaussian + Landau :

6 parametersMean value of Gaussian distribution

Multiplicative constant of Landau distribution

02

dn

/d

02

27 GeV

27

PID efficiency

Simulation

• Each event contents 3 particles of each kind (, °, hadrons), with energies from 5 to 60 GeV in EMCal acceptance

• 3000 events mixed with p-p collisions @14 TeV (PYTHIA)

• 3000 events mixed with Pb-Pb collisions @ 5.5 TeV (HIJING)

Calculating unknown particle PID weights from :

• 0 distributions

• Measured energy of the unknown particle

• Measured0 of the unknown particle

(Method implemented in AliRoot framework)

28

0 Identification

Identified : W(i) > 0,3

29

Photon identification

Identified : W(i) > 0,3

Can identify photon for a -jet study !

30

-jet reconstruction• candidate selection

• Azimuthal correlation

• Energy correlation

• Background fluctuations

• Jet axis determination

31

From photon to -jet

candidate

1. Energy > 30 GeV (maximization direct / inclusive photons) hep-ph/0311131

2. PIDW,3(only photons)

3. Isolation criteria (no decay photons)

Isolation : photon without energetic particles in the photon area p-p : no particles E > 1 GeV in cone Rc = 0,4 Pb-Pb : no particles E > 3 GeV in cone Rc = 0,3

Gustavo Conesa : CERN Thesis-2006-050 (2005)

32

-jet : correlation

The jet is emitted back-to-back with the photon in azimuthal angle

90 % of the -jets with (+/- 0.3 rad)

Determined with 100 GeV -jets in p-p collisions (no background)

180°

33

-jet : energy correlation

• Ejet / Eis the fraction of reconstructed energy of the jet

RC=0.7

•100 GeV-jets

34

Pb-Pb : background

Need jet energy higher than background fluctuations

Jet energy

Mean bkg

energy

bkg fluctuations

E

35

Pb-Pb : background

Compromise :

• Low Rc for bkg limitation

• High Rc to maximize Ejet in cone

With Ejet = 30 GeV :

– Rc = 0,25

– Ejet / (bkg) = 2

36

Jet axis reconstructionp-p Pb-Pb

-jets

@ 100 GeV

•Simulation :

•1 minute for a p-p collision (PYTHIA) several hundreds of particles

•10 hours for a Pb-Pb collision (HIJING) several tens of thousands particles

•Reconstruction of -jet : Developped in AliRoot, 1GB of a daily evoluting code, no (ever) retro-compatibility.

37

Hump-Backed Plateau (HBP) determination

-jet without background (p-p) : PYTHIA simulation

-jet with background (Pb-Pb) : PYTHIA (signal) merged with HIJING (bkg) simulation

-jet quenched : PYQUEN, processed on PYTHIA events

• 100 GeV -jets

• HBP reconstruction in p-p collisions

• HBP modification without background effect

• HBP modification with background effect

• HBP modification with realistic -jets

38

Hump-backed plateau in p-p collisions (100 GeV -jets)

– Rc dependence– Low variations for high Rc (> 0,7)– Rc = 0,7 to determine HBP distribution

39

HBP Modification without background (100 GeV -jet)

Without bkg : modification of hump-backed plateau easy to measure

40

Pb-Pb : background (100 GeV -jet)

How to subtract the background ?

41

Pb-Pb : subtract background (100 GeV -jet)

• Background of low pT particles pollutes HBP for >3.8

• Background subtraction extends HBP measurement up to = 4.2

42

Background effect (100 GeV -jet)

• Subtraction efficient for 1<<4,2 with 100 GeV -jets

• Need to test with realistic -jet energy (about 30 GeV)

43

Modification of HBP with realistic -jets

Select-jets with 30<E<40 GeV

Error <10% for 0.5<< 3.2

Main error contribution : background

Reconstructed hump-backed plateau show the two domains :

Decrease of high pT particles Enhancement of low pT particles

Highlight the jet energy redistribution

Realistic spectrum : 1 year g-jets @ LHC simulated from 30 to 100 GeV

44

Summary

Particles identification :

For 7<E<50 GeV : It is possible to differentiate photons, neutral pions other hadrons (efficiency ~ 50 % et purity ~ 60 %)

This Method has been integrated in AliRoot framework.

High pT photons are identifiable in EMCal

-jets :

•It is possible to reconstruct and study -jets with energy higher than 30 GeV.

The range for hump-backed plateau study is 0,5<<3,2 (error <10% (Pb-Pb)).

45

• Particle IDentification

– Add a track matching with TPC & EMCal to improve particle identification

– Add an automatic procedure of 0 parametrisation

• -jets

– Improve the background estimation

– Test other algorithms for jet reconstruction

– Test with a Rc dependant of the energy for jet reconstruction

Outlooks

46

47

48

49

backup

50

from photon to gamma-jetSimulation of -jets (p-p : PYTHIA ; Pb-Pb : HIJING)

PYQUEN : quenching simulation

p-p : no background, Pb-Pb with background

IV - -jet reconstruction in ALICE

51

Mach cone effect 3 novembre 2008

Phys.Rev. C 77, 011901 (2008)

52

jet quenching at RHIC • Suppression of high pT hadrons in pp collision compared to Au-Au

• High pT photon suppression due to non medium effect.

QM2008

RAA = d2N/dpTd (Au+Au)

NColld2N/dpTd (p+p)

53

54

EMCal

tower Module (4 towers)

strip-module (12 modules)

super-module (24 strip-modules)

EMCal (10 S-modules & 2 half S-

modules)

II - LHC, ALICE, EMCal

55

EMCal

tower

Module (4 towers)

strip-module (12

modules)

super-module (24 strip-modules)

EMCal (10 S-modules & 2 half S-

modules)

56

-jets reconstruction algorithm

22

CR

57

Neutral pion desintegration

58

Background anisotropy

59

Jet energy reconstruction

60

Rc determination

61

Gamma energy resolution

62

Hadron energy reconstruction

63

Fragmentation function

64

65

Recommended